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A BASIS PROPERTY OF FAMILIES

OF THE MITTAG-LEFFLER FUNCTIONS

Milutin Dostani�c

Abstract. In this paper we study basis properties of the Mittag-Le�er functions fy(x; �k)g
where

y(x; �) = jxj!=2E1(ix�; 1 + !=2); ! 2 (�1; 1);

E1(z;�) =
1P

k=0

zk

�(�+ k)
and f�kg is a sequence of complex numbers. In the case ! = 0 this

system is reduced to the exponential system.

1. Introduction

In [3] necessary and su�cient conditions for the system fx��1E1(i�nx;�)g
to form an unconditional basis in L2(0; 1) are obtained. The same conditions are
obtained in [9] as a consequence of a more general result. These conditions are
expressed in terms of the Muckenhoupt condition which should be satis�ed by an
entire function with zeros f�kg. Conditions that the system fei�nxg is a Riesz basis
of L2(��; �) can also be expressed in terms of the Muckenhoupt condition [8].

These conditions are not always easy to check. In [5] some su�cient conditions
that the exponential system is a Riesz basis in L2(��; �) are given. In this paper
we give some su�cient conditions that the system of the Mittag-Le�er functions
is a Riesz basis in L2(��; �).

2. Preliminaries

Given f; g : X ! R+ we write f(x) � g(x) (x 2 X) if there exist constants
C1, C2 > 0 such that C1 6 f(x)=g(x) 6 C2 (x 2 X).

Definition. [1] An entire function F of exponential type is said to be of sine
type if

1) the zeros of F lie in f z 2 C j j=zj 6 h g for some h > 0.

2) there is y0 2 R such that jF (x+ iy0)j � 1 (x 2 R) holds.

AMS Subject Classi�cation: 30B60
Keywords and phrases: Basis property; Riesz basis; Mittag-Le�er functions
Supported by Ministry of Science and technology RS, grant number 04M01

77



78 M. Dostani�c

If f is an entire function of exponential type, then by hf (�) we denote the
indicator function

hf (�) = lim
r!1

ln jf(rei�)j

r
:

By W�(!) we denote the class of entire functions of exponential type � 6 � such
that

R1
�1

jxj!jf(x)j2 dx <1 for some ! 2 (�1; 1). A characterization of this class
is given by the following theorem:

Theorem 1. [4]

W�(!) =

�
f

���� f(�) =
Z �

��

E1

�
i�t; 1 +

!

2

�
jtj!=2'(t) dt and ' 2 L2(��; �)

�
:

The function ' is almost everywhere determined by the formula

1

2�

d

dt

Z 1

�1

e�itv � 1

�iv
f(v)

�
jvje

i�2 sgn v
�!

2

dv =

�
'(t); t 2 (��; �);

0; t =2 (��; �):

The next theorem gives some su�cient conditions for the exponential system
to be a Riesz basis in L2(��; �).

Theorem 2. [7], [8] Let S be an entire function of sine type with zeros f�ngn2Z
such that hs(��=2) = � and infm6=n j�n � �mj > 0. Then the system of functions

fei�nxg1n=�1 is a Riesz basis in L2(��; �).

3. Main result

Let the sequence f�ng
1
�1 satis�es the conditions of Theorem 2 and '(x) =

jxj!=2E1(ix; 1 + !=2).

Theorem 3. If ! 2 (�1; 1), then the system of functions f'(x�n)g
1
�1 is a

Riesz basis in L2(��; �).

First we prove the following lemma.

Lemma. If f 2 W�(!) (! 2 (�1; 1)), f�ng
1
�1 is the sequence of zeros of a

sine type function S which satis�es the conditions of Theorem 2, then

1X
n=�1

j�nj
!jf(�n)j

2 �

Z
R

jxj! jf(x)j2 dx: (1)

Proof. Let L02(R) be the set of functions in L2(R) such that their Fourier

transformations vanish a.e. on R n [��; �]. Since S(�)
S0(�n)(���n)

is an entire function

of exponential type and S is a sine type function, then

S(�)

S0(�n)(� � �n)
2W�(!); ! 2 (�1; 1):
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From the Theorem of B. Y. Levin and V. D. Golovin [5] it follows that the system
of functions fei�nxg1�1 is a Riesz basis in L2(��; �).

Since S(�)
S0(�n)(���n)

2 L2(R) and it is an entire function of exponential type,

from the Paley-Wiener theorem it follows that there exists a function  n 2
L2(��; �) such that

1

2�

Z �

��

ei�x n(x) dx =
S(�)

S0(�n)(� � �n)
: (2)

From (2) it follows that the system of functions f(2�)�1 ng
1
�1 is biorthogonal to

the system fei�nxg1n=�1. Since the system fei�nxg1�1 is a Riesz basis in L2(��; �),
we conclude that the system f ng

1
�1 is also a Riesz basis in L2(��; �). Hence, the

system of functions f n(�x)g
1
�1 is also a Riesz basis in L2(��; �).

Now we shall prove that the system
n

S(�)
S0(�n)(���n)

o1
�1

is a Riesz basis in
L02(R).

It is enough to show ([2]) that this system is complete in L02(R) and that for
arbitrary constants C� there holds


X
�

C�
S(�)

S0(�n)(�� �n)

 �
X
�

jC� j
2: (3)

But this follows directly from the Parseval relation, (2) and the fact that the system
f n(x)g is a Riesz basis in L2(��; �).

Let f 2 W�(!). From Theorem 1 it follows that f(v)

�
jvje

i�2 sgn v
�!=2

2

L02(R),

f(x)

�
jxje

i�2 sgnx
�!

2

=
X
�

d�
S(x)

S0(��)(x � ��)
(4)

and X
�

jd� j
2 �

Z 1

�1

jxj! jf(x)j2 dx (5)

(because the system
n

S(x)
S0(�n)(x��n)

o1
�1

is a Riesz basis in L02(R)).

Since S is a sine type function, then (see [7]) jS0(�n)j > " > 0 for each
n 2 Z. Let � = infm 6=n j�n � �mj and D =

S1
�=�1f� j j� � �� j < �=3 g. The

series
P1
�1 j�� �nj

�2 converges uniformly on compact subsets of C nD (because
S(��) = 0 and the function S is of exponential type).

From the maximummodulus principle we get that the series
P1
�1

S2(x)
S02(��)(x���)2

converges uniformly on compact subsets of C. Then from (5) it follows that the se-

ries
P

� d�
S(x)

S0(��)(x���)
converges uniformly on compact subsets of C and represents

an entire function.
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The convergence in (4) is convergence in the subspace L02(R). Since the func-

tion f(x)

�
jxje

i�2 sgnx
�!=2

is continuous for x > 0 and the series
P

� d�
S(x)

S0(��)(x���)

converges uniformly on compact subsets, then from (4) it follows

f(x)

�
jxje

i�2 sgnx
�!

2

=
X
�

d�
S(x)

S0(��)(x� ��)
; x > 0: (6)

From (6), by the uniqueness theorem, we get

e
i�!
4 f(�)�

!
2 =

X
�

d�
S(�)

S0(��)(�� ��)
;

(here �
!
2 = e

!
2 ln�, ln� = ln j�j + i arg�, �� 6 arg� < �). The previous relation

gives
jd� j = jf(��)j j�� j

!=2: (7)

From (5) and (7) it follows (1).

Proof of Theorem 3. It is well known [2] that a minimal system fekg
1
�1 is a

Riesz basis in a Hilbert space H if and only if
P

k j(f; ek)j
2 � kfk2 for each f 2 H

(with (�; �) we denote the scalar product in H). Now we shall prove that the system
of functions f'(x�n)g is minimal in L2(��; �).

Really, the functions S(�)
j�nj!=2S0(�n)(���n)

are in W�(!) and by Theorem 1 there

exist functions 'n 2 L
2(��; �) such that

Z �

��

E1

�
i�t; 1 +

!

2

�
jtj

!
2 'n(t) dt =

S(�)

j�nj!=2S0(�n)(� � �n)
: (8)

From (8) it follows ('(x�m); 'n)L2(��;�) = �nm which proves the minimality of
f'(x�n)g.

Let en(x) = j�nxj
!=2E1(i�nx; 1+!=2) and h 2 L2(��; �). To prove Theorem

3 it is enough to show that X
n

j(h; en)j
2 � khk2: (9)

Since
P

n j(h; en)j
2 =

P
n j(en; h)j

2 =
P

n j�nj
!jf(�n)j

2 where

f(�) =

Z �

��

E1

�
i�t; 1 +

!

2

�
jtj

!
2 h(t) dt (2W�(!));

the relation (9) follows from the Lemma.

Notice that the basis property of f'(x�n)g (in L2(��; �)) does not follow
from the basis property of fE1(i�nx; 1+!=2)g in L

2(0; �) because E1(z1+z2;�) 6=
E1(z1;�) �E1(z2;�).
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Theorem 4. If f�ng
1
�1 is a complex sequence such that supn2Z j�n � nj =

q < 1=8 and �1 < ! < 1 � 8q, then the system f'(x�n)g
1
�1 is a Riesz basis in

L2(��; �).

Proof. Let G(�) = (�� �0)
1Q
n=1

�
1�

�

��n

��
1�

�

�n

�
. If we prove

a)
G(�)

G0(�n)(�� �n)
2 W�(!),

b) jG0(�n)j > C(1 + j�nj)
�" (C > 0 and does not depend on n and " < 1=2),

the assertion of the Theorem will follow directly by the method used in the proof
of Theorem 3.

Since q < 1=8 and �1 < ! < 1�8q we have jG(x)j 6 C1(1+jxj)
4q (C1 does not

depend on x, see [6]) and hence the function G(�)
G0(�n)(���n)

satis�es the condition a).

The function G satis�es the condition b) and in that case " = 4q (< 1=2). In the
proof we used the fact (see [6]) that if arg� = �, <� > 0, j�j > 1=2 and N is a
natural number de�ned by N � 1

2 6 j�j sec � < N + 1
2 , then

jG(�)j > C2
j�N � �je�j=�j

(1 + j��N j)(1 + j�j)4q
(10)

where the constant C2 does not depend on � and N . Let Dn = f� j j� � �nj <
� < 1� 8q g. Since for � 2 @Dn the inequality N � 1

2 6 j�j sec � < N + 1
2 holds for

N = n, applying (10) we obtain

���� G(�)�� �n

���� > C 02
e�j=�j

(1 + j�j)4q
(11)

where C 02 does not depend on � 2 @Dn and n.

From (11) by the minimum modulus principle we get jG0(�n)j > C(1+j�nj)
�4q

where the constant C does not depend on n. Similarly we prove that the last
inequality holds for n = �1, �2, . . .
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