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PROBLEM WITH g(x)-HARDY POTENTIAL
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Abstract. This work deals with the study of a class of nonlocal Navier boundary
value problems involving the degenerate p(x)-biharmonic operator with a potential term
q(x)-Hardy

_ |2(2)-2 _ 9 " .
A Aup ) Auf 2 Au) — EIE 2 (@) u( I %Mq“)d;r) n 0,

u=Au=0, on 0f).

In this new setting, our objectif is to extend the results obtained in the paper [M. Laghzal,
A. El Khalil, M. D. Morchid Alaoui, A. Touzani, Figencurves of the p(-)-biharmonic operator
with a Hardy-type term potential, Moroccan J. Pure Appl. Anal., 6(2) (2020), 198-209] for
the nonhomogeneous case p(x) # q(z), where 9 is a weight function. The main results are
established by using the variational method and min-max arguments based on Ljusternik-
Schnirelmann theory on C' manifoleds [A. Szulkin, Schnirelmann theory on C*-manifolds,
Ann. Inst. Henri Poincaré C, Anal. Non Linéaire, 5(2) (1988), 119-139]. A direct charac-
terization of the principal curve (first one) is provided.

1. Introduction

In a regular bounded domain Q@ ¢ RY, N > 3, with smooth boundary 95, we consider
the nonlinear singular boundary eigenvalue problem

z x)- wl9®)-2y x)- x x "
A (| Auf @) | Auf 2 Au) NI = (@) u)) Qu(g e lul” )dw) U
u=Au= O7 on 0f).

A(]Au|P®) =2 Ay is the p(z)-biharmonic, A(w(|Au|p(””))|Au|p(x)fAu) is a degenerate
one, the functions p(-), ¢(-) are supposed to be continuous on Q, §(z) = dist(z, Q)
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2 A degenerated nonlocal p(z)-biharmonic problem with ¢(z)-Hardy potential

denotes the distance from z to the boundary 9Q, ¥ € L™®) is a nonnegative function
with m € C1(2), A,r > 0 are real parameters and the real p is a spectral parameter,
playing the role of an eigenvalue. The following mapping

6:RY =R, (¢~ 0(¢)=A(¢P™),
is strlctly convex where A is the primitive of a real function w : RT — R that
is At fo s)ds. The term "nonlocal” refers to the presence of the integral:

fQ 19($)|u|q¢” dz, Wthh appears in the equation in (1). This integral represents a
nonlocal interaction, since the value of the equation at a point z depends on the aver-
age behavior of the solution u over the whole domain €. Such terms naturally arise in
models of population dynamics, where the growth at a specific location is influenced
by the total population; they also appear in various physical and engineering contexts,
such as beam vibration problems, image processing, and models involving spatial het-
erogeneity. These applications typically require sophisticated mathematical tools for
analysis due to the nonlocal and singular nature of the problem.

Nonlinear singular eigenvalues boundary problems form a class of important prob-
lems in the theory and applications of partial differential equations. The study of this
type of problems is motivated by recent advances in mathematical modeling of non-
Newtonian fluids and elastic mechanics and nonlinear porous medium, and image
processing, in this context we cite as examples the papers [16,17,22].

The problem (1) is inspired by recent studies on p(x)-biharmonic nonlinear bound-
ary problems related to Hardy-type inequalities. Relevant references include the
work [5,6,8,13], where further bibliographic details can be found.

In the particular case where p(z) = ¢(z) = p El Khalil. et al [7], established the
existence of an increasing sequence of positive eigencurves for the following Dirichlet
problem:

ul”~2u

A(|Au[P~2Au) = )\w(x)|§(|z) + plsm i
u e Wy(),
where w is an indefinite weight in L°°(Q2), and mes ({z € Q : W(x) # 0}) # 0.

For the variable exponent case p(x) = ¢(z) the same authors [12] proved an anal-
ogous result for the problem:

{A(|Aup(x)_2Au) )\M = plulP®) =2y for z € Q,

6(90)273(1
u=0, forx e .

In the present work, we study problem (1) in the nonhomogeneous case p(z) #
q(x), which involves a Hardy-type singular term and a nonlocal term with a weighted
integral. Our analysis is conducted under the following set of assumptions:

(H1) 1<ngnq<mgxq<m$np<mgxp< 5, and max q < p3, where

Np(z)
. s, plx)
py(z) = {N 2p(z)

9

<
400, p(x) >

Sz iz o

(H2) vt >0: 0< L <w(t) <K, where K and L are positive constants.
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(H3) ¥ € L™®)(Q) such that m(z) > ¥

5, and there is a measurable set g C
verifying 9(x) > 0 for each z € Q.

(H4) 0 < A < R, where R is a positive constant in the Hardy inequality associ-
ated with the degenerate p(z)-biharmonic operator, which will be stated later in
Lemma 3.1.

In this new setting, our objective is to prove the existence of at least one non-
decreasing sequence of positive eigencurves (ug(A))r>1. We also provide a direct
characterization of the principal eigencurve (i.e., the first one) using a variational
technique based on the Ljusternik-Schnirelmann theory on C'*-manifolds [18] involving
a mini-max argument over sets of genus greater than k.

The structure of the paper is as follows: In Section 2, we introduce some ba-
sic properties of the generalized Lebesgue-Sobolev spaces along with several useful
lemmas. In Section 3, we present an improved Hardy-type inequality. Finally, in
Section 4, we establish the existence of the sequence of eigencurves and provide a
characterization of the principal (first) eigencurve.

2. Preliminaries and useful results

We begin by stating some basic properties of the variable exponent Lebesgue-Sobolev
spaces Lp(')(Q) and W’”’p(')(Q). For a comprehensive treatment of these spaces, we
refer the reader to the monograph [3] and the references therein. The generalized
Lebesgue space is defined by

LPO(Q); = {u : Q0 — R measurable and [ |u(x)[P®dz < oo},
Q
endowed with the Luxemburg norm

. o |P(z)
\u|p(_):1nf{7>0:/‘—‘ da;gl}.
ol
For each fixed exponent function p(-), the modular functional p,.) defined by
oy (1) = /Q [P .

has an important role in manipulating the generalized Lebesgue spaces LP() ().

PROPOSITION 2.1 ([20]). Under hypothesis (H1), the space (LP (), |- |p(x)) is sepa-

rable, uniformly convez, reflexive and its conjugate dual space is LP' ) (Q) where p/(-)
is the conjugate function of p(-), i.e.,

/ p(x)
r) = ——"— forall x €.
P () P P f
For u € LPO)(Q) and v € LP ) (Q) we have

11
< , < AR
‘/QU(@”)U("E) da| < (pf + p,7)|U|p(<>|v|p () = 2lulp vl
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1 1 1
| [ wtyete)uta)da] < (5= + =+ = lulyololuiy 0l
Q D1 P2 P
< 3lulpy () [lpa () W] (2)

PROPOSITION 2.2 ( [11, Theorem 1.3]). Let u,, u € LP"), we have
(a) |ulpy =a s ppy(%) =1 foru#0 and a > 0.
(b) [ulpey < (=>1) & ppey(u) < (=>1).
(c) |un| — 0(resp — +00) < pp(.y(un) — 0, (resp — +00).
(d) the following statements are equivalent to one another:

(7,) limn_>+oo|un - u|p(.) =0,

(ii) 1imy, 4 oo pp(.) (U — u) = 0,

(ii3) wn — w in measure in Q and limy, s 4 oo J (Un) = ppe)(u).

The Sobolev space with variable exponent Wm’p(')(Q) is defined as
wmet)(Q) = {u € LPVO(Q) : Du € LPO(Q), |a| < m}

where D% = g —=x (the derivative is in the sense of distributions) with a
N

9zt 0xy2...0

multi-index a = (a1,...,an), |a| = Zf;l ;. The space W™P()(Q) equipped with
the norm [|ull;m p) = 2 jaj<m [P Ulp(x) 18 @ Banach, separable and reflexive space.
For more details, we refer the reader to [9,11,15,19]. We denote by W(;”’p(')(ﬂ)
the closure of C§°(Q) in W™P()(Q). Note that weak solutions of problem (1) are
considered in the generalized Sobolev space X = W2P()(Q) N Wol’p(')(Q)7 endowed

. . Ay [P
with the norm |jul|x = inf {’y >0 [ |5 dx < 1}.

REMARK 2.3. For all u € X we have

HU’HX = Hu”l,p(a:) + ||’LL 2,p(z)» Yu € X7

where lull1,p) = [tlp@) + [VUlp@)y, and  [Julls @) = Z | D).
lor|=2
Then according to [20] the norm ||.[[2 .y is equivalent to the norm [A.|,) in the
space X for the Lipschitz boundary and the exponent p(-) in the class that keeps
the maximal function operator bounded (i.e., ﬁ is globally log-Holder continuous).

Consequently, the norms ||.[|2 ,(.), [|u|lx and |A.[,.) are equivalent.

Note that X equipped with the norm || - ||x, is also a separable, reflexive, and
Banach space.
We also recall the following proposition which will be required later.

PROPOSITION 2.4 ([4]). Suppose that p et q are measurable functions verifying p €
L>(Q) and for all x € Q and 1 < p(z)g(z) < oo. Then we have for all u €
LI (Q),u # 0

+ T
ultey 1= Pl 00y < [l

.
) = @y
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|u‘p (z) >1= |u|

plx)g(z) = "“'p(m)

p+
s = M@

THEOREM 2.5 ([1]). Assume that p,q € C+ (). If q(x) < p5(x), then there exists a
compact and continuous embedding X — L1*)(Q).
m(z)q(z)
e m(z)—q(z)
By (H1) one get for all z € Q, n(x) < p5(z) and m’(z)q(x) < p3(x). Hence, according
to Theorem 2.5, the embeddings X < L™ (?)4()(Q) and X < L") () are compact
and continuous.

According to Proposition 2.2, the following assertions holds.

Let m/(z) be the conjugate exponent of m(z) and consider n(z) :=

PROPOSITION 2.6 ([10]). Let u,, u € LPO), and J(u) = [, |Au|P®dz, we have
(1) llullx <(=>1) & J(u) <(=>1).

4 _
lullx <1 = lully < J(w) < Jullk

- +
lullx 2 1= Jlullk < J(w) < Jull -

(i) ||unllx — 0 (resp. = 4+00) & J(up) — 0, (resp. — +00).

3. Improved (p(x), g(z))-Hardy inequality

First recall that for the classical case p(-) = ¢(-) = p constant, Davis and Hinz [2]
proved that for any p € (1, N)

p
/ |AulPdz > ( (b= ) ) 5|u| z,

whenever u € C2°(Q). Also this 1nequahty was proved in [14], for all u € W?2P(Q) N
VVO1 P(Q) with 1 < p < &. For variable exponent case , this inequality was obtained
in [5, Lemma 3.1] under the hypothesis (H1), as follows

1 1 |u‘q(z)
A g > /7761.
/me' il 2 O | 0 s ®)

where C' = min (qC’q;fﬁC’er), with Cp- = (w)q and Cp+ =

pT (a7)2
+
(N(p+71)(N72p+)>p
(r¥)? ‘
Now, we present a new Hardy inequality related to degenerate p(x)-biharmonic
operator.

LEMMA 3.1. Assume that (H1) and (H2) holds. Then there exists a positive constant
R, such that the (p(x), q(z))-Hardy inequality

/ LMCM < 1 —A(\Au\p 7“))d:c+0q ||UH
o q(x) 6(x)*® = R Jqo p(w) *

holds for all u € X.
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Proof. Define the sets
U=0N {.23 cQ:

u(z)] <8(x)?},  E=Qn{zeQ:|u(z) >
V=01 n{zeQ: >0 <0

u(z)| > 6(x)?}, F=Qn{zeQ:|u()

where Q; = {z € Q: A(JAuP®)) > 1} and Qg = {x € Q: A(|AulP@) < 1}. Then

Q=UUVUEUF.
Case 1: z € ;. By (H2) A is bounded, then

+ _

/ P A AuP®)dz > L/ Ao . )
a, P(z) Q
In view of (3), there is a positive constant C,- = C(IN,¢~) such that

|Au|?” dz > C, / I (5)

(o5 - 1951 5('1)2(17 7

ul )
o If |u(x)| < d§(x)?, we have 5)? . Therefore,

(T)
. |u<x>|) o

Q1 n{zeQ:|u(z)|<5(x)2} (5(95)2

Then, by (5) we obtain
e
a
/ |[Au|? dx > q~ C,- / )2 dx

Hence, in view of (4), we conclude that

Q1 n{zeQ:|u(z)|<5(x)2} (5(@2

p L )
A(|AuP®))dz > ¢ LC,- / ———— .
ey i [ o st
Then
1 |uji®
——A(|Au[P)dr > Ry~ | ———————du,
], ) o 4 3P
where R,- = ZT;LC‘I*'
o If |u(x)| > 6(z)%. We have
Pt -
/ 7A(|Au|p<r>)dsz/ Au|t" dz. (6)
o, p(z) o
By (3), there is a positive constant Cyj+ = C(N,¢") such that
+
gt Jul?
o |[Au|? dx > Cq+/521 5(z)PT dx, (7)

- ()
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Therefore

M | ()
N {ze|u(z)|>6(x)2} 0(x)20@) 7 T T fo e Quu(a) 622 \ 0(2)?
Then, by (7), we obtain

_ 1 |u a
/V|Au(x)|q+dm2q cq+/ = ('5(<)§l(x)d vda.

Cy+

Hence by (6), we conclude that

(z)
p p(x ‘u|q
/VP( )A(|Au| Ydx > q~ LC’q+/Vq Qq(l)dx

(z)
A(AuP@de > Re [ — 1 g
/vp< yAIaurde 2 Bys | o 5t

where R+ = g—;LC'qu.

Then

Case 2: x € 5. We have

p* +
/ PN (A ®)de > L |Auf da (8)
a, P(7) Q2
By (3), there is a positive constant C,; = C(N,p™) such that
pt Jul?”
|Au|P dx > Cp+ 3@ 5@ ————dx, 9)
Qo

o If |u(z)| > 6(x)?, we have

Therefore

/ <|u<x>|>q<””> e / (|u<x>
Qan{zeQ:|u(x)|>d(x)?} 5(%)2 N Qon{ze:|u(x)|>6(x)?} 6($)2

Then, by (9), we obtain
N
- L/l
Aup+dx2q C/< )
1 " Joa \3ap

Hence, in view of (8), we conclude that

+ (z
p _ 1 ||
L A(AauP@dz > ¢ LC 7/ — W g
/E p(x) (A = “ JE a(x) 6(x)%a@

~—
bS]
2
8
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Then

) et
A(JAu[P@)dz > R /—7513;,
/Ep< pAIRUl ) de = By | 0y 5 ()2
where Rp+ = %ch+.

o If |u(z)| < &(z)?%. Since ¢~ < p3, then by Theorem 2.5 the space X is continuously
embedded in L7 (), that is, there exists a constant C' such that such that

/ (@) dz < C9 Jull%; , Vu € X. (10)
Q

According to the fact that |u(z)| < §(z)?, and for §(x)? large enough, such that
§(x)? > 1, we obtain for every u € X

@\ _ (lu@)\* = .
(5er)  =<(5p) <wor wemnbenm@< i)

Hence
u@)®
/ 2q(a: |u )| dx (11)

Combining (10) and (11), we obtain

w(z)]9®) - -
/ Ls((x))ztmdz <C? fulk, Vue X.

Therefore, by taking R = max{R,-,R,+,R,+}, we have the following Hardy type
inequality

1 fu(z)[a) 1
L el < L L A aup@ds + o ¥ -
/Qq(a:) 8(z)2a(@) T>5 o p(@) (|AuP®)dz + C9 Ju||% , Yu €

DEFINITION 3.2. We say that a function v € X is a weak solution of (Py), if for all
veX,
|u|a(®)-2y,

————vdx
Q 5(1,)211(@

N/Q|U|Q<x>2mdz</938|u|m> dm)r. (12)

If u is not identically zero, we say that « is an eigenfunction of the degenerate p(x)-
biharmonic operator associated to the pair of eigenvalues (A, u).

/ w(| AP | Au|P @2 AuAv dr — A
Q

DEFINITION 3.3. We define the principal eigencurve of the degenerate p(x)-Biharmonic
operator, the graph of the function A — p;()\) € R, defined by

Ju|2(®)

fQ |A“|p(m) dx_)‘fsz l.av £2q<>
pi(A) = inf { o ]iii‘“ P ue X\ {0} ¢

7"+1 [fQ q(
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Consider the following functionals defined on X:

wla@)
@A(u):/gp(lx)A(AuF(w))dx—)\/Q@dez@—)\@(u)
w) = L V@) g
v = s |, et

Clearly, that ®,¢ and ¥ are even and of class C' on X. Moreover ®,¢’ and U :
X — X* are defined by

(@ (u), v) ::/w(|Au|p(“’))\Au|p(z)’2AuAvd:c,
Q
w|P(@)—2
(' (u),v) ::/Qm(a?)|2p(w)uvdac7

(W (u),v) = (/Qz((;))u|q(m)dx>rfgl9(x)|u|q(z)2uvd:17,

We set, H = {u €X; ¥(u) = 1}.

LEMMA 3.4. H is a closed Ct-manifold on X.

Proof. Since H = Wy {1}, it follows that M is closed. Therefore, we only need to
prove that ¥’ is onto for all u € H.
Let u,v € H, for any ¢ > 0, the mapping
r+1
h(t) = <\I/(tu),v> _ b {/ tq(w)qg(x)|u|q(z)d4 ,
r+1{Jq q(x)
is differentiable and we have

W) = (W' (tu).u) = ( /Q tq@)gx;mw) d:v)r /Q £ =19 (2 |7

q(zx
r+1
> min {tqf(”l)*l,tqﬂr“)*l} { O()ul 1@ dx} q
Q

> min {tq_(”“)*l,tq”’““)*l} (r+1)q~ > 0.

Hence, h is strictly increasing, further 2(0) = 0 and lim;_,~ h(t) = oo since for ¢ large

one has h(t) > t? (r +1). Thus for every ¢ € R, there exists a unique ¢, > 0 such
that h(tg) = ¢, so that U(tgu) = ¢ and we also have

<\Il’(t0u), t0u>(/ Mt0u|q(z)dx> / L V@) 1@ gy = w(tou) = C.
Q Q

(r+1)gq(z) q(x) r+1 gq(z)
This means that ¥’(u) is onto for all u € H. Therefore, ¥ is a submersion. Hence,
H is a Cl-manifold . O

REMARK 3.5. We write ®) as ®)\(-) = ®'(-) — A¢’((-)). Then, problem (1) can be
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equivalently written as

DOx(u) = p¥(u), weH, (13)
and the paire (u,u) solves (13) if and only if u is a critical point of ®, with respect
to H.

The operator © := & : X — X* defined as
(O(u),v) = / w(|AuP@) | Au|P® 2 AuAv de  for any u,v € X,
Q

satisfies the assertions of the following lemma, which is the key to establish our main
results in the next section.

LEMMA 3.6. The following statements hold:
(i) © is continuous, bounded and strictly monotone.

(ii) © is of (S+) type.

(#ii) © is a homeomorphism.

Proof. (i) Since © is the Fréchet derivative of @, it follows that © is continuous and
bounded so that we deduce that for all u, v € X such that v # v, (©(u)—0(v), u—v)>0.
This means that © is strictly monotone.
(ii) First we recall the following well-known inequalities, which hold for any three
real &1, & and p
— &P if p>2
(Gl ™2 = &aleP2) (61 - &) = c(p) {'gﬂglii'z e
Taltepr i 1<p<2
where c(p) = 2277 when p > 2 and ¢(p) = p—1 when 1 < p < 2. Let (uy,), be a
sequence of X such that u, — u weakly in X and limsup,, , , .. (O(uy),un —u) < 0.
From (14) we have (O(uy) — ©(u), u, — u) > 0, and since u,, — u weakly in X, it
follows that limsup,,_, . (©(un) — O(u),u, —u) = 0. On the other hand, we have

(14)

(O(un) — O(u), up —u) = / W(| A, [P Auy, P2 Any, (Aun — Au)dx
Q

- / w(|Au\P(m))|Au|p(‘r)'2Au(Aun — Au)dx,
Q
and by hypothesese (H2), we obtain
(O(un)—O(u), up—u) > L/ | A, |P#)2 (Aun—Au)dx—K/ | A [P(@)-2 (Aun—Au)dm
Q Q

> max(L, K)/(|Aun|p(m)_2Aun—\Au\p(z)_2Au) (Aun—Au) dx
Q

> K/(\Aun|p(x)_2Aun—|Au|p(m)_2Au) (Aun—Au>daj,
Q
Thus again from (14) we have

/ | Ay, —AulP® da < 2(”7_2)/ F(up,u)dr,
{zeQ:p(x)>2} Q
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| Auy, —Au[PPdz < (pt-1) /(F(un,u))p(;) (G (1, u)) 2P

/{a:EQ:l<p(:L’)<2} Q

where

G(un,u) = (|Au,| + |Au|)2—P($).

Since [, F(tn,u) dx = (O(uy)—O(u), un—u), we can consider 0 < [, F(up,u) dr < 1.
We then distinguish two cases.
First, if [, G(un,u)dz =0, then F(u,,u) =0, since F(up,u) >0 a.e. in Q.
Second, if 0 < [, F(un,u)dz < 1, then

-1
@) = </ F(tn,u) dx) ,
{zeQ:1<p(x)<2}

is positive and by applying Young’s inequality we deduce that

{F(un,u) = (|Aun [P@ =2 A, — |AulP@~2Au)(Au, — Au),

p(x) p(z)

[t(F(un,u)) 2 ](G(un,u))(zfp(af)) 5 da

/{a:EQ:l<p(a:)<2}

<

/ (P, w)(O)7 + (G, w)"®) de.
{ze1<p(z)<2}

Now, by the fact that ﬁ < 2, we have

/ (F ) ()7 + (G lutn, )@ dit
{zeQ:1<p(z)<2}

<

/ (F ()t + (Glun, w)")) da
{zeQ:1<p(x)<2}

<1+ / (G, u))P @ d.
{ze:1<p(x)<2}

Hence,

/ |Au,, — AulP® dx
{zeQ:1<p(z)<2}

< (/ F(un,u)dx) <1+/(G(un,u))p(m)dx).
{ze:1<p(x)<2} Q

Since [,(G(un,u))P® dz is bounded, we have f{wEQ:1<p($)<2} |Au,, — AulP@dz — 0
as n — o0o.

(iii) Note that the strict monotonicity of © implies that © is into an operator.

Moreover, © is a coercive operator. Indeed, from ((ii)) and since p— — 1 > 0, for
each u € X such that |lul]|x > 1, we have
© J -
Owu) 5 p JW S Pt 5o as Jullx — oo,

Jullx = lullx
Finally, thanks to the Minty—Browder Theorem [21], the operator T is surjective and
admits an inverse mapping.
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To complete the proof of (iii), it suffices then to show the continuity of ©~1!.
Indeed, let (g,). be a sequence of X* such that g, — ¢g in X*. Let u, and u in X
such that ©71(g,) = u, and ©~1(g) = u. By the coercivity of ©, we deduce that the
sequence (U, ), is bounded in the reflexive space X. For a subsequence, if necessary,
we have u,, — @ in X for a some %. Then

Jim (O(un) = O(u),un —u) = lHm (gn —g,un —u) =0.

It follows by the assertion (ii) and the continuity of © that w, — win X and O(u,) —
O(u) = ©(u) in X*. Further, since O is an into operator, we conclude that u = . U

LEMMA 3.7 ([6, Lemma 3.6-(i) |). The functional ¢’ sequentially weakly-strongly con-
tinuous, namely, u, — u in X = ¢ (u,) = ¢'(u) in X*.

LEMMA 3.8. For any A € R, we have
(a) V' is sequentially weakly-strongly continuous.

(b) @ is bounded froum below on H.

Proof. (a) Let u,, — u (weakly) in X we prove that ¥'(u,) — ¥ (u) in X*. By
Holder’s inequality (2), we have for any v € X,

Mvwnf@mwm>

A o
(
(

x)|u|‘1(‘r)dm>/ﬁ(m)|u|q<x)‘2uvdw
Q

(/ 19((33)|un|qmdx> /19(;6) <|un|‘I(x)'2un— |u|q(x)'2u>vdx
Q
(/ 19(x)|un|q(w)dx> - (/ (m)| |4 “’)dm) /19 )| da|,
() a q(x)
19 m(x X 3 19 m(x
[II() ey B0l )

q
(/()WP“M>(AMMWWMO ﬂmeﬂ,
q(z-1

(|un|q(r)72un — |U‘Q(z)72u)

|un|q(w

(lunl? 2 = [l 20)| | ol

|| 7)1

X 3|V m(a)

3 i
< — l|19|%1(x)|un|gn/(m)q(z)

|v]
q ) qq((::ﬁ)l n(x)

- " x T J_
| [r@has) ([ oppi) XW%@UQJMWJa
where ¢ = + if |un|m/(x)q(x) > 1,4 = —if |Un‘m’(x)q(x) <landj=+if |u|q(x) > 1,

j = —if \u|q(1) < 1.
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Using the fact that X is continuously embedded in L™ @5 (Q), L) (Q) and
L"®)(Q) respectivly, then there is c1, 2, c3 > 0 satisfying
tnlm (@)q(@) < cillunllx, |ulg@) < collullx  and  [vly@) < esllvflx.
Thus

0 )=, < 2555 [ 912

+ (/919(:5)|un|Q($)d:c>r—(/Q19(:5)|u|q<w)dac>r

Since the embedding X < L) (Q) is compact, u,, converges strongly to u in LI()(Q).
Consequently, there exists a positive function g € L9()(Q) such that | u |[< g a.e. in Q.
Since g € Li)~1(Q), it follows from the Dominated Convergence Theorem that

)
|, |9®) 200, — |u|9®) 2y in Lt (€). On the other hand, ¥(x)|u,|7®) — 9(z)|u|9®

in L'(§2). Then,
(/w Yot |72 dw) o (/19(:5)|u|q<l)d:v>T.

Consequently U'(u,) — ¥’'(u) in X*. This achieves the proof of (a).
(b) Let uw € H. We have

1 1 |ujd®
d — [ —— A(Ay|P® _ /77
o = [ gaser s [ ()2

then by using the hypothesis (H2) and (p(z), ¢(z))-Hardy inequality in Lemma 3.1
and

q (|Un|q(x)—2un_|u|q(a;)—2u)

o 11X
q(z-1

J_q J_q
x ¢ Ol lull% ™ lvllx |-

o) 2 (1- 4 ) [ S AQAUPR) do - O Jul
> (1= )7 - g (15)

=t
then for all ||u||x large enough. it follows from Remak 2.6 that
L A .
B2 (1= 3 )ty -l (16)

By hypothesis (H4) and since p~>¢~>1, ®, is coercive and hence bounded below. [

LEMMA 3.9. The functional @y satisfies the Palais—Smale condition on H, i.e., for
{un} CH, if {®ar(un)},, is bounded and

Xy = @\ (un) = YWy y(un) =0 as n— 400, (17)
where Yy, = (@ (un), un) /(¥ ) (un),un), implying that {un}n>1 has a convergent
subsequence in X.

Proof. From (16) we have that {®x(uy)}, being coercive, then {u,}, is bounded,
hence u, — u € X (weakly) and due the fact that the embedding X in L9®)(Q) is
compact, u, — u (strongly) . On the other hand, we deduce from the inequality (15),
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that J(uy) is bounded in R. Thus, without loss of generality, we can assume that
J(Auy,) — €. For the remainder, we distinguish two cases:

e If / =0, then u, converges strongly to 0 in X.

e If £ # 0, let us prove that limsup,,_,, (O (un),un, — u) < 0.
By hypothesis (H3), we have (O (uy,), un — u) < Kpp()(Auy) — (O(uy), u). Applying
X, of (17) to u, we deduce that

Z, = <@(un),u> — )\<<p’(un),u> - Y7L<\I/;(.)(un),u> —0 as n — oo.

Therefore,
<(I)’)\(un), un>

O(un), Uy — <Kp Aun - A /un,u _Zn_/—
(©(uy) u) < Kpp)( (' (un), u) T )

(Wi (un)s ).

That is,
Kpp(')(Au”> / ’

(W) () i) (<\pp(')(u")’ tn) = <\IIP(')(UTL)7U>)

M . ! U (v
[ oy PO ()

On the other hand, from Lemma 3.7, and Lemma 3.8 (a), ¢’ and \I'q() are com-
pletely continuous. Thus cp "un) = @' (u), (¢ (un), wn) — ( (w),w) and (¢’ (uy),u) —
(@' (1), ), U (n) > W' (), and (B () tn) — (¥ (), ). Then

(g (un),u >—<‘If;<)(un) )
W) () un) = (T (), w) | + (8 ) (un), w) — (W) (w), w)]-
It follows that
(" (un)s un) = (T (un), u)l

< (W (un)s tn) = (T (u), w)] + (15 (un) — Ty (w)l]«lull-
This implies that (¥’ o )(un), Up) — (‘I’q(,)( Up ), ) — 0 as n — co. Combining with
the above equalities, we obtain

(O(un), un —u) <

— Zp — M (un),un) + A

KY
im sup (©(11,). 14, 1) < s TSy (). ) = (W (). 1)
We deduce limsup,,_, <®(un), Up, — >§0. Lemma 3.6 yields the strong convergence
Uy —> uin X. O

4. Existence of eigencurves sequences propres

Set I'; = {A C H : A is symmetric, compact and y(A) > j}, where y(A) = j is the
Krasnoselskii genus of the set A, i.e., the smallest integer j, such that there exists an
odd continuous map from A to R7 \ {0}.

We recall some useful properties of the Krasnoselskii genus proved by Szulkin [18].
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LEMMA 4.1. Let X be a real Banach space and A, B be symmetric subsets of X \ {0}
which are closed in X. Then
(a) If there exists an odd continuous mapping f : A — B, then v(A) < ~(B).

(b) If A C B, then v(A) < ~v(B).
(¢) V(AU B) <~(A) +~(B).
(@) If v(B) < 400, then v(A — B) > v(A) — y(B).

(e) If A is compact, then v(A) < +oo and there exists a neighborhood N of A, N is
a symmetric subset of X \ {0}, closed in X such that v(N) = ~v(A).

(f) If N is a symmetric and bounded neighborhood of the origin in R* and if A is
homeomorphic to the boundary of N by an odd homeomorphism, then y(A) = k.

(9) If Xy is a subspace of X of codimension k and if v(A) > k then AN Xy # ¢.

Let us now state the first main result of this paper using the Ljusternick—Schnirelmann
theory.

THEOREM 4.2. For any integer j € N*, p;(A\) = infacr; maxy,ea ®x(u) is a critical
value of @ restricted on M. More precisely, there exists u; € K such that pj(A\) =
Oy (uj) =sup,eca Palu), andu;(A) is an eigenfunctin of (12) associated to the positive
eigenvalue (X, pj(N)). Moreover, uj(A) — oo, as j — oo.

Proof. Setup 1. We prove that for any j € N*, T'; # (.

Since the Sobolev space X is separable . Therefore there exists sequence of func-

tions vy, v, ..., v; lineary dence in WOQ’p(')(Q) such that
supp(u;) Nsupp(u;) =0 if i # j,
meas(supp(v;)) >0 forie{l, 2, ..., 5}

Let X be the vector subspace of C5°(§2) spanned by {v1,vs,...,v;}. Then, dim F; =

j and note that X; C LP()(Q) because X; € X C LPU)(Q). Since X; is a finite

dimensional space the norm | - |x and [.|,.) are equivalent on Fj;. Consequentially,
v(z)

the map
p(x)
v = |l = inf 7>O:/ dx ¢,
Ql 7

defines a norm on X;. Putting S := {w € X; : [v|,) = 1} the unit sphere of X;.
Let us introduce the functional h : Rt x X; — R, (7,v) = h(7,,v) = ¥y()(Tv).
Remarking that

e h(0,v) =0.

e h(7,u) is non decreasing with respect to s. Moreover, for 7 > 1 we have h(1,v) >

7% W,y (v), and thus lim, _, o h(7,v) = +00. Therefore, for every fixed v € S, there
exists a unique value 7 = 7(v) > 0 such that h(7(v),v) = 1.
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On the other hand, since

et = ([ ol as) [ (r) ol s

a -4
%h(s(v),v) =@ > 0.

The implicit function theorem implies that the map v — 7(v) is continuous and even
by uniqueness.

Y

Now, we define the following continuous and odd maping from S to compact
Aj=HNF;byg:S— A, v— h(v) = 7(v).v, it follows by the property (f) of
Lemma 4.1, that v(A4;) > j. Then A; € T;.

Setup 2. We claim that \; — oo as j — co. Since Woz’p(')(Q) is separable, there
exists (ex, e} )k,n a bi-orthogonal system such that

e (er)r are linearly dense in X.

e (ef), are total for the dual X*.

For k € N*, set Fj, = span{ey,...,ex} and FkL = span{egi1,€xt2,-..}. By (g) of
Lemma 4.1, we have for any A € Ty, ANF- | # 0. Thus t, = infacr, SUpyeanpy | P(u) =
0o as k — o0o. Indeed, if not, for large k there exists uj, € Fj- | with W) (u) = 1 such

that t, < ®y(ur) < M for some M > 0 independent of k. Thus by inequality (16),
we have

L A - -

= (1 % )l =€l <o

This implies that (ug) is bounded in X. For a subsequence of {uy} if necessary, we
can assume that {u;} converges weakly in X and strongly in LP()(Q). By our choice
of Fi- |, we have up, — 0 weakly in X because (e} ,e;) = 0, for any k > n. this

contradicts the fact that W,y (u) = [, = ) 6&')2(1) dz =1 for all k. Since Ay > .

Setup 3. From the auxiliary results proved in Setup 1. and Setup 2. and by
applying the Ljusternik-Schnireleman theory the proof of Theorem 4.2 is achieved. [

COROLLARY 4.3. we have the following statements:
A A Au[PE)) do— [u 2%
() ) = inf{f“ 2 -

dx
(i) 0 < pr(A) < pa(A) < - < pp(N) = +oc.

v [fo 43 lulade] " da
Proof. (i) For u € M, set A1 = {u,—u}. It is clear that y(4;) = 1, ® is even and
D) (u) = maxy, Py > infger, max,ea Pa(u). Thusinf,eqy Pa(u) > inf gep, maxy,eaq Poa(u) =
p1(A). On the other hand, for all A € I'y and u € A, we have sup,c4 ®x > ®x(u) >
infyep Pa(u). It follows that inf 4er, maxa @ = p1(N) > inf,eqy Pa(u). Then

= 1 |u\Q( x)
fo p(z)A (|AuP@)dz — A [, OROES]

x r+1
r+1 [fQ lqg((m)) |u|q(:r dSU] ’ dx

(M) = inf { eX\{O}};
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For all ¢ > j, we have I'; C I'; and in view of the definition of )\;,i € N*, we get
i (A) > pj(N). As regards p,(A) — o0, it has been proved in Theorem 4.2. U
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