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ON GEODESIC MAPPINGS OF GENERAL AFFINE CONNEXION

SPACES AND OF GENERALIZED RIEMANNIAN SPACES

Svetislav Min�ci�c and Mi�ca Stankovi�c

Abstract. In the present paper we de�ne a geodesic mapping of two nonsymmetrical a�ne
connexion spaces and obtain necessary and su�cient conditions that a mapping of two such spaces
be geodesic (x1). Particularly we study a geodesic mapping of two generalized Riemannian spaces
(x2). Finally, we generalize the notion of Thomas's projective parameters as an invariant of
geodesic mappings (x3).

1. Geodesic mappings of general a�ne connexion spaces

Consider two N -dimensional spaces of nonsymmetrical a�ne connexion: GAN

and GAN . So, if connexion coe�cients of these spaces are respectively Li
jk and

L
i

jk , we suppose that in general the symmetry with respect to indices j; k is not
valid.

One says that reciprocal one-valued mapping f : GAN ! GAN is geodesic, if
geodesics of the space GAN pass to geodesics of the space GAN . We can consider
these spaces together with this mapping system of local coordinates, i.e. for f : M 7!
M we haveM(x1; . . . ; xN ) �M(x) andM(x1; . . . ; xN ) �M(x), whereM 2 GAN ,
M 2 GAN . In the corresponding points M(x) and M(x) we can put

L
i

jk(x) = Li
jk(x) + P i

jk(x); (i; j; k = 1; . . . ; N); (1.1)

where P i
jk(x) is the deformation tensor of the connexion L of GAN according to

the mapping f : GAN ! GAN .

The curve
l : xi = xi(t) (1.2)

is geodesic of GAN if and only if for �i = dxi=dt it is:

d�i

dt
+ Li

pq�
p�q = �(t)�i(t); (1.3)

where �(t) is an invariant.
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If f : l ! l, then by the mapping f , coordinates xi � xi and it is �
i
= dxi=dt =

�i, and l is geodesic in GAN , too, so we get

d�i

dt
+ L

i

pq�
p�q = �(t)�i(t) (1.3)

Subtracting (1:3) and (1:3), we obtain

(L
i

pq � Li
pq)�

p�q = (�(t)� �(t))�i(t);

and, because of (1.1):
P i
pq�

p�q = 2 (t)�i(t): (1.4)

Denoting by P i
jk , P

i
jk
_

the symmetric and antisymmetric part of P i
jk respectively,

we get
P i
jk = P i

jk + P i
jk
_

; (1.5)

and (1.4) reduces to
P i
pq�

p�q = 2 (t)�i(t): (1.40)

As in the case of a symmetric connexion (see e.g. [4]) one concludes that  (t) =
 p(x

1(t); . . . ; xN (t))�p(t), and from (1.40):

P i
pq�

p�q = 2 p�
p�i =  p�

p�q�iq +  q�
q�p�ip = ( p�

i
q +  q�

i
p)�

p�q ;

wherefrom
P i
jk = �ij k + �ik j : (1.6a)

Denoting also
P i
jk
_

= �ijk = ��ikj ; (1.6b)

substituting in (1.1) we obtain

L
i

jk = Li
jk + �ij k + �ik j + �ijk ; (1.7)

and the deformation tensor is

P i
jk(x) = �ij k(x) + �ik j(x) + �ijk(x): (1.8)

So, the condition (1.8) is necessary that the mapping f be geodesic. It is easy to
prove that this condition is su�cient, too, and we have

Theorem 1.1. A necessary and su�cient condition that the mapping f :
GAN ! GAN be geodesic is that the deformation tensor P i

jk from (1:1) according

to the mapping f has the form (1:8), where  j(x
1; . . . ; xN ) is a covariant vector,

and �ijk(x
1; . . . ; xN ) an antisymmetric tensor.

For k = i, we obtain from (1.6a) that P i
ji = �ij i+�

i
i j =  j+N j ; wherefrom

 i =
1

N + 1
P p
ip; (1.9)
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which, by substitution in (1.7), gives

L
i

jk = Li
jk +

1

N + 1
(�ijP

p

kp(x) + �ikP
p
jp(x)) + P i

jk
_

(x); (1.70)

where P i
jk(x) is the deformation tensor.

On the base of the facts given above, we get

Theorem 1.2 Let a space GAN be given, i.e. on a di�erentiable manifold
MN let nonsymmetric connexion coe�cients Li

jk(x) be de�ned. If on MN a tensor

P i
jk(x) is given, too and we determine L

i

jk(x) according to (1:70), then on MN a

space GAN is de�ned, with connexion coe�cients L
i

jk(x), so that GAN and GAN

have common geodesics. We obtain the same result (on the base of (1:7)) choosing
a vector  i(x) and antisymmetric tensor �ijk(x) = P i

jk
_

(x).

A question arises itself: Is there a geodesic mapping of a space GAN with a
nonsymmetric a�ne connexion onto a space AN with a symmetric a�ne connexion?
It is easy to see that the next theorem is valid.

Theorem 1.3 A necessary and su�cient condition that a mapping f : GAN !
AN of a nonsymmetric a�ne connexion space GAN onto a symmetric a�ne con-
nexion space AN be geodesic, is that

P i
jk
_

(x) = �Li
jk
_

(x); (1.10)

where P i
jk
_

(x), Li
jk
_

(x), are antisymmetric parts of the deformation tensor and con-

nexion coe�cients of the GAN respectively.

Remark. It is easy to check that a set of geodesic mappings of a space GAN

forms a group.

2. Geodesic mappings of generalized Riemannian spaces

Generalized Riemannian space GRN in the sense of Eisenhart's de�nition [1] is
a di�erentiable N -dimensional manifold, equipped with nonsymmetric basic tensor
gij . Connexion coe�cients are generalized Cristo�el's symbols of the second kind
�ijk, where

�i:jk =
1

2
(gji;k � gjk;i + gik;j); �ijk = gip�p:jk ; (2.1)

and gipgip = �ij .

Generally, it is �ijk 6= �ikj . Based on this, everything that we exposed for GAN ,
is valid for GRN , too. We will expose some speci�cs.

In a space of nonsymmetric a�ne connexion (and in a generalized Riemannian
space) one can de�ne four kinds of covariant derivative [2,3]. For example, for a
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tensor aij in GAN we have

aij j
1

m = aij;m + Li
pma

p

j � Lp

jma
i
p;

aij j
2

m = aij;m + Li
mpa

p
j � Lp

mja
i
p;

aij j
3

m = aij;m + Li
pma

p
j � Lp

mja
i
p;

aij j
4

m = aij;m + Li
mpa

p
j � Lp

jma
i
p:

(2.2)

Denote by j
�

; j
�

a covariant derivative of the kind � in GRN and GRN respec-

tively. We de�ne a geodesic mapping of GRN in the similar manner as of GAN

(x1).

Suppose that a geodesic mapping f : GRN ! GRN is given. Then, with
respect to (1.7), one obtains

�
i

jk = �ijk + �ij k + �ik j + P i
jk
_

: (2.3)

and

gij j
1

k = gij;k � �
p

ikgpj � �
p

jkgip =
(2:3)

= gij;k � (�pik + �pi  k + �pk i + P p

ik
_

)gpj � (�pjk + �pj k + �pk j + P p

jk
_

)gip

= (gij;k � �pikgpj � �pjkgip)� gij k � gkj i � gij k � gik j � P p

ik
_

gpj � P p

jk
_

gip:

(2.4)

Because of gij j
�

k = gij j
�

k + gij
_

j
�

k and gij j
�

k = 0 (� = 1; 2), and in the parentheses

on the right side of (2.4) we have gij j
1

k, this equation gives

gij j
1

k � gij
_

j
1

k = 2gij k +  igkj +  jgik + gipP
p

jk
_

+ gpjP
p

ik
_

: (2.5a)

Starting from gij j
2

k, we obtain

gij j
2

k � gij
_

j
2

k = 2gij k +  igkj +  jgik + gipP
p

kj
_

+ gpjP
p

ki
_

; (2.5b)

With respect to the Theorem 1.1., the condition (2.3) is necessary and su�cient
that the mapping f : GRN ! GRN be geodesic, so the conditions (2.5a,b) are
necessary for this. Let us prove that these conditions are su�cient too. Start from
(2.5b). Denoting the left and right side in (2.5b) by L and R respectively, we have

L � gij j
2

k � gij
_

j
2

k = gij j
2

k � gij j
2

k

= gij;k � �pkigpj � �pkjgip � gij;k � �
p

kigpj � �
p

kjgip

= (�
p

ki � �pki)gpj + (�
p

kj � �pkj)gip;
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R �  igkj +  kgij + gpjP
p

ki
_

+  jgik +  kgij + gipP
p

kj
_

= ( i�
p

k +  k�
p
i + P p

ki
_

)gpj + ( j�
p

k +  k�
p
j + P p

kj
_

)gip:

The equation (2.5b), i.e. L = R is satis�ed for

�
p

kj � �pkj =  j�
p

k +  k�
p

j + P p

kj
_

;

and this is the equation (1.7). Starting from (2.5a), one obtains the same. For,
starting from one of the equations (2.5a,b), it follows (1.7), and from here the other
of these equations follows, so we conclude that they are equivalent.

By virtue of the facts exposed above, we have

Theorem 2.1 a) A mapping f : GRN ! GRN is geodesic if and only together
with the mapping f the system of local coordinates and the second kind Cristo�el
symbols of these spaces satisfy (2:3).

b) If the mapping f is geodesic, then the equations (2:5a; b) are satis�ed. Con-
versely, if one of these equations is satis�ed, this mapping is geodesic, and the other
is satis�ed too.

Corollary. If the mapping f : GRN ! GRN is geodesic, then the basic
tensor gij of the space GRN satis�es the relation

gij j
1

k + gij j
2

k � gij
_

j
1

k � gij
_

j
2

k = 2 igkj + 2 jgik + 4 kgij ; (2.6)

where  i is a covariant vector.

This relation is obtained by adding (2.5a,b).

Further, we have

Theorem 2.2 By a geodesic mapping f : GRN ! GGN the vector  i is given
in the form

 i =
1

N + 1

 
ln

s����gg
����
!
;i

; (2.7)

where g = det(gij), g = det(gij) and the comma denotes a partial derivative.

Proof. With respect to (2.1) one gets

�i:jk + �j:ik = gij;k; �i:jk + �k:ji = gik;j : (2.8a; b)

On the other hand, as in the case of Riemannian space, we have:

g
;i
= ggjkgjk;i = ggjk(�j:ki + �k:ji) = g(�kki + �jji) = 2g�ppi;

where we used (2.8a). Using (2.8b) we obtain g
;i
= 2g�pip. From these equations

we have

�ppi = �pip = (ln
q
jgj);i: (2.9)
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Analogous equation is valid for �, too, and from (1.9) one obtains

 i =
1

N + 1
(�

p

ip � �pip) =
1

N + 1
[(ln

q
jgj);i � (ln

q
jgj);i];

i.e. (2.7) is in e�ect.

Remark. From (2.9) we see that in GRN , �
p
pi is the gradient and that

�ppi
_

= 0: (2.10)

From (2.7) it follows that at the mapping f : GRN ! GRN the corresponding
vector  i is gradient, too.

3. Generalized Thomas's projective parameters

Putting P into (1.70) in accordance with (1.1) we get

L
i

jk � L
i

jk
_

�
1

N + 1
(�ijL

p

kp + �ikL
p

jp)

= Li
jk � Li

jk
_

�
1

N + 1
(�ijL

p

kp + �ikL
p
jp);

Denoting

T i
jk = Li

jk �
1

N + 1
(�ijL

p

kp + �ikL
p
jp) = T i

kj ; (3.1)

we see that

T
i

jk = T i
jk: (3.2)

The magnitudes T i
jk we call generalized Thomas's projective parameters at the map-

ping f : GAN ! GAN . Accordingly, these magnitudes are invariant at a geodesic
mapping. Starting from (3.1) and (3.2), one obtains (1.70), and we conclude that
the next theorem is valid.

Theorem 3.1 A necessary and su�cient condition that a mapping f : GAN !
GAN be geodesic is that the generalized Thomas's projective parameters are invari-
ant.

Using the transformation law for connexion coe�cients Li
jk, from (3.1) we

obtain the transformation law for T i
jk(x) passing from coordinates xi to coordinates

xi
0

in GAN :

T i 0

j 0k 0(x 0) = T i
jk(x)x

i0

i x
j

j0x
k
k0 �

1

N + 1
xi

0

i

�
xij0 (ln�);k0 + xik0 (ln�);j0

�
+ xi

0

i x
i
j 0k 0 ;

(3.3)

where � = det(xii0 ), x
i
i0 = @xi=@xi

0

, xij0k0 = @2xi=@xj
0

@xk
0

and so on.
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Let in GAN local coordinates are xi, in GAN , x
i0 , and f : GAN ! GAN .

Passing from xi
0

in GAN to xi, we obtain an inverse relation with respect to (3.3),
and (3.2) gives

T i
jk(x) = T

i

jk(x) = T
i0

j0k0(x
0)xii0x

j0

j x
k0

k �
1

N + 1
xii0
h
xi

0

j (ln�
0
;k + xi

0

k (ln�
0);j

i
+xii0x

i0

jk ;

(3.4)

where �0 = det(xi
0

i ).

Writing (3.4) in the form

T i
jk(x)x

i0

i = T
i0

j0k0(x
0)xj

0

j x
k0

k �
1

N + 1

h
xi

0

j (ln�
0);k + xi

0

k (ln�
0);j

i
+ xi

0

jk ; (3.40)

we see that the following is valid.

Theorem 3.2 A space GAN , with connexion coe�cients Li
jk(x) in local coor-

dinates xi, allows a geodesic mapping f on a space GAN with connexion coe�cients

L
i0

j0k0(x
0) in local coordinates xi

0

, if and only if there exist functions

xi
0

= xi
0

(x1; . . . ; xN ); (i0 = 10; . . . ; N 0; det(xi
0

i ) 6= 0) (3.5)

of the class Cr (r > 2), satisfying the equation (3:40), and by which the mapping

f : GAN ! GAN is realized.

Remark. The equations (3.40) form a system of second order partial dif-

ferential (nonlinear) equations with respect to unknown functions xi
0

(3.5). But,
practical solving of this problem is very di�cult in general.
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