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Abstract. This work deals with the study of a class of nonlocal Navier boundary
value problems involving the degenerate p(x)-biharmonic operator with a potential term
q(x)-Hardy∆(ω(|∆u|p(x))|∆u|p(x)92∆u)− λ |u|q(x)92u

δ(x)2q(x) = µϑ(x)|u|q(x)92u
(∫

Ω

ϑ(x)
q(x)

|u|q(x)dx
)r

in Ω,

u = ∆u = 0, on ∂Ω.

In this new setting, our objectif is to extend the results obtained in the paper [M. Laghzal,
A. El Khalil, M. D. Morchid Alaoui, A. Touzani, Eigencurves of the p(·)-biharmonic operator
with a Hardy-type term potential, Moroccan J. Pure Appl. Anal., 6(2) (2020), 198–209] for
the nonhomogeneous case p(x) ̸= q(x), where ϑ is a weight function. The main results are
established by using the variational method and min-max arguments based on Ljusternik-
Schnirelmann theory on C1 manifoleds [A. Szulkin, Schnirelmann theory on C1-manifolds,
Ann. Inst. Henri Poincaré C, Anal. Non Linéaire, 5(2) (1988), 119–139]. A direct charac-
terization of the principal curve (first one) is provided.

1. Introduction

In a regular bounded domain Ω ⊂ RN , N ≥ 3, with smooth boundary ∂Ω, we consider
the nonlinear singular boundary eigenvalue problem∆(ω(|∆u|p(x))|∆u|p(x)92∆u)−λ |u|q(x)92u

δ(x)2q(x) = µϑ(x)|u|q(x)92u
(∫

Ω

ϑ(x)
q(x)

|u|q(x)dx
)r

in Ω,

u = ∆u = 0, on ∂Ω.

(1)

∆(|∆u|p(x)−2∆u is the p(x)-biharmonic, ∆(ω(|∆u|p(x))|∆u|p(x)−2∆u) is a degenerate
one, the functions p(·), q(·) are supposed to be continuous on Ω, δ(x) = dist(x, ∂Ω)
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2 A degenerated nonlocal p(x)-biharmonic problem with q(x)-Hardy potential

denotes the distance from x to the boundary ∂Ω, ϑ ∈ Lm(x) is a nonnegative function
with m ∈ C+(Ω), λ, r > 0 are real parameters and the real µ is a spectral parameter,
playing the role of an eigenvalue. The following mapping

θ : RN → R, ζ 7→ θ(ζ) = Λ(|ζ|p(x)),
is strictly convex, where Λ is the primitive of a real function ω : R+ → R that
is Λ(t) =

∫ t

0
ω(s) ds. The term ”nonlocal” refers to the presence of the integral:∫

Ω
ϑ(x)
q(x) |u|

q(x)dx, which appears in the equation in (1). This integral represents a

nonlocal interaction, since the value of the equation at a point x depends on the aver-
age behavior of the solution u over the whole domain Ω. Such terms naturally arise in
models of population dynamics, where the growth at a specific location is influenced
by the total population; they also appear in various physical and engineering contexts,
such as beam vibration problems, image processing, and models involving spatial het-
erogeneity. These applications typically require sophisticated mathematical tools for
analysis due to the nonlocal and singular nature of the problem.

Nonlinear singular eigenvalues boundary problems form a class of important prob-
lems in the theory and applications of partial differential equations. The study of this
type of problems is motivated by recent advances in mathematical modeling of non-
Newtonian fluids and elastic mechanics and nonlinear porous medium, and image
processing, in this context we cite as examples the papers [16,17,22].

The problem (1) is inspired by recent studies on p(x)-biharmonic nonlinear bound-
ary problems related to Hardy-type inequalities. Relevant references include the
work [5, 6, 8, 13], where further bibliographic details can be found.

In the particular case where p(x) ≡ q(x) ≡ p El Khalil. et al [7], established the
existence of an increasing sequence of positive eigencurves for the following Dirichlet
problem: {

∆(|∆u|p−2∆u) = λw(x) |u|
p−2u

δ(x)2p + µ |u|p−2u
δ(x)2p in Ω,

u ∈ W 2,p
0 (Ω),

where w is an indefinite weight in L∞(Ω), and mes ({x ∈ Ω : W (x) ̸= 0}) ̸= 0.

For the variable exponent case p(x) = q(x) the same authors [12] proved an anal-
ogous result for the problem:{

∆(|∆u|p(x)−2∆u)− λ |u|p(x)−2u

δ(x)2p(x) = µ|u|p(x)−2u for x ∈ Ω,

u = 0, for x ∈ ∂Ω.

In the present work, we study problem (1) in the nonhomogeneous case p(x) ̸=
q(x), which involves a Hardy-type singular term and a nonlocal term with a weighted
integral. Our analysis is conducted under the following set of assumptions:

(H1) 1 < min
Ω

q ≤ max
Ω

q < min
Ω

p ≤ max
Ω

p < N
2 , and max

Ω
q < p∗2, where

p∗2(x) =

{
Np(x)

N−2p(x) , p(x) < N
2 ,

+∞, p(x) ≥ N
2 .

(H2) ∀t ≥ 0 : 0 < L ≤ ω(t) ≤ K, where K and L are positive constants.
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(H3) ϑ ∈ Lm(x)(Ω) such that m(x) > N
2 , and there is a measurable set Ω0 ⊂ Ω

verifying ϑ(x) > 0 for each x ∈ Ω0.

(H4) 0 ≤ λ < R, where R is a positive constant in the Hardy inequality associ-
ated with the degenerate p(x)-biharmonic operator, which will be stated later in
Lemma 3.1.

In this new setting, our objective is to prove the existence of at least one non-
decreasing sequence of positive eigencurves (µk(λ))k≥1. We also provide a direct
characterization of the principal eigencurve (i.e., the first one) using a variational
technique based on the Ljusternik-Schnirelmann theory on C1-manifolds [18] involving
a mini-max argument over sets of genus greater than k.

The structure of the paper is as follows: In Section 2, we introduce some ba-
sic properties of the generalized Lebesgue-Sobolev spaces along with several useful
lemmas. In Section 3, we present an improved Hardy-type inequality. Finally, in
Section 4, we establish the existence of the sequence of eigencurves and provide a
characterization of the principal (first) eigencurve.

2. Preliminaries and useful results

We begin by stating some basic properties of the variable exponent Lebesgue-Sobolev
spaces Lp(·)(Ω) and Wm,p(·)(Ω). For a comprehensive treatment of these spaces, we
refer the reader to the monograph [3] and the references therein. The generalized
Lebesgue space is defined by

Lp(·)(Ω);=
{
u : Ω → R measurable and

∫
Ω

|u(x)|p(x)dx < ∞
}
,

endowed with the Luxemburg norm

|u|p(·) = inf
{
γ > 0 :

∫
Ω

∣∣∣u
γ

∣∣∣p(x) dx ≤ 1
}
.

For each fixed exponent function p(·), the modular functional ρp(·) defined by

ρp(·)(u) :=

∫
Ω

|u|p(x)dx.

has an important role in manipulating the generalized Lebesgue spaces Lp(·)(Ω).

Proposition 2.1 ([20]). Under hypothesis (H1), the space (Lp(x)(Ω), | · |p(x)) is sepa-
rable, uniformly convex, reflexive and its conjugate dual space is Lp′(·)(Ω) where p′(·)
is the conjugate function of p(·), i.e.,

p′(x) =
p(x)

p(x)− 1
for all x ∈ Ω.

For u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) we have∣∣∣ ∫
Ω

u(x)v(x) dx
∣∣∣ ≤ ( 1

p−
+

1

p′−

)
|u|p(·)|v|p′(·) ≤ 2|u|p(·)|v|p′(·).
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∣∣∣ ∫
Ω

u(x)v(x)w(x) dx
∣∣∣ ≤ ( 1

p−1
+

1

p−2
+

1

p−3

)
|u|p1(·)|v|p2(·)|w|p3(·)

≤ 3|u|p1(·)|v|p2(·)|w|p3(·) (2)

Proposition 2.2 ( [11, Theorem 1.3]). Let un, u ∈ Lp(·), we have
(a) |u|p(·) = a ⇔ ρp(·)(

u
a ) = 1 for u ̸= 0 and a > 0.

(b) |u|p(·) < (=;> 1) ⇔ ρp(·)(u) < (=;> 1).

(c) |un| → 0(resp → +∞) ⇔ ρp(·)(un) → 0, (resp → +∞).

(d) the following statements are equivalent to one another:

(i) limn→+∞|un − u|p(·) = 0,

(ii) limn→+∞ρp(·)(un − u) = 0,

(iii) un → u in measure in Ω and limn→+∞J(un) = ρp(·)(u).

The Sobolev space with variable exponent Wm,p(·)(Ω) is defined as

Wm,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) : Dαu ∈ Lp(·)(Ω), |α| ≤ m

}
,

where Dαu = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂x

αN
N

u (the derivative is in the sense of distributions) with a

multi-index α = (α1, . . . , αN ), |α| =
∑N

i=1 αi. The space Wm,p(·)(Ω) equipped with
the norm ∥u∥m,p(x) =

∑
|α|≤m |Dαu|p(x) is a Banach, separable and reflexive space.

For more details, we refer the reader to [9, 11, 15, 19]. We denote by W
m,p(·)
0 (Ω)

the closure of C∞
0 (Ω) in Wm,p(·)(Ω). Note that weak solutions of problem (1) are

considered in the generalized Sobolev space X = W 2,p(·)(Ω) ∩ W
1,p(·)
0 (Ω), endowed

with the norm ∥u∥X = inf
{
γ > 0 :

∫
Ω

∣∣∣∆u
γ

∣∣∣p(x) dx ≤ 1
}
.

Remark 2.3. For all u ∈ X we have

∥u∥X = ∥u∥1,p(x) + ∥u∥2,p(x), ∀u ∈ X,

where ∥u∥1,p(x) = |u|p(x) + |∇u|p(x), and ∥u∥2,p(x) =
∑
|α|=2

|Dαu|p(x).

Then according to [20] the norm ∥.∥2,p(·) is equivalent to the norm |∆.|p(·) in the
space X for the Lipschitz boundary and the exponent p(·) in the class that keeps
the maximal function operator bounded (i.e., 1

p(·) is globally log-Hölder continuous).

Consequently, the norms ∥.∥2,p(·), ∥u∥X and |∆.|p(·) are equivalent.

Note that X equipped with the norm ∥ · ∥X , is also a separable, reflexive, and
Banach space.

We also recall the following proposition which will be required later.

Proposition 2.4 ([4]). Suppose that p et q are measurable functions verifying p ∈
L∞(Ω) and for all x ∈ Ω and 1 < p(x)q(x) ≤ ∞. Then we have for all u ∈
Lq(x)(Ω), u ̸= 0

|u|p(x) ≤ 1 ⇒ |u|p
+

p(x)q(x) ≤
∣∣∣|u|p(x)∣∣∣

q(x)
≤ |u|p

−

p(x)q(x),
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|u|p(x) ≥ 1 ⇒ |u|p
−

p(x)q(x) ≤
∣∣∣|u|p(x)∣∣∣

q(x)
≤ |u|p

+

p(x)q(x).

Theorem 2.5 ([1]). Assume that p, q ∈ C+(Ω). If q(x) < p∗2(x), then there exists a
compact and continuous embedding X ↪→ Lq(x)(Ω).

Let m′(x) be the conjugate exponent of m(x) and consider η(x) := m(x)q(x)
m(x)−q(x) .

By (H1) one get for all x ∈ Ω, η(x) < p∗2(x) and m′(x)q(x) < p∗2(x). Hence, according
to Theorem 2.5, the embeddings X ↪→ Lm′(x)q(x)(Ω) and X ↪→ Lη(x)(Ω) are compact
and continuous.

According to Proposition 2.2, the following assertions holds.

Proposition 2.6 ([10]). Let un, u ∈ Lp(·), and J(u) =
∫
Ω
|∆u|p(x)dx, we have

(i) ∥u∥X < (=;> 1) ⇔ J(u) < (=;> 1).

(ii)

∥u∥X ≤ 1 ⇒ ∥u∥p
+

X ≤ J(u) ≤ ∥u∥p
−

X ,

∥u∥X ≥ 1 ⇒ ∥u∥p
−

X ≤ J(u) ≤ ∥u∥p
+

X .

(iii) ∥un∥X → 0 (resp. → +∞) ⇔ J(un) → 0, (resp. → +∞).

3. Improved (p(x), q(x))-Hardy inequality

First recall that for the classical case p(·) = q(·) = p constant, Davis and Hinz [2]
proved that for any p ∈ (1, N

2 ),∫
Ω

|∆u|pdx ≥
(
N(p− 1)(N − 2p)

p2

)p ∫
Ω

|u|p

δ(x)2p
dx,

whenever u ∈ C∞
c (Ω). Also, this inequality was proved in [14], for all u ∈ W 2,p(Ω)∩

W 1,p
0 (Ω) with 1 < p < N

2 . For variable exponent case , this inequality was obtained
in [5, Lemma 3.1] under the hypothesis (H1), as follows∫

Ω

1

p(x)
|∆u|p(x)dx ≥ C

∫
Ω

1

q(x)

|u|q(x)

δ(x)2q(x)
dx. (3)

where C = min

(
q−

p+Cq− ;
q−

p+Cp+

)
, with Cq− =

(
N(q−−1)(N−2q−)

(q−)2

)q−
and Cp+ =(

N(p+−1)(N−2p+)
(p+)2

)p+

.

Now, we present a new Hardy inequality related to degenerate p(x)-biharmonic
operator.

Lemma 3.1. Assume that (H1) and (H2) holds. Then there exists a positive constant
R, such that the (p(x), q(x))-Hardy inequality∫

Ω

1

q(x)

|u|q(x)

δ(x)2q(x)
dx ≤ 1

R

∫
Ω

1

p(x)
Λ(|∆u|p(x))dx+ Cq+∥u∥q

+

X ,

holds for all u ∈ X.
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Proof. Define the sets

U = Ω1 ∩ {x ∈ Ω : |u(x)| ≤ δ(x)2}, E = Ω2 ∩ {x ∈ Ω : |u(x)| ≥ δ(x)2},
V = Ω1 ∩ {x ∈ Ω : |u(x)| > δ(x)2}, F = Ω2 ∩ {x ∈ Ω : |u(x)| < δ(x)2},

where Ω1 =

{
x ∈ Ω : Λ(|∆u|p(x)) ≥ 1

}
and Ω2 =

{
x ∈ Ω : Λ(|∆u|p(x)) < 1

}
. Then

Ω = U ∪ V ∪ E ∪ F.

Case 1: x ∈ Ω1. By (H2) Λ is bounded, then∫
Ω1

p+

p(x)
Λ(|∆u|p(x))dx ≥ L

∫
Ω1

|∆u|q
−dx. (4)

In view of (3), there is a positive constant Cq− = C(N, q−) such that∫
Ω1

|∆u|q
−
dx ≥ Cq−

∫
Ω1

|u|q−

δ(x)2q−
dx, (5)

• If |u(x)| ≤ δ(x)2, we have
(

|u|
δ(x)2

)q(x)
≤
(

|u|
δ(x)2

)q−
. Therefore,

Cq−

∫
Ω1∩{x∈Ω:|u(x)|≤δ(x)2}

(
|u(x)|
δ(x)2

)q(x)

dx ≤ Cq−

∫
Ω1∩{x∈Ω:|u(x)|≤δ(x)2}

(
|u(x)|
δ(x)2

)q−

dx.

Then, by (5) we obtain ∫
U

|∆u|q
−
dx ≥ q−Cq−

∫
U

1

q−
|u|q(x)

δ(x)2q(x)
dx.

Hence, in view of (4), we conclude that∫
U

p+

p(x)
Λ(|∆u|p(x))dx ≥ q−LCq−

∫
U

1

q(x)

|u|q(x)

δ(x)2q(x)
dx.

Then ∫
U

1

p(x)
Λ(|∆u|p(x))dx ≥ Rq−

∫
U

1

q(x)

|u|q(x)

δ(x)2q(x)
dx,

where Rq− = q−

p+LCq− .

• If |u(x)| > δ(x)2. We have∫
Ω1

p+

p(x)
Λ(|∆u|p(x))dx ≥ L

∫
Ω1

|∆u|q
+

dx. (6)

By (3), there is a positive constant Cq+ = C(N, q+) such that∫
Ω1

|∆u|q
+

dx ≥ Cq+

∫
Ω1

|u|q+

δ(x)2q+
dx, (7)

Since

(
|u(x)|
δ(x)2

)q(x)

≤
(
|u(x)|
δ(x)2

)q+

.
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Therefore

Cq+

∫
Ω1∩{x∈Ω:|u(x)|>δ(x)2}

|u(x)|q(x)

δ(x)2q(x)
dx ≤ Cq+

∫
Ω1∩{x∈Ω:|u(x)|>δ(x)2}

(
|u(x)|
δ(x)2

)q+

dx.

Then, by (7), we obtain∫
V

|∆u(x)|q
+

dx ≥ q−Cq+

∫
V

1

q−
|u(x)|q−

δ(x)2q(x)
dxdx.

Hence by (6), we conclude that∫
V

p+

p(x)
Λ(|∆u|p(x))dx ≥ q−LCq+

∫
V

1

q(x)

|u|q(x)

δ(x)2q(x)
dx,

Then ∫
V

p+

p(x)
Λ(|∆u|p(x))dx ≥ Rq+

∫
V

1

q(x)

|u|q(x)

δ(x)2q(x)
dx,

where Rq+ = q−

p+LCq+ .

Case 2: x ∈ Ω2. We have∫
Ω2

p+

p(x)
Λ(|∆u|p(x))dx ≥ L

∫
Ω2

|∆u|p
+

dx. (8)

By (3), there is a positive constant Cp+ = C(N, p+) such that∫
Ω2

|∆u|p
+

dx ≥ Cp+

∫
Ω2

|u|p+

δ(x)2p+ dx, (9)

• If |u(x)| ≥ δ(x)2, we have(
|u|

δ(x)2

)q(x)

≤
(

|u|
δ(x)2

)p+

.

Therefore∫
Ω2∩{x∈Ω:|u(x)|≥δ(x)2}

(
|u(x)|
δ(x)2

)q(x)

dx ≤
∫
Ω2∩{x∈Ω:|u(x)|≥δ(x)2}

(
|u(x)|
δ(x)2

)p+

dx.

Then, by (9), we obtain ∫
E

|∆u|p
+

dx ≥ q−Cq−

∫
E

1

q−

(
|u|

δ(x)2

)p+

dx.

Hence, in view of (8), we conclude that∫
E

p+

p(x)
Λ(|∆u|p(x))dx ≥ q−LCq−

∫
E

1

q(x)

|u|q(x)

δ(x)2q(x)
dx,
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Then ∫
E

p+

p(x)
Λ(|∆u|p(x))dx ≥ Rp+

∫
E

1

q(x)

|u|q(x)

δ(x)2q(x)
dx,

where Rp+ = q−

p+LCp+ .

• If |u(x)| < δ(x)2. Since q− < p∗2, then by Theorem 2.5 the spaceX is continuously

embedded in Lq+(Ω), that is, there exists a constant C such that such that∫
Ω

|u(x)|q
−
dx ≤ Cq−∥u∥q

−

X , ∀u ∈ X. (10)

According to the fact that |u(x)| < δ(x)2, and for δ(x)2 large enough, such that
δ(x)2 > 1, we obtain for every u ∈ X(

|u(x)|
δ(x)2

)q(x)

≤
(
|u(x)|
δ(x)2

)q−

≤ |u(x)|q
−
, ∀x ∈ Ω2 ∩ {x ∈ Ω : |u(x)| < δ(x)2}.

Hence ∫
F

|u(x)|q(x)

δ(x)2q(x)
dx ≤

∫
F

|u(x)|q
−
dx (11)

Combining (10) and (11), we obtain∫
Ω

|u(x)|q(x)

δ(x)2q(x)
dx ≤ Cq−∥u∥q

−

X , ∀u ∈ X.

Therefore, by taking R = max{Rq− , Rq+ , Rp+}, we have the following Hardy type
inequality∫

Ω

1

q(x)

|u(x)|q(x)

δ(x)2q(x)
dx ≤ 1

R

∫
Ω

1

p(x)
Λ(|∆u|p(x))dx+ Cq−∥u∥q

−

X , ∀u ∈ X.

Definition 3.2. We say that a function u ∈ X is a weak solution of (Pλ), if for all
v ∈ X, ∫

Ω

ω(|∆u|p(x))|∆u|p(x)−2∆u∆v dx− λ

∫
Ω

|u|q(x)92u
δ(x)

2q(x)
v dx

= µ

∫
Ω

|u|q(x)92uv dx
(∫

Ω

ϑ(x)

q(x)
|u|q(x) dx

)r

. (12)

If u is not identically zero, we say that u is an eigenfunction of the degenerate p(x)-
biharmonic operator associated to the pair of eigenvalues (λ, µ).

Definition 3.3. We define the principal eigencurve of the degenerate p(x)-Biharmonic
operator, the graph of the function λ → µ1(λ) ∈ R, defined by

µ1(λ) = inf

{∫
Ω

1
p(x)Λ(|∆u|p(x)) dx− λ

∫
Ω

1
q(x)

|u|q(x)

δ(x)2q(x)

1
r+1

[ ∫
Ω

ϑ(x)
q(x) |u|q(x)dx

]r+1 ; u ∈ X \ {0}

}
.
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Consider the following functionals defined on X:

Φλ(u) =

∫
Ω

1

p(x)
Λ(|∆u|p(x))dx− λ

∫
Ω

1

q(x)

|u|q(x)

δ(x)
2q(x)

dx = Φ− λφ(u)

Ψ(u) =
1

r + 1

[ ∫
Ω

ϑ(x)

q(x)
|u|q(x)dx

]r+1

.

Clearly, that Φ, φ and Ψ are even and of class C1 on X. Moreover Φ′, φ′ and Ψ :
X → X∗ are defined by

⟨Φ′(u), v⟩ :=
∫
Ω

ω(|∆u|p(x))|∆u|p(x)92∆u∆v dx,

⟨φ′(u), v⟩ :=
∫
Ω

m(x)
|u|p(x)−2

δ(x)
2p(x)

uv dx,

⟨Ψ′(u), v⟩ :=
(∫

Ω

ϑ(x)

q(x)
|u|q(x)dx

)r ∫
Ω

ϑ(x)|u|q(x)92uv dx,

We set, H =

{
u ∈ X; Ψ(u) = 1

}
.

Lemma 3.4. H is a closed C1-manifold on X.

Proof. Since H = Ψ−1
λ {1}, it follows that M is closed. Therefore, we only need to

prove that Ψ′ is onto for all u ∈ H.

Let u, v ∈ H, for any t > 0, the mapping

h(t) =
〈
Ψ(tu), v

〉
=

1

r + 1

[ ∫
Ω

tq(x)
ϑ(x)

q(x)
|u|q(x)dx

]r+1

,

is differentiable and we have

h′(t) =
〈
Ψ′(tu), u

〉
=

(∫
Ω

tq(x)
ϑ(x)

q(x)
|u|q(x) dx

)r ∫
Ω

tq(x)−1ϑ(x)|u|q(x)dx

≥ min
{
tq

−(r+1)−1, tq
+(r+1)−1

}[∫
Ω

ϑ(x)|u|q(x) dx
]r+1

q−

≥ min
{
tq

−(r+1)−1, tq
+(r+1)−1

}
(r + 1)q− > 0.

Hence, h is strictly increasing, further h(0) = 0 and limt→∞ h(t) = ∞ since for t large

one has h(t) ≥ tq
−
(r + 1). Thus for every ζ ∈ R, there exists a unique t0 > 0 such

that h(t0) = ζ, so that Ψ(t0u) = ζ and we also have〈
Ψ′(t0u),

t0
(r+1)q(x)

u
〉
=

(∫
Ω

ϑ(x)

q(x)
|t0u|q(x)dx

)r∫
Ω

1

r+1

ϑ(x)

q(x)
|t0u|q(x)dx = Ψ(t0u) = ζ.

This means that Ψ′(u) is onto for all u ∈ H. Therefore, Ψ is a submersion. Hence,
H is a C1-manifold . □

Remark 3.5. We write Φ′
λ as Φ′

λ(·) = Φ′(·) − λφ′((·)). Then, problem (1) can be
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equivalently written as

Φλ(u) = µΨ(u), u ∈ H, (13)

and the paire (µ, u) solves (13) if and only if u is a critical point of Φλ with respect
to H.

The operator Θ := Φ′ : X → X∗ defined as

⟨Θ(u), v⟩ =
∫
Ω

ω(|∆u|p(x))|∆u|p(x)92∆u∆v dx for any u, v ∈ X,

satisfies the assertions of the following lemma, which is the key to establish our main
results in the next section.

Lemma 3.6. The following statements hold:
(i) Θ is continuous, bounded and strictly monotone.

(ii) Θ is of (S+) type.

(iii) Θ is a homeomorphism.

Proof. (i) Since Θ is the Fréchet derivative of Φ, it follows that Θ is continuous and
bounded so that we deduce that for all u, v ∈ X such that u ̸= v, ⟨Θ(u)−Θ(v), u−v⟩>0.
This means that Θ is strictly monotone.

(ii) First we recall the following well-known inequalities, which hold for any three
real ξ1, ξ2 and p(

ξ1|ξ1|p−2 − ξ2|ξ2|p−2
)
(ξ1 − ξ2) ≥ c(p)

{
|ξ1 − ξ2|p if p ≥ 2,

|ξ1−ξ2|2

(|ξ1|+|ξ2|)2−p if 1 < p < 2,
(14)

where c(p) = 22−p when p ≥ 2 and c(p) = p − 1 when 1 < p < 2. Let (un)n be a
sequence of X such that un ⇀ u weakly in X and lim supn→+∞⟨Θ(un), un − u⟩ ≤ 0.
From (14) we have ⟨Θ(un) − Θ(u), un − u⟩ ≥ 0, and since un ⇀ u weakly in X, it
follows that lim supn→+∞⟨Θ(un)−Θ(u), un − u⟩ = 0. On the other hand, we have

⟨Θ(un)−Θ(u), un − u⟩ =
∫
Ω

ω(|∆un|p(x))|∆un|p(x)92∆un

(
∆un −∆u

)
dx

−
∫
Ω

ω(|∆u|p(x))|∆u|p(x)92∆u
(
∆un −∆u

)
dx,

and by hypothesese (H2), we obtain

⟨Θ(un)−Θ(u), un−u⟩ ≥ L

∫
Ω

|∆un|p(x)92
(
∆un−∆u

)
dx−K

∫
Ω

|∆u|p(x)92
(
∆un−∆u

)
dx

≥ max(L,K)

∫
Ω

(
|∆un|p(x)−2∆un−|∆u|p(x)−2∆u

)(
∆un−∆u

)
dx

≥ K

∫
Ω

(
|∆un|p(x)−2∆un−|∆u|p(x)−2∆u

)(
∆un−∆u

)
dx.

Thus again from (14) we have∫
{x∈Ω:p(x)≥2}

|∆un−∆u|p(x)dx ≤ 2(p
−−2)

∫
Ω

F (un, u)dx,
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∫
{x∈Ω:1<p(x)<2}

|∆un−∆u|p(x)dx ≤ (p+−1)

∫
Ω

(F (un, u))
p(x)
2 (G(un, u))

(29p(x)) p(x)
2 dx,

where {
F (un, u) = (|∆un|p(x)−2∆un − |∆u|p(x)−2∆u)(∆un −∆u),

G(un, u) = (|∆un|+ |∆u|)2−p(x).

Since
∫
Ω
F (un, u) dx = ⟨Θ(un)−Θ(u), un−u⟩, we can consider 0 ≤

∫
Ω
F (un, u) dx < 1.

We then distinguish two cases.

First, if
∫
Ω
G(un, u) dx = 0, then F (un, u) = 0, since F (un, u) ≥ 0 a.e. in Ω.

Second, if 0 <
∫
Ω
F (un, u) dx < 1, then

tp(x) :=

(∫
{x∈Ω:1<p(x)<2}

F (un, u) dx

)−1

,

is positive and by applying Young’s inequality we deduce that∫
{x∈Ω:1<p(x)<2}

[
t(F (un, u))

p(x)
2

]
(G(un, u))

(2−p(x))
p(x)
2 dx

≤
∫
{x∈Ω:1<p(x)<2}

(
F (un, u)(t)

2
p(x) + (G(un, u))

p(x)
)
dx.

Now, by the fact that 2
p(x) < 2, we have∫

{x∈Ω:1<p(x)<2}

(
F (un, u)(t)

2
p(x) + (G(un, u))

p(x)
)
dx

≤
∫
{x∈Ω:1<p(x)<2}

(
F (un, u)t

2 + (G(un, u))
p(x)
)
dx

≤ 1 +

∫
{x∈Ω:1<p(x)<2}

(G(un, u))
p(x)dx.

Hence, ∫
{x∈Ω:1<p(x)<2}

|∆un −∆u|p(x)dx

≤
(∫

{x∈Ω:1<p(x)<2}
F (un, u)dx

) 1
2
(
1 +

∫
Ω

(G(un, u))
p(x)dx

)
.

Since
∫
Ω
(G(un, u))

p(x) dx is bounded, we have
∫
{x∈Ω:1<p(x)<2} |∆un −∆u|p(x)dx → 0

as n → ∞.

(iii) Note that the strict monotonicity of Θ implies that Θ is into an operator.

Moreover, Θ is a coercive operator. Indeed, from ((ii)) and since p− − 1 > 0, for
each u ∈ X such that ∥u∥X ≥ 1, we have

⟨Θ(u), u⟩
∥u∥X

≥ L
J(u)

∥u∥X
≥ L∥u∥p

−−1
X → ∞ as ∥u∥X → ∞.

Finally, thanks to the Minty–Browder Theorem [21], the operator T is surjective and
admits an inverse mapping.
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To complete the proof of (iii), it suffices then to show the continuity of Θ−1.
Indeed, let (gn)n be a sequence of X∗ such that gn → g in X∗. Let un and u in X
such that Θ−1(gn) = un and Θ−1(g) = u. By the coercivity of Θ, we deduce that the
sequence (un)n is bounded in the reflexive space X. For a subsequence, if necessary,
we have un ⇀ û in X for a some û. Then

lim
n→+∞

⟨Θ(un)−Θ(u), un − û⟩ = lim
n→+∞

⟨gn − g, un − û⟩ = 0.

It follows by the assertion (ii) and the continuity of Θ that un → û in X and Θ(un) →
Θ(û) = Θ(u) in X∗. Further, since Θ is an into operator, we conclude that u ≡ û. □

Lemma 3.7 ([6, Lemma 3.6-(i) ]). The functional φ′ sequentially weakly-strongly con-
tinuous, namely, un ⇀ u in X ⇒ φ′(un) → φ′(u) in X∗.

Lemma 3.8. For any λ ∈ R, we have
(a) Ψ′ is sequentially weakly-strongly continuous.

(b) Φλ is bounded froum below on H.

Proof. (a) Let un ⇀ u (weakly) in X we prove that Ψ′(un) → Ψ′(u) in X∗. By
Hölder’s inequality (2), we have for any v ∈ X,∣∣∣⟨Ψ′(un)− ⟨Ψ′(un), v⟩

∣∣∣
=

∣∣∣∣∣
( ∫

Ω

ϑ(x)

q(x)
|un|q(x)dx

)r∫
Ω

ϑ(x)|un|q(x)92unv dx

−
(∫

Ω

ϑ(x)

q(x)
|u|q(x)dx

)r∫
Ω

ϑ(x)|u|q(x)92uv dx

∣∣∣∣∣
≤

∣∣∣∣∣
( ∫

Ω

ϑ(x)

q(x)
|un|q(x)dx

)r ∫
Ω

ϑ(x)

(
|un|q(x)92un − |u|q(x)92u

)
v dx

∣∣∣∣∣
+

∣∣∣∣∣
[(∫

Ω

ϑ(x)

q(x)
|un|q(x)dx

)r

−
(∫

Ω

ϑ(x)

q(x)
|u|q(x)dx

)r
]∫

Ω

ϑ(x)|u|q(x)92uv dx

∣∣∣∣∣,
≤ 1

(q−)r

[
|ϑ|m(x)

∣∣∣|un|q(x)
∣∣∣
m′(x)

× 3|ϑ|m(x)

∣∣∣(|un|q(x)92un − |u|q(x)92u
)∣∣∣

q(x)
q(x91

|v|η(x)

+

∣∣∣∣∣
( ∫

Ω

ϑ(x)|un|q(x)dx
)r

−
(∫

Ω

ϑ(x)|u|q(x)dx
)r
∣∣∣∣∣× 3|ϑ|m(x)

∣∣∣|u|q(x)91∣∣∣
q(x)
q(x91

|v|η(x)

]
,

≤ 3

(q−)r

[
|ϑ|2m(x)|un|q

i

m′(x)q(x)

∣∣∣(|un|q(x)92un − |u|q(x)92u
)∣∣∣

q(x)
q(x91

|v|η(x)

+

∣∣∣∣∣
( ∫

Ω

ϑ(x)|un|q(x)dx
)r

−
(∫

Ω

ϑ(x)|u|q(x)dx
)r
∣∣∣∣∣× |ϑ|m(x)|u|q

j91
q(x) |v|η(x)

]
,

where i = + if |un|m′(x)q(x) > 1, i = − if |un|m′(x)q(x) < 1 and j = + if |u|q(x) > 1,
j = − if |u|q(x) < 1.
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Using the fact that X is continuously embedded in Lm′(x)β(x)(Ω), Lq(x)(Ω) and
Lη(x)(Ω) respectivly, then there is c1, c2, c3 > 0 satisfying

|un|m′(x)q(x) ≤ c1∥un∥X , |u|q(x) ≤ c2∥u∥X and |v|η(x) ≤ c3∥v∥X .

Thus∣∣∣⟨Ψ′(un)−⟨Ψ′(un), v⟩
∣∣∣ ≤ 3c3

(q−)r

[
cq

i

1 |ϑ|2m(x)∥un∥q
i

X

∣∣∣(|un|q(x)92un−|u|q(x)92u
)∣∣∣

q(x)
q(x91

∥v∥X

+

∣∣∣∣∣
( ∫

Ω

ϑ(x)|un|q(x)dx
)r

−
(∫

Ω

ϑ(x)|u|q(x)dx
)r
∣∣∣∣∣× cq

j91
2 |ϑ|m(x)∥u∥q

j91
X ∥v∥X

]
.

Since the embedding X ↪→ Lq(·)(Ω) is compact, un converges strongly to u in Lq(·)(Ω).
Consequently, there exists a positive function g ∈ Lq(·)(Ω) such that | u |≤ g a.e. in Ω.
Since g ∈ Lq(·)−1(Ω), it follows from the Dominated Convergence Theorem that

|un|q(x)92un → |u|q(x)92u in L
q(·)

q(·)−1 (Ω). On the other hand, ϑ(x)|un|q(x) → ϑ(x)|u|q(x)
in L1(Ω). Then, (∫

Ω

ϑ(x)|un|q(x) dx
)r

→
(∫

Ω

ϑ(x)|u|q(x)dx
)r

.

Consequently Ψ′(un) → Ψ′(u) in X∗. This achieves the proof of (a).

(b) Let u ∈ H. We have

Φλ(u) =

∫
Ω

1

p(x)
Λ(|∆u|p(x)) dx− λ

∫
Ω

1

q(x)

|u|q(x)

δ(x)
2q(x)

dx,

then by using the hypothesis (H2) and (p(x), q(x))-Hardy inequality in Lemma 3.1
and

Φλ(u) ≥
(
1− λ

R

)∫
Ω

1

p(x)
Λ(|∆u|p(x)) dx− Cq−∥u∥q

−

X

≥ L

p+

(
1− λ

R

)
J(u)− Cq−∥u∥q

−

X , (15)

then for all ||u||X large enough. it follows from Remak 2.6 that

Φλ ≥ L

p+

(
1− λ

R

)
||u||p

−

X − Cq−∥u∥q
−

X . (16)

By hypothesis (H4) and since p−>q−>1, Φλ is coercive and hence bounded below. □

Lemma 3.9. The functional Φλ satisfies the Palais–Smale condition on H, i.e., for
{un} ⊂ H, if {Φλ(un)}n is bounded and

Xn = Φ′
λ(un)− YnΨ

′
q(·)(un) → 0 as n → +∞, (17)

where Yn = ⟨Φ′
λ(un), un⟩/⟨Ψ′

q(·)(un), un⟩, implying that {un}n≥1 has a convergent
subsequence in X.

Proof. From (16) we have that {Φλ(un)}n being coercive, then {un}n is bounded,
hence un ⇀ u ∈ X (weakly) and due the fact that the embedding X in Lq(x)(Ω) is
compact, un → u (strongly) . On the other hand, we deduce from the inequality (15),
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that J(un) is bounded in R. Thus, without loss of generality, we can assume that
J(∆un) → ℓ. For the remainder, we distinguish two cases:

• If ℓ = 0, then un converges strongly to 0 in X.

• If ℓ ̸= 0, let us prove that lim supn→∞
〈
Θ(un), un − u

〉
≤ 0.

By hypothesis (H3), we have
〈
Θ(un), un − u

〉
≤ Kρp(·)(∆un)−

〈
Θ(un), u

〉
. Applying

Xn of (17) to u, we deduce that

Zn =
〈
Θ(un), u

〉
− λ

〈
φ′(un), u

〉
− Yn

〈
Ψ′

q(·)(un), u
〉
→ 0 as n → ∞.

Therefore,〈
Θ(un), un − u

〉
≤ Kρp(·)(∆un)− λ

〈
φ′(un), u

〉
− Zn −

〈
Φ′

λ(un), un

〉〈
Ψ′

p(·)(un), un

〉〈Ψ′
p(·)(un), u

〉
.

That is,〈
Θ(un), un − u

〉
≤

Kρp(·)(∆un)〈
Ψ′

p(·)(un), un

〉(〈Ψ′
p(·)(un), un

〉
−
〈
Ψ′

p(·)(un), u
〉)

− Zn − λ
〈
φ′(un), un

〉
+ λ

〈
φ(un), un

〉〈
Ψ′

p(·)(un), un

〉 · 〈Ψ′
p(·)(un), un

〉
.

On the other hand, from Lemma 3.7, and Lemma 3.8 (a), φ′ and Ψq(·) are com-
pletely continuous. Thus φ′(un) → φ′(u), ⟨φ′(un), un⟩ → ⟨φ′(u), u⟩ and ⟨φ′(un), u⟩ →
⟨φ′(u), u⟩, Ψ′

q(·)(un) → Ψ′
q(·)(u), and ⟨Ψ′

q(·)(un), un⟩ → ⟨Ψ′
q(·)(u), u⟩. Then

|⟨Ψ′
q(·)(un), un⟩ − ⟨Ψ′

q(·)(un), u⟩|
≤ |Ψ′

q(·)(un), un⟩ − ⟨Ψ′
q(·)(u), u⟩|+ |⟨Ψ′

q(·)(un), u⟩ − ⟨Ψ′
q(·)(u), u⟩|.

It follows that

|⟨Ψ′(un), un⟩ − ⟨Ψ′
q(·)(un), u⟩|

≤ |⟨Ψ′
q(·)(un), un⟩ − ⟨Ψ′

q(·)(u), u⟩|+ ∥Ψ′
q(·)(un)−Ψ′

q(·)(u)∥∗∥u∥.
This implies that ⟨Ψ′

q(·)(un), un⟩ − ⟨Ψ′
q(·)(un), u⟩ → 0 as n → ∞. Combining with

the above equalities, we obtain

lim sup
n→+∞

〈
Θ(un), un − u

〉
≤ Kℓ

⟨Ψ′
q(·)(u), u⟩

lim sup
n→∞

(⟨Ψq(·)(un), un⟩ − ⟨Ψ′
q(·)(un), u⟩).

We deduce lim supn→∞
〈
Θ(un), un−u

〉
≤0. Lemma 3.6 yields the strong convergence

un → u in X. □

4. Existence of eigencurves sequences propres

Set Γj = {A ⊂ H : A is symmetric, compact and γ(A) ≥ j}, where γ(A) = j is the
Krasnoselskii genus of the set A, i.e., the smallest integer j, such that there exists an
odd continuous map from A to Rj \ {0}.

We recall some useful properties of the Krasnoselskii genus proved by Szulkin [18].
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Lemma 4.1. Let X be a real Banach space and A, B be symmetric subsets of X \ {0}
which are closed in X. Then
(a) If there exists an odd continuous mapping f : A → B, then γ(A) ≤ γ(B).

(b) If A ⊂ B, then γ(A) ≤ γ(B).

(c) γ(A ∪B) ≤ γ(A) + γ(B).

(d) If γ(B) < +∞, then γ(A−B) ≥ γ(A)− γ(B).

(e) If A is compact, then γ(A) < +∞ and there exists a neighborhood N of A, N is
a symmetric subset of X \ {0}, closed in X such that γ(N) = γ(A).

(f) If N is a symmetric and bounded neighborhood of the origin in Rk and if A is
homeomorphic to the boundary of N by an odd homeomorphism, then γ(A) = k.

(g) If X0 is a subspace of X of codimension k and if γ(A) > k then A ∩X0 ̸= ϕ.

Let us now state the first main result of this paper using the Ljusternick–Schnirelmann
theory.

Theorem 4.2. For any integer j ∈ N∗, µj(λ) = infA∈Γj maxu∈A Φλ(u) is a critical
value of Φλ restricted on M. More precisely, there exists uj ∈ K such that µj(λ) =
Φλ(uj) = supu∈A Φλ(u), and uj(λ) is an eigenfunctin of (12) associated to the positive
eigenvalue (λ, µj(λ)). Moreover, µj(λ) → ∞, as j → ∞.

Proof. Setup 1. We prove that for any j ∈ N∗, Γj ̸= ∅.
Since the Sobolev space X is separable . Therefore there exists sequence of func-

tions v1, v2, . . . , vj lineary dence in W
2,p(·)
0 (Ω) such that{

supp(ui) ∩ supp(uj) = ∅ if i ̸= j,

meas(supp(vi)) > 0 for i ∈ {1, 2, . . . , j}.
Let Xj be the vector subspace of C

∞
0 (Ω) spanned by {v1, v2, . . . , vj}. Then, dimFj =

j and note that Xj ⊂ Lp(.)(Ω) because Xj ⊂ X ⊂ Lp(.)(Ω). Since Xj is a finite
dimensional space the norm ∥ · ∥X and |.|p(·) are equivalent on Fj . Consequentially,
the map

v 7→ |v|p(.) := inf

{
γ > 0 :

∫
Ω

∣∣∣∣v(x)γ

∣∣∣∣p(x) dx
}
,

defines a norm on Xj . Putting S := {w ∈ Xj : |v|p(.) = 1} the unit sphere of Xj .
Let us introduce the functional h : R+ × Xj −→ R, (τ, v) 7→ h(τ, , v) = Ψq(·)(τv).
Remarking that

• h(0, v) = 0.

• h(τ, u) is non decreasing with respect to s. Moreover, for τ > 1 we have h(τ, v) ≥
τ q

−
Ψq(·)(v), and thus limτ→+∞ h(τ, v) = +∞. Therefore, for every fixed v ∈ S, there

exists a unique value τ = τ(v) > 0 such that h(τ(v), v) = 1.
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On the other hand, since

∂h

∂τ
(τ(v), v) =

(∫
Ω

τϑ(x)|u|q(x)dx
)r∫

Ω

(τ(v))q(x)−1ϑ(x)|u|q(x)dx

≥ q−

τ(v)
h(s(v), v) =

q−

τ(v)
> 0.

The implicit function theorem implies that the map v 7→ τ(v) is continuous and even
by uniqueness.

Now, we define the following continuous and odd maping from S to compact
Aj := H ∩ Fj by g : S −→ Aj , v 7→ h(v) = τ(v).v, it follows by the property (f) of
Lemma 4.1, that γ(Aj) ≥ j. Then Aj ∈ Γj .

Setup 2. We claim that λj → ∞ as j → ∞. Since W
2,p(·)
0 (Ω) is separable, there

exists (ek, e
∗
n)k,n a bi-orthogonal system such that

• (ek)k are linearly dense in X.

• (e∗n)n are total for the dual X∗.

For k ∈ N∗, set Fk = span{e1, . . . , ek} and F⊥
k = span{ek+1, ek+2, . . . }. By (g) of

Lemma 4.1, we have for anyA ∈ Γk, A∩F⊥
k−1 ̸= ∅. Thus tk = infA∈Γk

supu∈A∩F⊥
k−1

Φ(u) →
∞ as k → ∞. Indeed, if not, for large k there exists uk ∈ F⊥

k−1 with Ψq(·)(u) = 1 such
that tk ≤ Φλ(uk) ≤ M for some M > 0 independent of k. Thus by inequality (16),
we have

L

p+

(
1− λ

R

)
||uk||p

−

X − Cq−∥uk∥q
−

X ≤ M.

This implies that (uk)k is bounded in X. For a subsequence of {uk} if necessary, we
can assume that {uk} converges weakly in X and strongly in Lp(·)(Ω). By our choice
of F⊥

k−1, we have uk ⇀ 0 weakly in X because ⟨e∗n, ek⟩ = 0, for any k > n. this

contradicts the fact that Ψq(·)(u) =
∫
Ω

1
q(x)

|u|q(x)

δ(x)2q(x) dx = 1 for all k. Since λk ≥ tk.

Setup 3. From the auxiliary results proved in Setup 1. and Setup 2. and by
applying the Ljusternik-Schnireleman theory the proof of Theorem 4.2 is achieved.

Corollary 4.3. we have the following statements:

(i) µ1(λ) = inf

{ ∫
Ω

1
p(x)

Λ(|∆u|p(x)) dx−λ
∫
Ω

1
q(x)

|u|q(x)

δ(x)2q(x)
dx

1
r+1

[ ∫
Ω

ϑ(x)
q(x)

|u|q(x)dx
]r+1

dx
; u ∈ X \ {0}

}
;

(ii) 0 < µ1(λ) ≤ µ2(λ) ≤ · · · ≤ µn(λ) → +∞.

Proof. (i) For u ∈ M, set A1 = {u,−u}. It is clear that γ(A1) = 1, Φλ is even and
Φλ(u) = maxA1

Φλ ≥ infA∈Γ1
maxu∈A Φλ(u). Thus infu∈H Φλ(u) ≥ infA∈Γ1

maxu∈A Φλ(u) =
µ1(λ). On the other hand, for all A ∈ Γ1 and u ∈ A, we have supu∈A Φλ ≥ Φλ(u) ≥
infu∈H Φλ(u). It follows that infA∈Γ1

maxA Φλ = µ1(λ) ≥ infu∈H Φλ(u). Then

µ1(λ) = inf

{∫
Ω

1
p(x)Λ(|∆u|p(x)) dx− λ

∫
Ω

1
q(x)

|u|q(x)

δ(x)2q(x) dx

1
r+1

[ ∫
Ω

ϑ(x)
q(x) |u|q(x)dx

]r+1
dx

; u ∈ X \ {0}

}
;
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For all i ≥ j, we have Γi ⊂ Γj and in view of the definition of λi, i ∈ N∗, we get
µi(λ) ≥ µj(λ). As regards µn(λ) → ∞, it has been proved in Theorem 4.2. □
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[16] M. Mihăilescu, A. Rădulescu, A continuous spectrum for nonhomogeneous differential opera-
tors in Orlicz-Sobolev spaces, Math. Scand., 104 (2009), 132–146.
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