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ON PROBABILITY MEASURE GENERATED

BY SPECTRAL DENSITY ESTIMATE

Pavle Mladenovi�c

Abstract. We study the periodogram based estimate of spectral density of a strictly sta-
tionary random sequence and consider this estimate as a random function on the whole domain
of frequency. We renormalize the scale in this domain and investigate the probability measure
generated by obtained process in the space of continuous functions.

1. Introduction

In this paper we shall consider a strictly stationary real random sequence X(t),
t 2 D = f. . . ;�1; 0; 1; . . .g, with the mean EX(t) = 0 and the spectral density
f(�), � 2 [��; �]. Let (X(1); . . . ; X(N) be a sample of size N from this random
sequence. The spectral density estimate of the Grenander-Rosenblatt type is given
by

bfN (�) = Z �

��

'N (x � �)
1

2�N

���� nP
t=1

X(t)e�itx
����
2

dx;

where: 'N (x) = B�1N '(xB�1N ), x 2 [��; �]; ' : R ! R is a weight function for
which we suppose that is symetric about 0, has a bounded �rst derivative and such
that '(0) = 1,

R �
�� '(x) dx = 1 and '(x) = 0 for jxj � �. The sequence (BN ) of

real numbers is such that BN ! 0 and NBN !1 when N !1. We assume that

BN = N�", where
1

3
< " <

1

2
, and that the functions f and 'N are de�ned on the

whole real line R and 2�-periodic.

Let us de�ne the random process e�N (�) and eZN(�) as follows:
e�N (�) =p

NBN

h bfN(�BN )�E bfN(�BN )
i
; j�j � �B�1N ;

eZN(�) =p
NBN

h bfN(�BN )� f(�BN )
i
; j�j � �B�1N ;
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and let Z(�), � 2 R, be the Gaussian random process with the mean EZ(�) = 0
and the covariance function

R(�; �) = EZ(�)Z(�) = 2�f2(0)

Z 1

�1

'(x � �)['(x � �) + '(x+ �)] dx:

The cumulant spectral density of order n of the sequence X(t), t 2 D, is
de�ned as follows:

fn(�1; �2; . . . ; �n�1) =
1

(2�)n�1
P

t1;t2;...;tn�1

Sn(t1; . . . ; tn�1; 0) exp

�
�

n�1P
j=1

�jtj

�
;

where Sn(t1; . . . ; tn�1; 0) denote the n{th cumulant of the sequence X(t); t 2 D.
(The function fn is de�ned if the series on the right{hand side of (1) converges.)
Of course, the spectral density f is the cumulant spectral density of second order.

We shall also use the following denotations:

C = C[a; b]|the space of all real continuous funstions de�ned on [a; b], where
�1 < a < b < +1, with the uniform metric �(x; y) = sup

a�t�b
jx(t)� y(t)j;

C|the class of Borel sets in C;

LipH(1;1)|the class of real functions g which satisfy the condition

(8x; y) jg(x)� g(y)j � H jx� yj;

PN , QN and P|the probability measures generated by the random processese�N (�), a � � � b, eZN (�), a � � � b, and Z(�), a � � � b, respectively, on the
space (C; C).

2. Weak convergence of probability measure QN

The spectral density estimate of Grenander-Rosenblatt type have been consid-
ered in many papers. See, for example, [6] for references. A very important result
is that the spectral density estimate has asymptoticaly normal distribution [3,6]. In

the papers [4,5] the asymptotic properties of the random process e�N (�) have been
investigated. Specially, the weak convergence of the mesure PN has been proved.
Here we shall prove the following two theorems:

THEOREM 1. Let all cumulant spectral densities of the random process X(t), t 2
D, are bounded and let the spectral density function f be continuously-di�erentiable.

Then, the �nite-dimensional distributions of the random process eZN (�), � 2 R,

converge weakly to those of the Gaussian process Z(�), � 2 R.

THEOREM 2. Let the sequence X(t) be Gaussian and f 0 2 LipH(1;1). Then,

QN converges weakly to P , when N !1.
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3. Proofs

In order to prove these two theorems we need several lemmas:

LEMMA 1. Let the �rst derivative of the spectral density be bounded, i.e. kf 0k =
C < +1. Then, the following inequality is valid:

sup
������

jf(�)�E bfN(�)j � C

Z �

��

jx'N (x)j dx + o

�Z �

��

jx'N (x)j dx
�
:

Proof. Let us denote IN (x) =
1

2�N

���� NP
t=1

X(t)e�itx
����
2

. Then we have

E bfN (�)� f(�) = E

Z �

��

'N (x)IN (x+ �) dx � f(�)

=
1

2�N

Z �

��

'N (x)E

�
NP
t=1

X(t)e�it(x+�)
NP
s=1

X(s)eis(x+�)
�
dx� f(�)

=
1

2�N

Z �

��

'N (x)
NP
t=1

NP
s=1

EX(t)X(s)ei(x+�)(s�t) dx� f(�):

Using the equalities EX(t) = 0 and EX(t)X(s) =
R �
�� e

i�(t�s)f(�) d� we obtain

E bfN (�)� f(�) =
1

2�N

Z �

��

'N (x)
NP
t=1

NP
s=1

�R
��

f(u)eiu(t�s)ei(x+�)(s�t)du dx� f(�)

=

Z �

��

Z �

��

'N (x)f(u)
1

2�N

NP
t=1

NP
s=1

ei(u�x��)(t�s)du dx� f(�):

Using the equality
NP
t=1

eitx =
sin(Nx=2)

sin(x=2)
ei(N+1)x=2, we get

1

2�N

NP
t=1

NP
s=1

eix(t�s) =
1

2�N

sin2 Nx
2

sin2 x
2

= �N (x);

where �N is Fej�er's kernel and

E bfN (�)� f(�) =

Z �

��

Z �

��

'N (x)�N (x+ �� u)f(u) du dx� f(�):

Using the periodicity of the functions 'N , �N and f and the fact that the functions
'N and �N are even, we get

E bfN (�)� f(�) =

Z �

��

Z �

��

(f(�+ u)� f(�))'N (u)�N (x) dx

+

Z �

��

Z �

��

(f(�+ u)� f(�))('N (x+ u)� 'N (u))�N (x) du dx

� C

Z �

��

ju'N (u)j du+ o

�Z �

��

jx'N (x)j dx
�
:
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LEMMA 2. [4] Let X(t), t 2 D, be a stationary random sequence with the mean

EX(t) = 0, the spectral density f with kf 0k = C < +1 and the spectral density

of order four for which we have sup jf4(u1; u2; u3; u4)j = C1 < +1. For every

�; � 2 [��; �] the covariance of the random variable bfN(�) and bfN (�) is given by

cov( bfN (�); bfN (�)) = 2�

N
f(�)f(�)

Z �

��

'N (x� �)['(x � �) + 'N (x+ �)]dx

+ j�� �jO
�
ln2N

N

Z �

��

'2N (x)dx

�
+ o

�
1

N

Z �

��

'2N (x)dx

�

+O

�
ln4N

N2

Z �

��

x2'2N (x)dx

Z �

��

'2N (x)dx

�
;

when N !1, uniformly for �; � 2 [��; �].
LEMMA 3. Let the conditions of Theorem 1 be satis�ed. Then, for every � and

� the following equalities are valid:

lim
N!1

cov(e�N (�); e�N (�)) = lim
N!1

cov( eZN (�); eZN (�)) = R(�; �): (1)

Proof. The �rst of the equalities (1), as a consequence of Lemma 2, was proved

in [4]. Using the fact that BN = N�", where
1

3
< " <

1

2
, and Lemma 1 we get

sup
j�j��B�1

N

je�N (�) � eZN (�)j = sup
������

p
NBN jE bfN (�)� f(�)j

= O

�p
NBN

Z �

��

jx'N (x)j dx
�
= O

�p
NBN

Z �B�1
N

��B�1
N

BN jt'(t)j dt
�

= O(N1=2B
3=2
N ) = o(1); N !1;

and the second of the equalities (1) follows.

LEMMA 4. [1] Let all cumulant spectral densities of the random sequence X(t),

t 2 D, be bounded. For the cumulants of the random process bfN (�), �� � � � �,
the following inequality is valid:

jSN ( bfN (�1); bfN (�2); . . . ; bfN(�n))j � Kn

(NBN )n�1
:

The constant Kn does not depend on the particular choice of points �1, . . . , �n.

Proof of Theorem 1. It follows from Lemmas 1, 3 and 4 that all cumulants of

the random process eZN(�) converge to those of the process Z(�) and this completes
the proof.

LEMMA 5. [5] Let the sequence X(t), t 2 D, be Gaussian and its spectral

density f bounded. Then, there exist constants K > 0, � > 0 and " > 0 such that

the inequality Eje�N (�)� e�N (�)j� � Kj�� �j1+" holds for every N , � and �.
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LEMMA 6. Let f : R ! R be continuously-di�erentiable function and f 0 2
LipH(1;1). Then, for every �; � 2 R the following inequality is valid:

�f (�; �; u) := jf(�+ u)� f(�)� f(�+ u) + f(�)j � 2H juj � j�� �j:

Proof. From the fact that the function f is di�erentiable it follows that the
following equalities are valid:

f(�+ u)� f(�) = uf 0(�+ #1u); 0 � #1 � 1; (2)

f(�+ u)� f(�) = uf 0(�+ #2u); 0 � #2 � 1; (3)

f(�)� f(�) = (�� �)f 0(�+ #3(�� �)); 0 � #3 � 1; (4)

f(�+ u)� f(�+ u) = (�� �)f 0(�+ u+ #4(�� �)); 0 � #4 � 1: (5)

Using the fact that f 0 2 LipH(1;1) and the equalities (2){(5) we get

�f (�; �; u) = juj � jf 0(�+ #1u)� f 0(�+ #2u)j
� H juj � j�� �+ (#1 � #2)uj � H juj � j�� �j+H juj2;

�f (�; �; u) = j�� �j � jf 0(�+ #3(�� �)� f 0(�+ u+ #4(�� �))j
� H j�� �j � ju+ (#4 � #3)(� � �)j � H juj � j�� �j+H j�� �j2:

From these inequalities it follows that

�f (�; �; u) � H juj � j�� �j+minfHu2; H j�� �j2g
� H juj � j�� �j+H juj � j�� �j = 2H juj � j�� �j:

LEMMA 7. [6] For every integrable function h, with jh(x)j � H jxj and Fej�er's

kernel �N the following equality is valid:Z �

��

Z �

��

h(x)�N (x)('N (x+ z)� 'N (x)) dx dz = o

�Z �

��

jx'N (x)j dx
�
:

DEFINITION. For the (random) function �(�), � 2 � � R we de�ne the modulus
of continuity !�(�) in the following way:

!�(�) = sup
j���j<�;�;�2�

j�(�)� �(�)j:

LEMMA 8. Let f 0 2 LipH(1;1). Then, we have

!
eZN

(�) � !
e�N
(�) + !(�); (6)

where !(�) # 0 when � # 0 and the function !(�) does not depend on N .
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Proof. Since

sup
j���j<�

j eZN (�)� eZN (�)j � sup
j���j<�

je�N (�)� e�N (�)j
+ sup
j���j<�

j eZN(�) � e�N (�) � ( eZN(�) � e�N (�))j;
we obtain that !

eZN
(�) � !

e�N
(�) + !

eZN�e�N
(�). It is su�cient to prove that

!
eZN�e�N

(�) is bounded and tends to 0 when � tends to 0.

!
eZN�e�N

(�) = sup
j���j<�

p
NBN jf(�)�E bfN (�)� f(�) +E bfN(�)j

= sup
j���j<�

p
NBN

���� �R
��

(f(�+ u)� f(�)� f(�+ u) + f(�))'N (u) du

+
�R
��

�R
��

(f(�+ u)� f(�)� f(�+ u) + f(�))('N (u+ x)� 'N (u))�N (x) du dx

����
� sup
j���j<�

p
NBN jA1 +A2j:

If j�� �j � � then using Lemma 6 we get

p
NBN jA1j � 2H j�� �j

p
NBN

Z �

��

ju'N (u)j du

� 2H�N1=2B
3=2
N

Z +1

�1

jx'(x)j dx � C 0N� # 0; � # 0;

Note that the sequence C 0N = 2HN1=2B
3=2
N

R +1
�1 jx'(x)j dx, N = 1; 2; 3; . . . is boun-

ded. Using Lemmas 6 and 7 and the inequality j���j � � we obtain
p
NBN jA2j �

C 00N�, where

C 00N =
p
NBNo

�Z �

��

jx'N (x)j dx
�
= o(1); N !1::

Hence, for !(�) = � � supN (C 0N + C 00N ) the inequality (6) is valid.

Proof of Theorem 2. The sequence (QN ) is tight if and only if the following
two conditions hold [2]:

(a) For each � > 0, there exists a constant a such that

Pfj eZN(0)j > ag � �; for N � 1;

(b) For each " > 0 and � > 0, there exist a constant � 2 (0; 1) and an integer
n0, such that

Pf!
eZN

(�) � "g � �; for N � n0:
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The condition (a) follows from the fact that eZN (�) has asimptotically normal dis-
tribution, and the conditions (b) follows from Lemmas 5 and 8. Since the sequence
(QN ) is tight and Theorems 1 holds, it follows that QN converge weakly to P .
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