Abstract This work deals with the study of a class of nonlocal
Navier boundary value problems involving the degenerate $p(x)$-biharmonic operator with a potential term \mbox{$q(x)$-Hardy}
\begin{align*}
\begin{cases}
\Delta( \omega (|\Delta u |^{p(x)}) |\Delta u |^{p(x)- 2}\Delta u ) - \lambda \frac{ |u|^{q(x)- 2}u}{{\delta(x)}^{2q(x)}}= \mu
\vartheta(x)|u|^{q(x)- 2}u\bigg(\int_{\Omega}\frac{\vartheta(x)}{q(x)}| u|^{q(x)}dx\bigg)^{r} & \mbox{in}\ \Omega, \\
u = \Delta u =0, & \mbox{on}\ \partial \Omega.
\end{cases}
\end{align*}
In this new setting, our objectif is to extend the results obtained in the paper
[M. Laghzal, A. El Khalil, M. D. Morchid Alaoui, A. Touzani, Eigencurves of the $p(\cdot)$-biharmonic operator with a Hardy-type term potential, Moroccan J. Pure Appl. Anal., 6(2) (2020), 198--209]
for the nonhomogeneous case $p(x) \neq q(x),$ where $ \vartheta$ is a weight function. The main results are established by using the variational method and min-max arguments
based on Ljusternik-Schnirelmann theory on $C^1$ manifoleds [A. Szulkin, Schnirelmann theory on $C^1$-manifolds, Ann. Inst. Henri Poincaré C, Anal. Non Linéaire, 5(2) (1988), 119--139].
A direct characterization of the principal curve (first one) is provided. 
|