SPECTRAL PROPERTIES OF THE CAUCHY OPERATOR AND THE OPERATOR OF LOGARITHMIC POTENTIAL TYPE ON L2 SPACE WITH RADIAL WEIGHT

Milutin Dostanic

Abstract. We consider the Cauchy operator C and the operator of logarithmic potential type L on L ($D, a\mu$), defined by

$$
Cf(z) = -\frac{1}{\pi} \int_D \frac{f(\xi)}{\xi - z} d\mu(\xi), \quad Lf(z) = -\frac{1}{2\pi} \int_D \ln|z - \xi| f(\xi) d\mu(\xi),
$$

where D is the unit disc in C, $d\mu(\xi) = h(|\xi|) dA$, $h \in L^{\infty}(0, 1)$ is a function, positive a.e. on $(0, 1)$ and dA the Lebesgue measure on D . We describe all eigenvectors and eigenvalues of these operators in terms of some operators acting on $L^-(I, a\nu)$ with $I \equiv [0, 1], a\nu(T) \equiv rh(T) aT$.

Introduction

Let D denote the unit disc in C and let $h \in L^{\infty}(0, 1)$ be a function such that $n > 0$ a.e. on (0,1). Consider the operators C, L: $L^2(D, a\mu) \rightarrow L^2(D, a\mu)$, where $d\mu(\xi) = h(|\xi|) dA (dA - \text{Lebesgue measure in } D)$ defined by

$$
Cf(z) = -\frac{1}{\pi} \int_{D} \frac{f(\xi)}{\xi - z} d\mu(\xi)
$$
 (Cauchy operator),

$$
Lf(z) = -\frac{1}{2\pi} \int_{D} \ln|z - \xi| f(\xi) d\mu(\xi)
$$
 (operator of logarithmic potential type).

It is well known that under these conditions Ker $L = \{0\}$, Ker $C = \{0\}$ and both operators are compact. Detailed structure of operators C and L with $h \equiv 1$ is given by J. M. Anderson, D. Khavinson and V. Lomonosov in [1] and by J. Arazy and D. Khavinson in [2]. Results obtained in [3] and [4] yield the following asymptotic formulae for singular values of the operators C and L :

$$
s_n(C) \sim \left(\frac{2}{n} \int_0^1 r h^2(r) dr\right)^{1/2}, \quad s_n(L) \sim \frac{1}{2n} \int_0^1 r h(r) dr \quad \text{as } n \to \infty.
$$

In this paper we describe all eigenvectors and eigenvalues of operators C and L in terms of some operators acting on $L^2(I, a\nu)$ with $I = [0, 1], a\nu(T) = Th(T) aT$.

AMS Subject Classification: $47G10, 45C05$

Keywords and phrases : Cauchy integral operator, operator of logarithmic potential type, space with radial weight

136 M. Dostanic

Results

For $m \in \mathbb{N}$ let $K_m(x,r) = \frac{1}{m} (r/x)^m$, for $r \leqslant x$ and $K_m(x,r) = \frac{1}{m} (x/r)^m$, for $x \leqslant r$, and let $A_m: L^2(I, d\nu) \to L^2(I, d\nu)$ be an operator defined by

$$
A_m f(x) = \int_0^1 K_m(x, r) f(r) d\nu(r).
$$

LEMMA 1. Operator A_m is selfadjoint, Hilbert-Schmidt and it has trivial kernel (Ker $A_m = \{0\}$).

Proof. Since $d\nu(r)$ is a finite measure and $K_m(x,r) \leq 1/m$, we have

$$
\int_0^1 \int_0^1 K_m^2(x,r) \, d\nu(x) \, d\nu(r) \leq \frac{1}{m^2} (\nu(I))^2 < \infty,
$$

i.e. A_m is Hilbert-Schmidt.

Consider the equation $A_{m} f = 0, f \in L^{2}(I, d\nu),$ i.e.

$$
x^{-m} \int_0^x r^m f(r) \cdot rh(r) \, dr + x^m \int_x^1 r^{-m} f(r) \cdot rh(r) \, dr = 0. \tag{1}
$$

Since $f \in L^2(I, d\nu)$, we have $q(r) = rf(r)h(r) \in L^1$ and from (1) it follows

$$
x^{-m} \int_0^x r^m g(r) dr + x^m \int_x^1 r^{-m} g(r) dr = 0.
$$

Differentiating the above equation with respect to x and multiplying by x we get

$$
-x^{-m} \int_0^x r^m g(r) dr + x^m \int_x^1 r^{-m} g(r) dr = 0.
$$
 (2)

From (1) and (2) we obtain $x^{-m} \int_0^x r^m g(r) dr = 0$ a.e., i.e. $\int_0^x r^m g(r) dr = 0$ a.e., which gives $g(x)$ is the since α , it follows that fixed β . It follows that f

Let $A_0: L^2(I, d\nu) \to L^2(I, d\nu)$ be a linear operator defined by

$$
A_0 f(x) = \int_0^1 K_0(x, r) f(r) \, d\nu(r),
$$

where $K_0(x, r) = -2 \ln x$, for $r \leq x$, and $K_0(x, r) = -2 \ln r$, for $x \leq r$. In a similar way as above one can prove

LEMMA 2. Operator A_0 is Hilbert-Schmidt and Ker $A_0 = \{0\}.$

Let $\{\Phi_{mn}(r)\}_{n=1}^{\infty}$ denote the system of eigenvectors of the operator A_m (m = 0; 1; . . .) which correspond to eigenvalues smn, normalized by $\int_0^1 |\Phi_{mn}(r)|^2 d\nu(r) =$ $(2\pi)^{-1}$. For $m = 1, 2, ...$ set $\Phi_{-mn}(r) := \Phi_{mn}(r)$, $s_{-mn} := s_{mn}$ and let $g_{mn}(z) :=$ $\Phi_{mn}(|z|)(z/|z|)^m$ for $m \in \mathbf{Z}$, $n \in \mathbf{N}$.

THEOREM 1. Operator L satisfies $L = \sum_{m,n} s_{mn}(\cdot, q_{mn})$.

THEOREM 1. *Operator L satisfies*
$$
L = \sum_{m \in \mathbf{Z}, n \in \mathbf{N}} s_{mn}(\cdot, g_{mn})_{L^2(D, d\mu)} g_{mn}.
$$

Proof. Let $m \in \mathbb{N}$. Then

$$
Lg_{mn} = \int_0^1 \Phi_{mn}(r) d\nu(r) \left(-\frac{1}{\pi} \int_0^{2\pi} e^{im\theta} \ln|z - re^{i\theta}| d\theta \right). \tag{3}
$$

Since the integral in parentheses is equal to $r^m/m\bar{z}^m$, for $r < |z|$, and z^m/mr^m , for $|z| < r$, it follows from (3) that $Lg_{mn} = g_{mn} \frac{1 + m + mn}{\Phi_{mn}}$. This equation, together with $\mathcal{L} = \mathcal{L} = \mathcal{L} = \mathcal{L}$, while $\mathcal{L} = \mathcal{L} = \mathcal{L}$

$$
Lg_{mn} = s_{mn}g_{mn}.
$$

In a similar way one shows that $Lg_{0n} = s_{0n}g_{0n}$. Also, one can check directly that $Lg_{-mn} = s_{mn}g_{-mn}$ $(m, n \in \mathbb{N})$, i.e. $Lg_{-mn} = s_{-mn}g_{-mn}$ (since $s_{-mn} = s_{mn}$). Therefore $Lg_{mn} = s_{mn}g_{mn}$, for all $m \in \mathbb{Z}$, $n \in \mathbb{N}$.
Since the operator L is positive ([5], Theorem 1.16), we get $s_{mn} > 0$. We will

show that the system ${g_{mn}}_{m\in\mathbf{Z},\,n\in\mathbf{N}}$ is orthonormal in $L^2(D,d\mu)$. Indeed,

$$
\int_D g_{mn}(z) \overline{g_{kn}(z)} d\mu(z) = 2\pi \delta_{mk} \int_0^1 \Phi_{mn}(r) \overline{\Phi_{kn}(r)} d\nu(r) = \delta_{mk}
$$

(from the way the system $\{\Phi_{mn}\}\$ is normalized). Furthermore,

$$
\int_D g_{mn}(z) \overline{g_{mk}(z)} d\mu(z) = 2\pi \int_0^1 \Phi_{mn}(r) \overline{\Phi_{mk}(r)} d\nu(r) = \delta_{nk},
$$

since Φ_{mn} are eigenvectors of a selfadjoint operator A_m . Since the systems $\{\Phi_{mn}\}_{n=1}^{\infty}$ are bases in $L^2(I, d\nu)$ for all $m \in \mathbb{Z}$ and since $\{e^{in\theta}\}_{n\in \mathbb{Z}}$ is a basis in $L^2(0, 2\pi)$, the system $\{g_{mn}\}_{m\in\mathbf{Z}, n\in\mathbf{N}}$ is complete in $L^2(D, d\mu)$ (see [6], p. 66). Therefore, $\{g_{mn}\}$ is an orthonormal basis in $L^2(D, d\mu)$ and thus

$$
f = \sum_{m,n} (f, g_{mn})_{L^2(D, d\mu)} g_{mn}.
$$

Applying L to the above equation we finish the proof of Theorem 1. \blacksquare

Next we consider the Cauchy operator. Let B_m $(m \in \mathbb{N})$ be linear operators defined on $L^2(I, d\nu)$ by $B_m f(x) = \int_0^1 \mathcal{B}_m(x, r) f(r) d\nu(r)$, with

$$
\mathcal{B}_{m}(x,r) = \frac{4}{(xr)^{m}} \cdot \begin{cases} \int_{0}^{x} t^{2m-2} d\nu(t), & x \leq r, \\ \int_{0}^{r} t^{2m-2} d\nu(t), & r \leq x. \end{cases}
$$

LEMMA 3. For all $m \in \mathbb{N}$, B_m is a selfadjoint, Hilbert-Schmidt operator and $\text{Ker } B_m = \{0\}.$

Proof. Indeed, from

$$
\mathcal{B}_m(x,r) = \frac{4}{(xr)^m} \cdot \begin{cases} \int_0^x t^{2m-1} h(t) dt, & x \le r, \\ \int_0^r t^{2m-1} h(t) dt, & r \le x \end{cases}
$$

$$
\le \frac{4||h||_{\infty}}{(xr)^m} \cdot \begin{cases} x^{2m}/2m, & x \le r, \\ r^{2m}/2m, & r \le x \end{cases} \le \frac{2||h||_{\infty}}{m}
$$

it follows that B_m is a Hilbert-Schmidt operator.

138 M. Dostanic

Consider the equation $B_m f(x) = 0, f \in L^2(I, d\nu)$. It can be written in the form

$$
\int_0^x r^{m-1} d\nu(r) \left(r^{m-1} \int_r^1 \frac{f(s)}{s^m} d\nu(s) \right) = 0,
$$

i.e. $\int_{r}^{1}\frac{f(s)}{s^{m}}sh(s)\,ds=0.$ Differentiating, we get $f=0$ a.e., and thus Ker $B_{m}=\{0\}.$

Denote by $\{\Psi_{mn}\}_{n=1}^{\infty}$ the eigenvectors of the operator B_m corresponding to the eigenvalues λ_{mn} (sequences $\{\lambda_{mn}\}_{m=1}^{\infty}$ are ordered as non-increasing for each m). Let $B_0: L^2(I, dV) \to L^2(I, dV)$ be a linear operator defined by $B_0I(x) =$ $\int_0^1 \mathcal{B}_0(x,r) f(r) d\nu(r)$ with

$$
\mathcal{B}_0(x,r) = 4 \cdot \begin{cases} \int_x^1 d\nu(t)/t^2, & r \leq x, \\ \int_r^1 d\nu(t)/t^2, & x \leq r. \end{cases}
$$

In a similar way as in Lemma 3 one can prove that B_0 is a Hilbert-Schmidt operator with trivial kernel. Denote its eigenvalues by $\{\lambda_{0n}\}_{n=1}^{\infty}$ and the corresponding eigenvectors by $\{\Psi_{0n}\}\$. We normalize the system $\{\Psi_{mn}\}_{m=0,1,\dots;\,n=1,2,\dots}$ \blacksquare f^{\perp} 1. τ , f $\int_0^1 |\Psi_{mn}(r)|^2 d\nu(r) = (2\pi)^{-1}$. For $m \in \mathbb{Z}$, $m < 0$ we set $\Psi_{mn} := \Psi_{-mn}$, $\lambda_{mn} := \lambda_{-mn}$ and $h_{mn}(z)=\Psi_{mn}(|z|)(z/|z|)^m, m \in \mathbb{Z}, n \in \mathbb{Z}$

 $\mathcal{L}:=\lambda_{-mn}$ and $h_{mn}(z)=\Psi_{mn}(|z|)(z/|z|)^m$, $m\in\mathbb{Z}$, $n\in\mathbb{N}$.

THEOREM 2. Operator C^*C satisfies $C^*C=-\sum_{m,n} \Delta_{mn}(\cdot, h_{mn})$. $\sum_{m\in\mathbf{Z}, n\in\mathbf{N}} \Delta_{mn}(\cdot, h_{mn}) \frac{L^2(D, d\mu)}{L^2(D, d\mu)}$

Proof. For $m \in \mathbb{N}$,

$$
Ch_{mn} = \int_0^1 \Psi_{mn}(r) d\nu(r) \left(-\frac{1}{\pi} \int_0^{2\pi} \frac{e^{im\theta}}{re^{i\theta} - z} d\theta \right) = G(|z|) \left(\frac{z}{|z|} \right)^{m-1},
$$

where $G(t) = -2t^{m-1} \int_t^1 \frac{\Psi_{mn}(r)}{r^m} d\nu(r)$. That gives

$$
C^*Ch_{mn} = \int_0^1 G(r) d\nu(r) \left(-\frac{1}{\pi} \int_0^{2\pi} \frac{e^{im\theta}}{\bar{z}e^{i\theta} - r} d\theta\right) = h_{mn} \frac{B_m h_{mn}}{h_{mn}} = \lambda_{mn} h_{mn}.
$$

In a similar way one gets $C^*Ch_{0n} = \lambda_{0n}h_{0n}$ and $C^*Ch_{-mn} = \lambda_{-mn}h_{-mn}$, for $m = 1, 2, \ldots$ That gives rise to $\lambda_{mn} > 0$, since C^*C is a positive operator.

In the same way as in Theorem 1 one proves that $\{h_{mn}\}_{m\in\mathbf{Z}, n\in\mathbf{N}}$ is an orthonormal complete system in $L^2(D, a\mu)$ and thus it is a basis in $L^2(D, a\mu)$. Applying C^*C to

$$
f = \sum_{m,n} (f, h_{mn})_{L^2(D, d\mu)} h_{mn}
$$

we get the conclusion. Since $\lambda_{mn} > 0$, setting $s'_{mn} = \sqrt{\lambda_{mn}}$, we obtain

$$
C^*C = \sum_{m \in \mathbf{Z}, n \in \mathbf{N}} s_{mn}^2(\cdot, h_{mn})_{L^2(D, d\mu)} h_{mn}.
$$

That gives rise to the permuted Hilbert-Schimdt expansion

$$
C = \sum_{m \in \mathbf{Z}, n \in \mathbf{N}} s'_{mn}(\cdot, h_{mn})_{L^2(D, d\mu)} r_{mn}, \quad r_{mn} = \frac{Ch_{mn}}{s'_{mn}}.
$$

Remark. Regarding the operators C and L we can raise the following problem: for which weight h, $||L|| = s_{01}$, $||C|| = \sqrt{\lambda_{01}}$ $(= s'_{01})$?

REFERENCES

- [1] Anderson, J. M., Khavinson, D., Lomonosov, V., Spectral properties of some integral operators arising in potential theory, Quart. J. Math. Oxford Ser. (2) , 1992, 387-407.
- [2] Arazy, J., Khavinson, D., Spectral estimates of Cauchy's transform in $L^2(\Omega)$, Integral Equations Operator Theory 15, 1992, 901-919.
- [3] Dostanić, M., Asymptotic behavior of eigenvalues of certain integral operators, Publ. Inst. Math, Nouv. sér., 59 (73), 1996, 95-113.
- [4] Dostanic, M., The properties of the Cauchy transforms on a bounded domain, J. Operator Theory 36, 1996, 233-247.
- [5] Ландкоф, Н. С., Основы современной теории потенциала, Наука, Москва 1966.
- [6] Reed, M., Simon, B., Methods of Modern Mathematical Physics, Vol. I: Functional Analysis, Academic Press, New York-London, 1972.

(received 20.05.1998, in revised form 10.12.1998.)

Faculty of Mathematics, Studentski trg 16, Belgrade, Yugoslavia