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SOME INEQUALITIES FOR ENTIRE FUNCTIONS

OF EXPONENTIAL TYPE

Milutin Dostani�c

Abstract. In this paper we give simple proofs of some inequalities for entire functions of
exponential type.

1. Introduction

Thera are many Lp-inequalities, as well as inequalities in the uniform norm,
concerning entire functions of exponential type and their derivatives. One of the
most known inequalities is Bernstein's inequality

sup
x2R

jf 0(x)j 6 � sup
x2R

jf(x)j; (1)

Z 1

�1

jf 0(x)jp dx 6 �p
Z 1

�1

jf(x)jp dx; (2)

which holds for entire functions of type 6 �. In the case p > 1 the inequalities
(1) and (2) were proved in a more general form in [1]. An extension to the case
0 < p < 1 was done in [4], where it was proved that for arbitrary numbers A, B
with Im(A=B) > 0 and an arbitrary entire function of exponential type 6 �Z 1

�1

jAf(x) +Bf 0(x)jp dx 6 jA+ i�Bjp
Z 1

�1

jf(x)jp dx: (3)

In this paper we give simple proofs of some inequalities that are interesting by
themselves and may be of some interest in other investigations.

2. Results

Theorem 1. Let f be an entire function of exponential type � and P a poly-
nomial. Let P = P+P�, where P+ and P� are polynomials whose zeros lie in
�+ = f z : Im z > 0 g and �� = f z : Im z < 0 g respectively. Then
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a) If
R1
�1 jf(x)jr dx < +1 (r > 0), then

Z 1

�1

jP (d=dx)f(x)jr dx 6 jP+(�i�)P�(i�)j
r

Z 1

�1

jf(x)jr dx: (4)

b) If supx2R jf(x)j < +1, then

sup
x2R

jP (d=dx)f(x)j 6 jP+(�i�)P�(i�)j sup
x2R

jf(x)j: (5)

Theorem 2. Let f be an entire function of exponential type � such thatR1
�1 jf(x)jp dx < +1 (p > 0). Then

jf(x)jp 6
2�pm

�

Z 1

�1

jf(u)jp du (x 2 R); (6)

where m = mint>0(e
t � 1)=t2.

It was proved in [1] that if f is an entire function of exponential type such
that

R1
�1

jf(x)jp dx < 1 for some p > 1, then it is bounded on R. In [4] this was
extended to all p > 0, but the method did not give an estimate from above for
kfk1=kfkp, where kfk1 = supx2R jf(x)j, kfkp = (

R
R
jf(x)jp dx)1=p.

Theorem 2 asserts that kfk1 6 C(p; �)kfkp where C(p; �) = (2�mp=�)1=p.
This constant (in the case p > 1) is better than the one given in [1]. It is an open
question what is the best constant in (6).

3. Proofs

Theorem 1 (a) is a direct consequence of (3). Indeed, from (3) we obtain

Z
R

j�f(x) + f 0(x)jr dx 6 j�+ i�jr
Z
R

jf(x)jr dx;

provided Im� > 0. Let P (z) =
Qm

i=1(z + �i), Im�i > 0, i = 1; 2; . . . ;m. Then by
successive applications of the last inequality, we get

Z
R

jP (d=dx)f(x)j
r
dx =

Z
R

����
� mY
i=1

�
�i +

d

dx

��
f(x)

����
r

dx

6 j�m + i�jr
Z
R

����
�m�1Y

i=1

�
�i +

d

dx

��
f(x)

����
r

dx 6 � � �

6 j�m + i�jrj�m�1 + i�jr � � � j�1 + i�jr
Z
R

jf(x)jr dx

= jP (�i)jr
Z
R

jf(x)jr dx:
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In the case when all the zeros of P lie in �+, an application of the preceding
inequality to the polynomial P1(z) = P (�z) and the entire function f1(z) = f(�z)
shows that Z

R

jP (d=dx)f(x)jr dx 6 jP (�i�)jr
Z
R

jf(x)jr dx:

Finally, if P = P+P�, then combining the last two inequalities we obtain (4).

Inequality (5) cannot be obtained from (4) as the limit when r ! 1, be-
cause the interval of integration is unbounded. In proving (5) we shall use Levitan
polynomials [1], [3] as well as the following theorem [3].

Let the roots of an algebraic polynomial P lie in �+ and let

S(�) =

nX
�=�n

b�e
i��; T (�) =

nX
�=�n

a�e
i��; a�n 6= 0:

If T (�) 6= 0 in �+ and jS(�)j < jT (�)j for all � 2 R, then jP (d=d�)S(�)j <
jP (d=d�)T (�)j for all � 2 �+.

Hence, by taking T (�) = e�in�max�2R jS(�)j we obtain the following

Lemma. If all the zeros of a polynomial P lie in �+ and S is a trigonometric
polynomial of degree n, then

max
�2R

jP (d=d�)S(�)j 6 jP (�in)jmax
�2R

jS(�)j:

Let '(x) = (sin�x=�x)2 and f be an entire function of exponential type �
such that kfk1 = supx2R jf(x)j =M < +1. For h > 0 we de�ne

fh(z) =

1X
�=�1

'(hz + �)f
�
z +

�

h

�
:

It turns out [3] that fh has the following properties:

1� fh is a trigonometric polynomial, fh(z) =
PN

�=�N a�e
2�i�hz, a� 2 C, N =

1 + [�=2�h] (Levitan polynomial).

2� kfhk1 = supx2R jfh(x)j 6M .

3� limh!+0 fh(z) = f(z), the convergence being uniform on compact subsets.
(The same holds for the derivatives.)

Consider �rst the case of a polynomial P (z) =
Pm

k=0 dkz
k with zeros in �+.

Applying Lemma to the trigonometric polynomial fh(�=2�h) (of degree N = 1 +
[�=2�h]) and the polynomial Ph(z) = P (2�hz), it follows

max
�2R

jPh(d=d�)fh(�=2�h)j 6 jPh(�iN)jmax
�2R

jfh(�=2�h)j 6 jPh(�iN)j sup
x2R

jf(x)j;

i.e.

sup
�2R

����
mX
k=0

dkf
(k)
h (�=2�h)

���� 6 sup
x2R

jf(x)j � jPh(�iN)j:

Hence, supx2R j
Pm

k=0 dkf
(k)
h (x)j 6 supx2R jf(x)j � jPh(�iN)j.
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When h ! 0+ we obtain Ph(�iN) = P (�2�hiN) ! P (�i�) and, since

f
(k)
h ! f (k), we have supx2R j

Pm
k=0 dkf

(k)(x)j 6 jP (�i�)j � kfk1, i.e.

jP (d=dx)f(x)j1 6 jP (�i�)j � kfk1: (7)

If the zeros of P lie in ��, then we only have to apply the preceding inequality
to P1(z) = P (�z) and f1(z) = f(�z). So we obtain, for such polynomials, the
inequality jP (d=dx)f(x)j1 6 jP (i�)j � kfk1. By successive applications of the last
inequality and (7) we obtain (5).

Proof of Theorem 2. In [2], p. 98 it is proved that if f is an entire function of
exponential type � such that

R1
�1

jf(x)jp dx <1 (p > 0) then

Z 1

�1

jf(x+ iy)jp dx 6 ep�jyj
Z 1

�1

jf(x)jp dx:

Hence Z h

�h

dy

Z 1

�1

jf(x+ iy)jp dx 6 kfkpp

Z h

�h

ep�jyj dy = 2kfkpp
ep�h � 1

p�
;

i.e. Z
j Im zj6h

jf(z)jp dA(z) 6 2kfkpp
ep�h � 1

p�
:

(Here dA(z) = dx dy, z = x+ iy.)

Since jf jp is a subharmonic function we have that

jf(t)jp 6
1

�h2

Z
jz�tj6h

jf jp dA 6 2kfkpp
ep�h � 1

p�

1

�h2
; t 2 R;

i.e.

jf(t)jp 6
2p�kfkpp

�

ep�h � 1

(p�h)2
; t 2 R:

The last inequality holds for all h > 0 and hence

jf(t)jp 6
2p�

�
min
x>0

ex � 1

x2
kfkpp; t 2 R:
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