A BASIS PROPERTY OF FAMILIES OF THE MITTAG-LEFFLER FUNCTIONS

Milutin Dostanić

Abstract. In this paper we study basis properties of the Mittag-Leffler functions $\{y(x, \lambda_k)\}$ where

$$y(x,\lambda) = |x|^{\omega/2} E_1(ix\lambda; 1 + \omega/2), \quad \omega \in (-1,1),$$

 $E_1(z;\alpha) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha+k)}$ and $\{\lambda_k\}$ is a sequence of complex numbers. In the case $\omega = 0$ this system is reduced to the exponential system.

1. Introduction

In [3] necessary and sufficient conditions for the system $\{x^{\alpha-1}E_1(i\lambda_n x; \alpha)\}$ to form an unconditional basis in $L^2(0,1)$ are obtained. The same conditions are obtained in [9] as a consequence of a more general result. These conditions are expressed in terms of the Muckenhoupt condition which should be satisfied by an entire function with zeros $\{\lambda_k\}$. Conditions that the system $\{e^{i\lambda_n x}\}$ is a Riesz basis of $L^2(-\pi, \pi)$ can also be expressed in terms of the Muckenhoupt condition [8].

These conditions are not always easy to check. In [5] some sufficient conditions that the exponential system is a Riesz basis in $L^2(-\pi,\pi)$ are given. In this paper we give some sufficient conditions that the system of the Mittag-Leffler functions is a Riesz basis in $L^2(-\pi,\pi)$.

2. Preliminaries

Given $f, g: X \to \mathbf{R}_+$ we write $f(x) \simeq g(x)$ $(x \in X)$ if there exist constants $C_1, C_2 > 0$ such that $C_1 \leq f(x)/g(x) \leq C_2$ $(x \in X)$.

DEFINITION. [1] An entire function F of exponential type is said to be of sine type if

1) the zeros of F lie in $\{z \in \mathbb{C} \mid |\Im z| \leq h\}$ for some h > 0.

2) there is $y_0 \in \mathbf{R}$ such that $|F(x + iy_0)| \approx 1$ $(x \in \mathbf{R})$ holds.

AMS Subject Classification: 30B60

Keywords and phrases: Basis property; Riesz basis; Mittag-Leffler functions Supported by Ministry of Science and technology RS, grant number 04M01

If f is an entire function of exponential type, then by $h_f(\theta)$ we denote the indicator function

$$h_f(\theta) = \lim_{r \to \infty} \frac{\ln |f(re^{i\theta})|}{r}.$$

By $W_{\pi}(\omega)$ we denote the class of entire functions of exponential type $\sigma \leq \pi$ such that $\int_{-\infty}^{\infty} |x|^{\omega} |f(x)|^2 dx < \infty$ for some $\omega \in (-1, 1)$. A characterization of this class is given by the following theorem:

THEOREM 1. [4]

$$W_{\pi}(\omega) = \left\{ f \mid f(\lambda) = \int_{-\pi}^{\pi} E_1\left(i\lambda t; 1 + \frac{\omega}{2}\right) |t|^{\omega/2} \varphi(t) \, dt \text{ and } \varphi \in L^2(-\pi, \pi) \right\}.$$

The function φ is almost everywhere determined by the formula

$$\frac{1}{2\pi} \frac{d}{dt} \int_{-\infty}^{\infty} \frac{e^{-itv} - 1}{-iv} f(v) \left(|v| e^{i\frac{\pi}{2}\operatorname{sgn} v} \right)^{\frac{\omega}{2}} dv = \begin{cases} \varphi(t); & t \in (-\pi, \pi), \\ 0; & t \notin (-\pi, \pi). \end{cases}$$

The next theorem gives some sufficient conditions for the exponential system to be a Riesz basis in $L^2(-\pi, \pi)$.

THEOREM 2. [7], [8] Let S be an entire function of sine type with zeros $\{\lambda_n\}_{n \in \mathbb{Z}}$ such that $h_s(\pm \pi/2) = \pi$ and $\inf_{m \neq n} |\lambda_n - \lambda_m| > 0$. Then the system of functions $\{e^{i\lambda_n x}\}_{n=-\infty}^{\infty}$ is a Riesz basis in $L^2(-\pi, \pi)$.

3. Main result

Let the sequence $\{\lambda_n\}_{-\infty}^{\infty}$ satisfies the conditions of Theorem 2 and $\varphi(x) = |x|^{\omega/2} E_1(ix; 1 + \omega/2).$

THEOREM 3. If $\omega \in (-1,1)$, then the system of functions $\{\varphi(x\lambda_n)\}_{-\infty}^{\infty}$ is a Riesz basis in $L^2(-\pi,\pi)$.

First we prove the following lemma.

LEMMA. If $f \in W_{\pi}(\omega)$ ($\omega \in (-1,1)$), $\{\lambda_n\}_{-\infty}^{\infty}$ is the sequence of zeros of a sine type function S which satisfies the conditions of Theorem 2, then

$$\sum_{n=-\infty}^{\infty} |\lambda_n|^{\omega} |f(\lambda_n)|^2 \asymp \int_{\mathbf{R}} |x|^{\omega} |f(x)|^2 \, dx. \tag{1}$$

Proof. Let $L_2^0(\mathbf{R})$ be the set of functions in $L^2(\mathbf{R})$ such that their Fourier transformations vanish a.e. on $\mathbf{R} \setminus [-\pi, \pi]$. Since $\frac{S(\lambda)}{S'(\lambda_n)(\lambda - \lambda_n)}$ is an entire function of exponential type and S is a sine type function, then

$$\frac{S(\lambda)}{S'(\lambda_n)(\lambda-\lambda_n)} \in W_{\pi}(\omega), \quad \omega \in (-1,1).$$

From the Theorem of B. Y. Levin and V. D. Golovin [5] it follows that the system of functions $\{e^{i\lambda_n x}\}_{-\infty}^{\infty}$ is a Riesz basis in $L^2(-\pi, \pi)$.

Since $\frac{S(\lambda)}{S'(\lambda_n)(\lambda-\lambda_n)} \in L^2(\mathbf{R})$ and it is an entire function of exponential type, from the Paley-Wiener theorem it follows that there exists a function $\psi_n \in L^2(-\pi,\pi)$ such that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\lambda x} \overline{\psi_n(x)} \, dx = \frac{S(\lambda)}{S'(\lambda_n)(\lambda - \lambda_n)}.$$
(2)

From (2) it follows that the system of functions $\{(2\pi)^{-1}\psi_n\}_{-\infty}^{\infty}$ is biorthogonal to the system $\{e^{i\lambda_n x}\}_{n=-\infty}^{\infty}$. Since the system $\{e^{i\lambda_n x}\}_{-\infty}^{\infty}$ is a Riesz basis in $L^2(-\pi,\pi)$, we conclude that the system $\{\psi_n\}_{-\infty}^{\infty}$ is also a Riesz basis in $L^2(-\pi,\pi)$. Hence, the system of functions $\{\psi_n(-x)\}_{-\infty}^{\infty}$ is also a Riesz basis in $L^2(-\pi,\pi)$.

Now we shall prove that the system $\left\{\frac{S(\lambda)}{S'(\lambda_n)(\lambda-\lambda_n)}\right\}_{-\infty}^{\infty}$ is a Riesz basis in $L_2^0(\mathbf{R})$.

It is enough to show ([2]) that this system is complete in $L_2^0(\mathbf{R})$ and that for arbitrary constants C_{ν} there holds

$$\left\|\sum_{\nu} C_{\nu} \frac{S(\lambda)}{S'(\lambda_n)(\lambda - \lambda_n)}\right\| \asymp \sum_{\nu} |C_{\nu}|^2.$$
(3)

But this follows directly from the Parseval relation, (2) and the fact that the system $\{\psi_n(x)\}\$ is a Riesz basis in $L^2(-\pi,\pi)$.

Let $f \in W_{\pi}(\omega)$. From Theorem 1 it follows that $f(v) \left(|v| e^{i \frac{\pi}{2} \operatorname{sgn} v} \right)^{\omega/2} \in L_2^0(\mathbf{R}),$

$$f(x)\left(|x|e^{i\frac{\pi}{2}\operatorname{sgn} x}\right)^{\frac{\omega}{2}} = \sum_{\nu} d_{\nu} \frac{S(x)}{S'(\lambda_{\nu})(x-\lambda_{\nu})}$$
(4)

 and

$$\sum_{\nu} |d_{\nu}|^2 \asymp \int_{-\infty}^{\infty} |x|^{\omega} |f(x)|^2 dx$$
(5)

(because the system $\left\{\frac{S(x)}{S'(\lambda_n)(x-\lambda_n)}\right\}_{-\infty}^{\infty}$ is a Riesz basis in $L_2^0(\mathbf{R})$).

Since S is a sine type function, then (see [7]) $|S'(\lambda_n)| \ge \varepsilon > 0$ for each $n \in \mathbb{Z}$. Let $\delta = \inf_{m \neq n} |\lambda_n - \lambda_m|$ and $D = \bigcup_{\nu=-\infty}^{\infty} \{\lambda \mid |\lambda - \lambda_{\nu}| < \delta/3\}$. The series $\sum_{-\infty}^{\infty} |\lambda - \lambda_n|^{-2}$ converges uniformly on compact subsets of $\mathbb{C} \setminus D$ (because $S(\lambda_{\nu}) = 0$ and the function S is of exponential type).

From the maximum modulus principle we get that the series $\sum_{-\infty}^{\infty} \frac{S^2(x)}{S'^2(\lambda_{\nu})(x-\lambda_{\nu})^2}$ converges uniformly on compact subsets of **C**. Then from (5) it follows that the series $\sum_{\nu} d_{\nu} \frac{S(x)}{S'(\lambda_{\nu})(x-\lambda_{\nu})}$ converges uniformly on compact subsets of **C** and represents an entire function.

M. Dostanić

The convergence in (4) is convergence in the subspace $L_2^0(\mathbf{R})$. Since the function $f(x)\left(|x|e^{i\frac{\pi}{2}\operatorname{sgn} x}\right)^{\omega/2}$ is continuous for x > 0 and the series $\sum_{\nu} d_{\nu} \frac{S(x)}{S'(\lambda_{\nu})(x-\lambda_{\nu})}$ converges uniformly on compact subsets, then from (4) it follows

$$f(x)\left(|x|e^{i\frac{\pi}{2}}\operatorname{sgn} x\right)^{\frac{\omega}{2}} = \sum_{\nu} d_{\nu} \frac{S(x)}{S'(\lambda_{\nu})(x-\lambda_{\nu})}, \quad x > 0.$$
(6)

From (6), by the uniqueness theorem, we get

$$e^{\frac{i\pi\omega}{4}}f(\lambda)\lambda^{\frac{\omega}{2}} = \sum_{\nu} d_{\nu}\frac{S(\lambda)}{S'(\lambda_{\nu})(\lambda - \lambda_{\nu})}$$

(here $\lambda^{\frac{\omega}{2}} = e^{\frac{\omega}{2}\ln\lambda}$, $\ln\lambda = \ln|\lambda| + i\arg\lambda$, $-\pi \leq \arg\lambda < \pi$). The previous relation gives

$$d_{\nu}| = |f(\lambda_{\nu})| \, |\lambda_{\nu}|^{\omega/2}. \tag{7}$$

From (5) and (7) it follows (1). \blacksquare

Proof of Theorem 3. It is well known [2] that a minimal system $\{e_k\}_{-\infty}^{\infty}$ is a Riesz basis in a Hilbert space H if and only if $\sum_k |(f, e_k)|^2 \simeq ||f||^2$ for each $f \in H$ (with (\cdot, \cdot) we denote the scalar product in H). Now we shall prove that the system of functions $\{\varphi(x\lambda_n)\}$ is minimal in $L^2(-\pi, \pi)$.

Really, the functions $\frac{S(\lambda)}{|\lambda_n|^{\omega/2}S'(\lambda_n)(\lambda-\lambda_n)}$ are in $W_{\pi}(\omega)$ and by Theorem 1 there exist functions $\varphi_n \in L^2(-\pi,\pi)$ such that

$$\int_{-\pi}^{\pi} E_1\left(i\lambda t; 1+\frac{\omega}{2}\right) \left|t\right|^{\frac{\omega}{2}} \varphi_n(t) \, dt = \frac{S(\lambda)}{|\lambda_n|^{\omega/2} S'(\lambda_n)(\lambda-\lambda_n)}.$$
(8)

From (8) it follows $(\varphi(x\lambda_m), \varphi_n)_{L^2(-\pi,\pi)} = \delta_{nm}$ which proves the minimality of $\{\varphi(x\lambda_n)\}$.

Let $e_n(x) = |\lambda_n x|^{\omega/2} E_1(i\lambda_n x; 1 + \omega/2)$ and $h \in L^2(-\pi, \pi)$. To prove Theorem 3 it is enough to show that

$$\sum_{n} |(h, e_n)|^2 \asymp ||h||^2.$$
(9)

Since $\sum_n |(h,e_n)|^2 = \sum_n |(e_n,h)|^2 = \sum_n |\lambda_n|^{\omega} |f(\lambda_n)|^2$ where

$$f(\lambda) = \int_{-\pi}^{\pi} E_1\left(i\lambda t; 1 + \frac{\omega}{2}\right) \left|t\right|^{\frac{\omega}{2}} \overline{h(t)} \, dt \quad (\in W_{\pi}(\omega)),$$

the relation (9) follows from the Lemma. \blacksquare

Notice that the basis property of $\{\varphi(x\lambda_n)\}$ (in $L^2(-\pi,\pi)$) does not follow from the basis property of $\{E_1(i\lambda_n x; 1+\omega/2)\}$ in $L^2(0,\pi)$ because $E_1(z_1+z_2;\alpha) \neq E_1(z_1;\alpha) \cdot E_1(z_2;\alpha)$.

80

THEOREM 4. If $\{\lambda_n\}_{-\infty}^{\infty}$ is a complex sequence such that $\sup_{n \in \mathbb{Z}} |\lambda_n - n| = q < 1/8$ and $-1 < \omega < 1 - 8q$, then the system $\{\varphi(x\lambda_n)\}_{-\infty}^{\infty}$ is a Riesz basis in $L^2(-\pi,\pi)$.

Proof. Let
$$G(\lambda) = (\lambda - \lambda_0) \prod_{n=1}^{\infty} \left(1 - \frac{\lambda}{\lambda_{-n}}\right) \left(1 - \frac{\lambda}{\lambda_n}\right)$$
. If we prove
a) $\frac{G(\lambda)}{G'(\lambda_n)(\lambda - \lambda_n)} \in W_{\pi}(\omega)$,
b) $|G'(\lambda_n)| \ge C(1 + |\lambda_n|)^{-\varepsilon}$ (C > 0 and does not depend on n and $\varepsilon < 1/2$)

the assertion of the Theorem will follow directly by the method used in the proof of Theorem 3.

Since q < 1/8 and $-1 < \omega < 1-8q$ we have $|G(x)| \leq C_1(1+|x|)^{4q}$ (C_1 does not depend on x, see [6]) and hence the function $\frac{G(\lambda)}{G'(\lambda_n)(\lambda-\lambda_n)}$ satisfies the condition a). The function G satisfies the condition b) and in that case $\varepsilon = 4q$ (< 1/2). In the proof we used the fact (see [6]) that if $\arg \lambda = \theta$, $\Re \lambda \geq 0$, $|\lambda| \geq 1/2$ and N is a natural number defined by $N - \frac{1}{2} \leq |\lambda| \sec \theta < N + \frac{1}{2}$, then

$$|G(\lambda)| \ge C_2 \frac{|\lambda_N - \lambda| e^{\pi |\Im\lambda|}}{(1+|\lambda - N|)(1+|\lambda|)^{4q}}$$
(10)

where the constant C_2 does not depend on λ and N. Let $D_n = \{\lambda \mid |\lambda - \lambda_n| < \delta < 1 - 8q\}$. Since for $\lambda \in \partial D_n$ the inequality $N - \frac{1}{2} \leq |\lambda| \sec \theta < N + \frac{1}{2}$ holds for N = n, applying (10) we obtain

$$\left|\frac{G(\lambda)}{\lambda - \lambda_n}\right| \geqslant C_2' \frac{e^{\pi \left|\Im\lambda\right|}}{(1 + |\lambda|)^{4q}} \tag{11}$$

where C'_2 does not depend on $\lambda \in \partial D_n$ and n.

From (11) by the minimum modulus principle we get $|G'(\lambda_n)| \ge C(1+|\lambda_n|)^{-4q}$ where the constant C does not depend on n. Similarly we prove that the last inequality holds for n = -1, -2, ...

REFERENCES

- S. A. Avdonin, I. Joo, Riesz bases of exponentials and sine type functions, Acta Math. Hung. 51, 1-2 (1988), 3-14
- [2] I. C. Gohberg, M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Moscow 1965.
- [3] G. M. Gubreev, A basis property of families of the Mittag-Leffler functions, Dzhrbashyan's transform and Muckenhoupt condition, Funktsional. Anal. Prilozhen., 20, 4 (1987), 71-72
- [4] M. M. Dzhrbashyan, Integral Transformation and Representation of Functions in Complex Domain, Moscow 1966.
- [5] V. E. Kaznelson, Bases of exponential functions, Funktsional. Anal. Prilozhen., 5, 1 (1971), 37-47
- [6] N. Levinson, Gap and density theorems, Colloquium publications 26, 1940
- [7] B. Ya. Levin, Entire Functions, Lectures, Moscow 1971.

M. Dostanić

[8] S. V. Hruščev, Perturbation theorem for exponential system and Muckenhoupt condition, Soviet Math. Dokl. 274, 1 (1979), 44–48

 $[\mathbf{9}]$ S. V. Hruščev, Unconditional bases in $L^2(0,a),$ Proc. Amer. Math. Soc. $\mathbf{99},\,4~(1987)$

(received 04.12.1995.)

Faculty of Mathematics, Studentski trg 16, 11000 Beograd, Yugoslavia