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CONVERGENCE OF FINITE-DIFFERENCE

SCHEMES FOR POISSON'S EQUATION WITH

BOUNDARY CONDITION OF THE THIRD KIND

Branislav Popovi�c

Abstract. In this paper we study the convergence of �nite-di�erence schemes to generalized
solutions of the third boundary-value problem for Poisson's equation on the unit square. Using
the generalized Bramble-Hilbert lemma, we obtain error estimates in discrete H1 Sobolev norm
compatible, in some cases, with the smoothness of the data.

The outline of the paper is as follows. In section 1 notational conventions are presented.
The stability theorem is proved in section 2. In section 3 we prove estimates of the energy of the
operator �h. Finally, in section 4, we derive our main results.

1. Preliminaries and notation

Consider the third boundary-value problem for Poisson's equation on the unit
square 
 = (0; 1)2:

�u = f in 
;
@u

@n
+ �u = 0 on @
 (1)

where @u
@n

= @u
@x

cos(x; n) + @u
@y

cos(y; n), n the unit outward normal to @
, and

�(x; y) is continuous function on @
 such that �(x; y) � �0 > 0; �0 = const.

We suppose that, for f 2 H0(
), our problem (1) has a unique solution in
H2(
) and, provided f 2 Hs�2(
); u 2 Hs(
) for 2 � s � 4 (see [1,4]).

Problem (1) is discretised on the uniform mesh with step-size h : 
h =
f(ih; jh) : i; j = 0; 1; 2; :::; N ;Nh = 1g. We de�ne 
h = 
 \ 
h and @
h =
@
 \ 
h. In @
h we distinguish between two kinds of meshpoints: @
2

h =
@
h n @
1

h and @
1
h = f(0; 0); (1; 0); (0; 1); (1; 1)g.

For a function U de�ned on 
h, the following notation will be used:
Uij = U(xi; yj); xi = ih; yj = jh; i; j = 1; 2; :::; N and

��
x Uij =

Uij � Ui�1;j

h
; �+

x Uij = ��
x Ui+1;j ;

��
y Uij =

Uij � Ui;j�1

h
; �+

y Uij = ��
y Ui;j+1:
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In the linear space of functions de�ned on 
h let

[U; V ] = h2
N�1X
i;j=1

UijVij +
h2

2

N�1X
i=1

(Ui0Vi0 + U0iV0i + UNiVNi + UiNViN )+

+
h2

4
(U00V00 + UN0VN0 + U0NV0N + UNNVNN )

be the scalar product and j [U ] j =
p
[U;U ] the corresponding norm. The discrete

H1 norm j [ � ] j1;h is de�ned by j [U ] j1;h =
q
j [U ] j2 + jU j21;h, where j � j1;h is the

discrete H1 seminorm:

jU j1;h =
q������

x U
���2
x
+
������

y U
���2
y
; jjU ]jx =

q
(U;U ]x; jjU ]jy =

q
(U;U ]y;

(U; V ]x = h2
NX
i=1

NX
j=0

UijVij and (U; V ]y = h2
NX
i=0

NX
j=1

UijVij :

Let Ti; T i and T i (i = 1; 2) denote the molli�ers de�ned by

T1f(x; y) =

Z 1

2

� 1

2

f(x+ th; y) dt ; T2f(x; y) =

Z 1

2

� 1

2

f(x; y + th) dt;

T 1f(0; y) = 2

Z 1

2

0

f(th; y) dt ; T 2f(x; 0) = 2

Z 1

2

0

f(x; th) dt;

T 1f(1; y) = 2

Z 0

� 1

2

f(1 + th; y) dt ; T 2f(x; 1) = 2

Z 0

� 1

2

f(x; 1 + th) dt:

We approximate problem (1) by the �nite-di�erence scheme

�hU = F in 
h; (2)

where �hU = �h;xU +�h;yU ,

�h;xU =

8><
>:

2
h
(�+

x U � �U) ; i = 0 ; j = 0; 1; 2; :::; N

�+
x�

�
x U ; i = 1; 2; :::; N � 1; j = 0; 1; 2; :::; N

� 2
h
(��

x U + �U); i = N ; j = 0; 1; 2; :::; N

;

Fij = T1T2fij ; F0j = T 1T2f0j ; (i; j = 1; 2; :::; N � 1); F00 = T 1T 2f00;

and �h;yU; FNj ; Fi0; FiN ; FN0; F0N ; FNN de�ned analogously.

2. Stability of the scheme

To begin, let us prove two lemmas.

Lemma 1. Let U; V denote mesh-functions on 
h. Then [�hU; V ] =
[U;�hV ].
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Proof. Using summation by parts it is easy to prove that

[�h;xU; V ] = �h2
N�1X
j=1

NX
i=1

��
x Uij�

�
x Vij�

�h2

2

NX
i=1

�
��
x Ui0�

�
x Vi0 +��

x UiN�
�
x ViN

�� h

N�1X
i=1

(�NiUNiVNi + �0iU0iV0i)

�h

2
(�00U00V00 + �0NU0NV0N + �N0UN0VN0 + �NNUNNVNN ) = [U;�h;xV ] :

The operator �h;y has the same property. Therefore,

[�hU; V ] = [�h;xU; V ] + [�h;yU; V ] = [U;�h;xV ] + [U;�h;yV ] = [U;�hV ] :

Lemma 2. Let U denote mesh-function on 
h. Then [�hU;U ] � �Cj[U ]j2,
where C = min f1; 2�0g.

Proof. For �xed j = 0; 1; 2; :::; N , using an inequality from [8] we get

max
�
U2
ij : 0 � i � N

	 � 2h

NX
i=1

�
��
x Uij

�2
+ U2

0j + U2
Nj :

This yields the following inequality:

h

N�1X
i=1

U2
ij +

h

2

�
U2
0j + U2

Nj

� � 2h

NX
i=1

�
��
x Uij

�2
+ U2

0j + U2
Nj :

Now let us prove that [�h;xU;U ] � �C
2 j[U ]j2: Summing by parts and using last

inequality, we obtain:

[�h;xU;U ] = �h2
N�1X
j=1

NX
i=1

�
��
x Uij

�2 � h2

2

NX
i=1

h�
��
x Ui0

�2
+
�
��
x UiN

�2i�
�h

N�1X
j=1

�
�NjU

2
Nj + �0jU

2
0j

�� h

2

�
�00U

2
00 + �0NU

2
0N + �N0U

2
N0 + �NNU

2
NN

� �
�h

N�1X
j=1

"
h

NX
i=1

�
��
x Uij

�2
+ �0U

2
Nj + �0U

2
0j

#
� h

2

"
h

NX
i=1

�
��
x Ui0

�2
+ �0U

2
00 + �0U

2
N0

#

�h

2

"
h

NX
i=1

�
��
x UiN

�2
+ �0U

2
0N + �0U

2
NN

#
� �C

2
j[U ]j2:

The inequality [�h;yU;U ] � �C
2 j[U ]j2 can be proved analogously and we easily

obtain Lemma 2.
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Theorem 1. For any f 2 Hs(
); s � 0; �nite-di�erence scheme (2) has
unique solution U . Moreover,

j[U ]j1;h �
r
2 +

1

C
j[F ]j ; (3)

where C = min f1; 2�0g.
Proof. The existence and uniqueness of solutions follow from the fact that �h

is a self-adjoint and negative de�nite operator (Lemmas 1. and 2.). Further, (using

Lemma 2.) we can prove stability in the norm j [ � ] j : j[U ]j2 � 1
C
[��hU;U ] =

1
C
[�F;U ] � 1

C
j[F ]j j[U ]j and thus j[U ]j � 1

C
j[F ]j. Summing by parts we can also

prove that [�h;xU;U ] � � 1
2 jj��

x U ]j2x; [�h;yU;U ] � � 1
2

������
y U

���2
y
, and jU j21;h �

2 [��hU;U ] : Thence and using Lemma 2. we get (3).

3. The estimates of energy norm [��hU;U ]

In this section we present three lemmas. Each of them will be used to obtain
an appropriate error estimate for scheme (2).

Lemma 3. Let U denote a mesh-function on 
h which is a solution of �nite-
di�erence scheme (2). Then

[��hU;U ] � C3

8<
:h2

N�1X
i;j=1

F 2
ij +

h3

4

"
NX
i=0

�
F 2
i0 + F 2

iN

�
+

N�1X
i=1

�
F 2
0i + F 2

Ni

�#9=; ; (4)

where C3 is a positive constant.

Proof. Using the "-inequality: jabj � "a2 + 1
4"b

2; a; b 2 R; " > 0; in the
identity [��hU;U ] = [�F;U ] as follows:

�h2
N�1X
i;j=1

FijUij � "h2
N�1X
i;j=1

U2
ij +

h2

4"

N�1X
i;j=1

F 2
ij ;

�h2

2

N�1X
i=1

Fi0Ui0 � "h

N�1X
i=1

U2
i0 +

h3

16"

N�1X
i=1

F 2
i0 and � h2

4
F00U00 � "h

4
U2
00 +

h3

16"
F 2
00

we obtain the following inequality:

[��hU;U ] � "U +
1

4"

8<
:h2

N�1X
i;j=1

F 2
ij +

h3

4

NX
i=0

�
F 2
i0 + F 2

iN

�
+
h3

4

N�1X
i=1

�
F 2
0i + F 2

Ni

�9=;
where U = U(U; h), more precisely

U = h2
N�1X
i;j=1

U2
ij + h

N�1X
i=1

�
U2
0i + U2

i0 + U2
Ni + U2

iN

�
+
h

4

�
U2
00 + U2

0N + U2
N0 + U2

NN

�
:
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It is easy to prove that U (U; h) �
�
1
C
+ 1

�0

�
[��hU;U ] ; where C = min f1; 2�0g

and � � �0 > 0: Thus we get (4) where C3 =
�
4"� 4"2

�
C�1 + �0

�1
���1

and the

value of " can be chosen so that 1 > "
�
C�1 + �0

�1
�
, the optimal choice being

" = C�0(2�0 + 2C)
�1

=

�
1 + �0

�1; �0 � 1
2 ;

3
2�0

�1; 0 < �0 <
1
2 :

Using the same technique, we can prove the following two lemmas. Their
proofs are omitted.

Lemma 4. Let U denote a mesh-function on 
h which is the solution of �nite-
di�erence scheme (2). If we substitute Fij by Fij = �+

x �1;ij + �+
y �2;ij ; (i; j =

1; 2; :::; N � 1); Fi0 = �+
x �1;i0 + �2;i0; F0i = �1;0i + �+

y �2;0i; FNi = �1;Ni +

�+
y �2;Ni; FiN = �+

x �1;iN + �2;iN ; (i = 1; 2; :::; N � 1) ; F00 = �1;00 + �2;00; F0N =
�1;0N + �2;0N ; FN0 = �1;N0 + �2;N0 and FNN = �1;NN + �2;NN then

[��hU;U ] � C4

8<
:h2

NX
j=0

NX
i=1

�
�21;ij + �22;ji

�
+ h

NX
i=1

�
�21;Ni + �21;1i + �22;iN + �22;i1

�

+h3
NX
i=0

�
�21;i0 + �21;iN + �22;0i + �22;Ni

�)
:

Lemma 5. Under the same assumptions as in Lemma 4, and de�ning �0i =
�1;1i � h

2 �1;0i; �Ni = ��1;Ni � h
2 �1;Ni; �i0 = �2;i1 � h

2�2;i0 and �iN = ��2;iN �
h
2 �2;iN ; (i = 0; 1; 2; :::; N); the following inequality holds:

[��hU;U ] � C5

8<
:h2

NX
j=0

NX
i=1

�
�21;ij + �22;ji

�
+ h

NX
i=0

�
�20i + �2Ni + �2i0 + �2iN

�9=; :

4. Convergence of the �nite-di�erence scheme

Before stating our main results we quote the following theorem which is a
variant of the well-known Dupont-Scott approximation theorem (see [2]).

Theorem 2. Let E be a bounded connected domain in R2 satisfying the cone
condition and A(u) a bounded linear functional on Hs(E) (s = fsg + �; fsg �
0 is integer and fsg < s; 0 < � � 1) such that Pfsg � Kernel (A(u)) ; where Pfsg
denotes the set of polynomials of degree � fsg: Then, for any u 2 Hs(E); jA(u)j �
CjujHs(E); where C = C(E; s) is a positive constant independent of u and
j � jHs(E) is the highest seminorm of Hs(E).

The derivations of all error estimates below are based on the above theorem.
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Theorem 3. Suppose that u 2 Hs(
); 2 � s � 4; is the solution of problem
(1) and U is the solution of the �nite-di�erence scheme (2). Then

j[U � u]j1;h � Chs�2kukHs(
) = O(hs�2):

Proof. Let us de�ne the global error as z = U � u: Then �hzij = �hUij �
�huij = Fij ��huij = 'ij : We shall consider three cases:

i) If (ih; jh) 2 
h; then

'ij = T2�
�
x

@u

@x

�
ih+

h

2
; jh

�
+ T1�

�
y

@u

@x

�
ih; jh+

h

2

�
��huij :

Using Theorem 2 and standard technique based on Theorem 2 as in [3], [5] or [9],
we obtain j'ij j � Chs�3jujHs(eij ); 2 < s � 4; where
eij = f(x; y) : ih� h � x � ih+ h; jh� h � y � jh+ hg.

ii) If (ih; jh) 2 @
2
h; for example (0; jh); then

'0j =
2

h
T2

�
@u

@x

�
h

2
; jh

�
� @u

@x
(0; jh)

�
+ T 1�

�
y

@u

@y

�
0; jh+

h

2

�
�

� 1

h2

�
u0;j+1 + u0;j�1 + 2u1;j � 2h

@u

@x
(0; jh)� 4u0j

�
:

In the same way, except that 2 < s � 3; we obtain j'0j j � Chs�3jujHs(e0j );

where e0j = f(x; y) : 0 � x � h; jh� h � y � jh+ hg :
iii) If (ih; jh) 2 @
1

h; for example (0; 0); then

'00 =
2

h
T 2

�
@u

@x

�
h

2
; 0

�
� @u

@x
(0; 0)

�
+

2

h
T 1

�
@u

@y

�
0;
h

2

�
� @u

@y
(0; 0)

�
�

� 2

h2

�
u10 � u00 � h

@u

@x
(0; 0) + u01 � u00 � h

@u

@y
(0; 0)

�

and we obtain, provided 2 < s � 3; j'00j � Chs�3jujHs(e00); where e00 =
f(x; y) : 0 � x; y � hg :

However, we can obtain j[U ]j21;h � C [�hU;U ] : Thence, using (4), we get

j[z]j21;h � C

8<
:h2

N�1X
i;j=1

'2ij +
h3

4

NX
i=0

�
'2i0 + '2iN

�
+
h3

4

N�1X
i=1

�
'20i + '2Ni

�9=; :

Now, for 2 < s � 3; it is easy to prove that j[z]j1;h � Chs�2jujHs(
): If 3 < s � 4;
then

h2
N�1X
i;j=1

'2ij � Ch2s�4juj2Hs(
): (5)
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On the other hand, if u 2 Hs(
); then u 2 H3(
) and

h3

4

"
NX
i=0

�
'2i0 + '2iN

�
+

N�1X
i=1

�
'20i + '2Ni

�# � Ch3jujH3(@h
); (6)

where @h
 is the boundary strip of width h. But, according to [7]

jujH3(@h
) � CkukHs(
) �

8><
>:

hs�3; 3 < s < 7
2p

hj lnhj; s = 7
2p

h ; 7
2 < s � 4:

(7)

Using (5), (6) and (7) we obtain j[z]j1;h � Chs�2kukHs(
) and that completes the
proof.

Theorem 4. Suppose that u 2 Hs(
); 3
2 < s � 3; is the solution of problem

(1) where � 2M
�
Hs�1(0; 1)

�
(see [6]) and U is the solution of (2). Then

j[U � u]j1;h =

8><
>:

O(hs�1) ; 3
2 < s < 5

2

O(h
p
hjlnhj); s = 5

2

O(h
p
h) ; 5

2 < s � 3:

Proof. This theorem is similar to the previous one. Therefore we begin the
proof as before. Naturally, this time we shall use Lemma 5 and thus we have to
derive the following:

i) If i = 1; 2; :::; N ; j = 1; 2; :::N � 1 and 3
2 < s � 3; then

�1;ij = T2

�
@u

@x

�
ih� h

2
; jh

��
���

x uij and j�1;ij j � Chs�2jujHs(eij );

where eij =
�
(x; y) : ih� h � x � ih; jh� h

2 � y � jh+ h
2

	
:

ii) If i = 1; 2; :::; N ; j = 0 or j = N and 3
2 < s � 2; then

�1;i0 = T 2

�
@u

@x

�
ih� h

2
; 0

��
���

x ui0; �1;iN = T 2

�
@u

@x

�
ih� h

2
; 1

��
���

x uiN

and j�1;ij j � Chs�2jujHs(eij )

where ei0 =
�
(x; y) : ih� h � x � ih; 0 � y � h

2

	
or eiN =

�
(x; y) : ih� h � x � ih; 1� h

2 � y � 1
	
:

(Analogous results can be obtained for �2:)

iii) If j = 1; 2; :::; N � 1; then �0j = T2(�0ju0j)� �0ju0j and

j�0j j � Chs�
3

2 j�ujHs�1(d0j); 1 � s � 3;

where d0j =
�
jh� h

2 ; jh+
h
2

�
: (The same results can be obtained for �Nj ; �jN

and �j0:)
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iv) If i = 0 and j = 0, then �00 = T 2(�00u00)� �00u00 and

j�00j � Chs�
3

2 j�ujHs�1(d00); 1 � s � 2;

where d00 =
�
0; h2

�
: (The same results can be obtained for �ij and �ij where

(ih; jh) 2 @
1
h:)

Thence:

h2
NX
i=1

N�1X
j=1

�
�21;ij + �22;ji

� � Ch2s�2juj2Hs(
);
3

2
< s � 3;

h2
NX
i=1

�
�21;i0 + �21;iN + �22;0i + �22;Ni

� � Ckuk2Hs(
) �

8><
>:

hs ; 3
2 < s < 5

2

h3 ln2 h; s = 5
2 ;

h3 ; 5
2 < s � 3

h

N�1X
j=1

�20j � Ch2s�2j�uj2Hs�1(0;1) ; 1 � s � 3;

h�200 � Ck�uk2Hs�1(0;1) �

8><
>:

h2s�2 ; 1 � s � 5
2

h3 ln2 h; s = 5
2

h3 ; 5
2 < s � 3

and

j�ujHs�1(0;1) � k�ukHs�1(0;1) � Ck�kM(Hs�1(0;1))kukHs�1(0;1) �
� Ck�kM(Hs�1(0;1))kukHs(
):

Now using Lemma 5, we easily complete the proof of the theorem.
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