INCREASING SOLUTIONS OF $(r(x)y^{\cdots})^{\cdots} \equiv y_{\perp}(x)$

Julka Knezevic-Miljanovic

Abstract. We study the existence of positive, monotonic, unbounded solutions of the equation $(r(x)y^{n})^{n} \geq y/(x)$. We obtain necessary and sufficient conditions for the existence of different classes of these solutions.

Previous investigations of the equation

$$
(r(x)y^{(n)})^{(n)} = \pm yf(x,y) \tag{1. \pm 1}
$$

include that of Kusano and Naito [1], who studied $(1, -1)$ with $n = 2$, and Kreith [2], who studied $(1, \pm 1)$ with $r(x) = 1$. We consider the equation

$$
(r(x)y^{(n)})^{(n)} = yf(x) \tag{2}
$$

where $f(x)$ and $r(x)$ are positive and continuous on $[\tau,\infty)$ and $\int_{\tau}^{\infty} du/r(u) = \infty$.

DEFINITION. Denote $E_k(x, y) = y^{\alpha \alpha}$, $0 \le k \le n-1$, $E_k(x, y) = (r(x)y^{\alpha \alpha})^{\alpha \alpha \alpha}$ for $n \leq k \leq 2n$, and $E_k(x) = E_k(x, y(x))$. A solution $y(x)$ of the equation (2) is said to be of the type $2j, 0 \leq j \leq n$ if $E_k(x) > 0, 0 \leq k \leq 2j$ and $(-1)^k E_k(x) > 0$, for $2j \leq k \leq 2n$ and $\sigma \leq x < \infty$ for some $\sigma \geq \tau$. Denote also

$$
R_k(x,t) = \begin{cases} \frac{(t-x)^k}{k!}, & \text{for } 0 \leq k \leq n-1, \\ \int_x^t \frac{(u-x)^{n-1}(t-u)^{k-n}}{(n-1)!(k-n)! \, r(u)} du, & \text{for } n \leq k \leq 2n-1, \end{cases} \quad \tau \leq t, x < \infty.
$$

We observe that $R_k(x,t) > 0$ for $\tau \leq t < s < \infty$, and $(-1)^k R_k(x,t) > 0$ for $x > t$.

The following facts are known:

1) A solution of (2) which is positive on (τ, ∞) must be of the type 2j for some $j, 0 \leqslant j \leqslant n$.

2) Equation (2) has solutions of the type 2j for $j = 0$ and $j = n$ [3].

Unlike earlier work on this subject, which considered solutions satisfying the asymptotic condition $0 < \min_{x\to\infty} y(x) \mathbf{A}_{m}(x) < \infty$, we impose a stronger asymptotic condition

$$
\lim_{x \to \infty} \left| y(x) - \sum_{k=0}^{m} A_k R_k(x) \right| = 0.
$$

24 J. Knezevic-Miljanovic

THEOREM. $y(x)$ is a solution of the type 2j, $0 < j < n$, of (2) if and only if $E_{2j}(x) \perp A_{2j} \geq 0$ as $x \to \infty$. In this case there exist positive constants α , β such that

$$
\alpha R_{2j-1}(\rho, x) < y(x) < \beta R_{2j}(\rho, \tau), \qquad \rho \leqslant x < \infty,
$$

 ρ sufficiently large. Further, $y(x) \approx R_{2j}(\tau, x)$ if and only if $A_{2j} > 0$; $y(x) \approx$ $R_{2j-1}(\tau, x)$ if and only if $A_{2j} = 0$ and $E_{2j-1}(x) \uparrow A_{2j-1} > 0$, $x \to \infty$.

 \mathbf{P} , \mathbf{P} and \mathbf{P} \mathbf{P} and \mathbf{P} as follows from the definition of the solutions of type $2j$, since E_{2j} is a positive decreasing function. It follows that for sufficiently large $t, 0 \leqslant A_{2j} \leqslant E_{2j}(x) < A_{2j} + \varepsilon$. If $2j \leqslant n-1$, we can integrate these inequalities 2*j* times and obtain positive constants α , β such that

$$
\alpha R_{2j-1}(\tau, x) < y(x) < \beta R_{2j}(\tau, x)
$$

for sufficiently large t. If $2j \geq n$, we integrate $2j - n$ times obtaining $\alpha_1 R_{2j-n-1}(\tau, x) \leq r(x)y^{(n)}(x) \leq \beta_1 R_{2j-n}(\tau, x)$, then dividing by $r(x)$ and integrating n times we obtain

$$
\alpha R_{2j-1}(\tau, x) < y(x) < \beta R_{2j}(\tau_1, x).
$$

If A_{2j} is strictly positive, then the preceding argument in fact gives $\alpha R_{2j}(\tau, x)$ < $y(x) < \beta R_{2j}(\tau, x)$ and $y(x)$ is in fact asymptotically equivalent to R_{2j} . If $A_{2j} = 0$ then E_{2j-1} is bounded and increasing shows that $y(x)$ is asymptotically equivalent to $R_{2j-1}(\tau_1, x)$.

We note that a solution of (2) can be written as

$$
y(x) = E_0(x) = \sum_{k=0}^{2n-1} (-1)^k E_k(b) R_k(x, b) + \int_x^b R_{2n-1}(x, t) p(t) x(t) dt.
$$
 (3)

Formula (3) follows from the Taylor's theorem:

$$
y(x) = \sum_{k=0}^{n-1} \frac{(-1)^k (b-x)^k y^{(k)}(b)}{k!} + (-1)^k \int_t^b \frac{(t-x)^{n-1} r(t) y^{(n)}(t)}{(n-1)! r(t)} dt
$$
 (a)

$$
r(t)y^{(n)}(t) = \sum_{k=0}^{n-1} \frac{(-1)^k (b-t)^k (r(b)y^{(n)}(b))^{(k)}}{k!} + (-1)^n \int_x^b \frac{(t-n)^{n-1} p(u)y(u)}{(n-1)!} du;
$$
 (b)

if we substitute (b) into (a) and interchange the order of integration, (3) results.

REFERENCES

- [1] T. Kusano, M. Naito, Nonlinear oscilation of fourth order differential equations, Can. J. Math. 28 (1976), 840-852.
- [2] K. Kreith, Extremal solutions for a class of nonlinear differential equations, Proc. Amer. Math. Soc. 79 (1980), 415-421.
- $[3]$ J. D. Schuur, The existence of proper solutions of a second order ordinary differential equation, Proc. Amer. Math. Soc. 17 (1966), 595-597.
- [4] I. T. Kiguradze, Oscillation properties of solutions of certain ordinary differential equations, Dokl. Akad. Nauk. SSSR 144 (1962), 33-36.

(received 28.09.1995.)

Faculty of Mathematics, P.O.B. 550, 11000 Beograd, Yugoslavia