
MATEMATIQKI VESNIK

48 (1996), 83{85
UDK 512.558

originalni nauqni rad

research paper

CHARACTERIZATION OF REGULAR SEMIRINGS

P. Mukhopadhyay

Abstract. The main purpose of this paper is to establish some necessary and su�cient
conditions for a semiring to be regular, in terms of its k-ideals.

1. Introduction

A semiring is a non-empty set R equipped with two binary operations, called
addition, +, and multiplication, denoted by juxtaposition such that R is multiplica-
tively a semigroup and additively a commutative semigroup and that the multipli-
cation is distributive with respect to the addition both from the left and from the
right. An element denoted by 0 is called the zero of R if a+0 = a and a0 = 0a = 0
for all a 2 R. A semiring is said to be regular in the sense of von Neumann (cf. [1])
if for every element a 2 R, there exist some x, y 2 R such that a+ axa = aya. A
k-ideal I of a semiring R is an ideal such that, if a 2 I and x 2 R and a + x 2 I

then x 2 I .

Definition 1.1. Let I be a sebsemiring of a semiring R. Then I = f a 2 R j
a+ x 2 I for some x 2 I g is called k-closure of I .

It is easy to check that, if I is an ideal of R, then I is a k-ideal. In fact, it is
the smallest k-ideal containing I and I = I if and only if I is a k-ideal. We now
state teh following theorem which was proved in [2].

Theorem 1.2. A semiring R is regular if and only if A \ B = AB holds for

every right k-ideal A and left k-ideal B of R.

2. Semiring I(R)

Let R be a semiring and I(R) be the set of all k-ideals of R. In I(R) we de�ne
the following operations of \addition" denoted by � and \multiplication" denoted
by �; for any I; J 2 I(R), I � J = I + J , I�J = IJ , where IJ is the set consisting
of all �nite sums of the form

P
n

i=1
aibi, n 2 N, with ai 2 I and bi 2 J . Through a
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lengthy but routine calculation it can be shown that (I(R);�; �) is a semiring. If
R be taken as multiplicatively commutative, then so will be I(R).

We now prove the following theorem.

Theorem 2.1. A multiplicatively commutative semiring with zero, 0 6= 1, is
regular if and only if I(R), as de�ned above, is regular.

Proof. Let R be a multiplicatively commutative regular semiring. Then for
any two k-ideals I and J we can write from Theorem 1.2 that I \ J = IJ . Hence
I�J = IJ = I \ J . To prove that I(R) is regular, let I 2 I(R), we see that
I�I�R�I = I�R�I holds. In fact, I�I�R�I = I�I\R\I = I�I = I + I = I = I

and I�R�I = I \ R \ I = I , proving the regularity of I(R). Conversely, let I(R)
be regular. We want to prove that R is so. Let a 2 R. We consider the principal
k-ideal generated by a, i.e. Ra (since R is commutative and 1 2 R). By regularity
of I(R), we get that there exist A;B 2 I(R) such that

Ra�Ra�A�Ra = Ra�B�Ra:

We see that a 2 Ra�Ra�A�Ra. Hence a 2 Ra�B�Ra, i.e. a 2 RaBRa.

Now, RaBRa � RaRa [* RaB � Ra = Ra] = aRRa [by commutativity].

Hence, a 2 aRRa, so that a +
P

n

i=1
xiyi =

P
m

i=1
piqi, where xi; pi 2 aR and

yi; qi 2 Ra for all i = 1; 2; . . . ; n or m, as the case may be. We have

xi + ati = asi; pi + at0
i
= as0

i
; yi + ria = r0

i
a (�)

for some ti, si, t
0

i
, s0

i
, ri, r

0

i
2 R with i = 1; 2; . . . ; n or m as the case may be. From

(�) we derive

xiyi + xiria+ atiyi + atiria = asi(yi + ria) = asir
0

i
a

and atiyi+ atiria = atir
0

i
a, hence xiyi+ asiria+ atir

0

i
a = asir

0

i
a+atiria. Thus we

have
xiyi + auia = avia

for ui = siri + tir
0

i
and vi = sir

0

i
+ tiri. Similarly we can get piqi + au0

i
a = av0

i
a for

some u0
i
; v0
i
2 R.

Therefore a+ axa = aya, for x =
P

n

i=1
vi +
P

m

i=1
u0
i
, y =

P
n

i=1
ui +

P
m

i=1
v0
i
.

hence R is regular.

3. Semiprime k-ideal

Definition 3.1. A k-ideal I of a semiring R is said to be semiprime if and
only if I =

p
I , where

p
I = f a 2 R j an 2 I for some positive integer n g.

Theorem 3.2. A commutative semiring R is regular if and only if every

k-ideal of R is semiprime.

Proof. Let R be a regular semiring and I be any k-ideal of R. Since I � p
I

always holds, it will be su�cient to prove the reverse inclusion only. Let 0 6= a 2 p
I .
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Then an 2 I , for some positive integer n. Since also an+1 2 I , we can assume that
n is odd. By regularity of a, there exist x; y 2 R such that a+ axa = aya, i.e. (by
commutativity of R)

a+ a2x = a2y; (1)

i.e. a2+ a3x = a3y, i.e. a2x+ a3x2 = a3yx, i.e. a+ a2x+ a3x2 = a+a3yx, i.e. (by
(1)) a2y + a3x2 = a+ a3yx, i.e. a2y + a3xy + a3x2 = a+ a3xy + a3yx, i.e.

a3y2 + a3x2 = a+ a3(xy + yx): (2)

On multiplying both sides of the relation (2) by a repeatedly we get

an(x2 + y2) = an(xy + yx) + an�2: (3)

Now, as I is an ideal and an 2 I we get an(x2 + y2) 2 I and an(xy + yx) 2 I .
Again as I is a k-ideal we get from (3) an�2 2 I . Repeating this process enough

number of times ultimately we have a 2 I . Consequently
p
I � I so that I =

p
I .

Going in the other direction, let us now assume that R is a commutative
semiring in which every k-ideal is semiprime, i.e. I =

p
I . Now, given any 0 6= a 2

R, we consider the k-ideal Ra2. As we know that a3 2 Ra2 and every k-ideal is
semiprime, we get

a 2
p
Ra2 = Ra2;

i.e. a+ xa2 = ya2 for some x; y 2 R, i.e. a+ axa = aya (by commutativity on R).
Hence R is regular.
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