ON LOCALLY SUBADDITIVE FUNCTIONS

Slavko Simić and Stojan Radenović

Abstract. We define locally (on $C \subset \mathbf{R}$) subadditive functions f, f; $C \to \mathbf{R}$, by

$$
f(x_1 + x_2, y_1 + y_2) \leq f(x_1, y_1) + f(x_2, y_2), \quad (x_1, y_1), (x_2, y_2) \in C,
$$

where \cup is some cone in ${\bf K}$. The purpose of the paper is to find explicit form of such functions.

A function $f: \mathbf{R} \to \mathbf{R}$ is said to be additive if it satisfies the Cauchy functional equation

$$
f(x + y) = f(x) + f(y), \quad x, y \in \mathbf{R}.
$$

Under some smoothing restrictions (measurability or Baire property) the only form of additive functions, as is well known, is that of cx .

Two-dimensional case of Cauchy equation, i.e.

$$
f(x_1+x_2,y_1+y_2)=f(x_1,y_1)+f(x_2,y_2), (x_1,y_1),(x_2,y_2)\in\mathbf{R}^2,
$$

in a similar way has the solution $f(x, y) = c_1x + c_2y$.

We define locally (on $C \subset \mathbf{R}^2$) subadditive functions $f, f: C \to \mathbf{R}$, by

$$
f(x_1 + x_2, y_1 + y_2) \leq f(x_1, y_1) + f(x_2, y_2), \quad (x_1, y_1), (x_2, y_2) \in C, \quad (1)
$$

where C is some cone in \mathbf{R}^- . A non-empty convex subset C of \mathbf{R}^- is called a cone if $\lambda C \subset C$ for all $\lambda \geq 0$. For the definition of a cone in an arbitrary vector space see [2]. We shall denote the class of all such functions on C by LS_C . In these considerations we also admit sets C which are cones without the point 0.

Our task in this paper is to "solve" functional inequality (1), i.e. to give an explicit form of $f \in LS_C$.

We begin with the following results:

PROPOSITION 1. If
$$
f_k \in LS_{C_k}
$$
, $k = 1, 2, ..., n$ then:

$$
c_1 f_1 + c_2 f_2 + \dots + c_n f_n = f \in LS_C,\tag{2}
$$

where $C = \bigcap_{k=1}^n C_k$ and c_1, c_2, \ldots, c_n are arbitrary positive constants.

Proof follows immediately from definition (1) of locally subadditive functions and the fact that intersection of any family of cones is a cone.

PROPOSITION 2. If $g(t)$ is a convex function defined for $t \in (a, b)$, then

$$
x \cdot g(y/x) = f(x, y) \in LS_C,
$$

where $C = \{(x, y) \mid a < y/x < b, x > 0 \}$ is a subset of \mathbb{R}^2 .

Proof. It is clear that C is a non-empty convex subset of \mathbb{R}^2 with $\lambda C \subset C$ for all $\lambda > 0$. From this it follows that $C + C \subset C$. Now, according to definition of a convex function $g(t)$, $t \in (a, b)$

$$
g(pr+qs) \leqslant pg(r) + qg(s) \tag{3}
$$

for each r, $s \in (a, b)$ and each p, $q \ge 0$, $p + q = 1$, and since (x_1, y_1) , $(x_2, y_2) \in C$ implies that $(x_1 + x_2, y_1 + y_2) = (x_1, y_1) + (x_2, y_2) \in C + C \subset C$, we have

$$
f(x_1 + x_2, y_1 + y_2) = (x_1 + x_2)g\left(\frac{y_1 + y_2}{x_1 + x_2}\right)
$$

= $(x_1 + x_2)g\left(\frac{x_1}{x_1 + x_2} \cdot \frac{y_1}{x_1} + \frac{x_2}{x_1 + x_2} \cdot \frac{y_2}{x_2}\right)$

$$
\leq (x_1 + x_2)\left(\frac{x_1}{x_1 + x_2}g\left(\frac{y_1}{x_1}\right) + \frac{x_2}{x_1 + x_2}g\left(\frac{y_2}{x_2}\right)\right)
$$

= $x_1g\left(\frac{y_1}{x_1}\right) + x_2g\left(\frac{y_2}{x_2}\right) = f(x_1, y_1) + f(x_2, y_2),$

i.e. $f \in LS_C$.

REMARK 1. Since $0 \notin C$, the subset C from the proposition 2 is not a cone, but this is permitted, by our previous convention.

REMARK 2. We can conclude that a system of functions $g_i(t)$, convex for $t\in (a,b),$ produces a system of subadditive functions $f_i(x,y)$ over $C\subset \mathbf{R}^*$ (denoted as $g(t) \implies f(x, y)$, so, according to proposition 1, we obtain a solution of (1) in the form

$$
f(x, y) = \sum_{i=1}^{n} c_i f_i(x, y), \quad c_i > 0, \quad (x, y) \in C.
$$

Conversely to proposition 2, we have the following

PROPOSITION 2'. If the function $f \in LS_C$, where C is the same subset of ${\bf R}^2$ as in the proposition 2 and $f(\alpha x,\alpha y) = \alpha f(x,y)$ for every $\alpha \in {\bf R}^+$, then $f(x, y) = x \cdot g(y/x)$, where $g(t)$ is a convex function.

Proof. The function $g(y) = f(1, y)$ is convex. Indeed, for $p \ge 0, q \ge 0$, $p + q = 1$:

$$
g(py_1 + qy_2) = f(1, py_1 + qy_2) = f(p + q, py_1 + qy_2) \leq f(p, py_1) + f(q, qy_2)
$$

=
$$
pf(1, py_1) + qf(1, y_2) = pg(y_1) + qg(y_2).
$$

Now, for $\alpha = 1/x$ we obtain

$$
\frac{1}{x} \cdot f(x, y) = f\left(\frac{1}{x} \cdot x, \frac{1}{x} \cdot y\right) = f\left(1, \frac{y}{x}\right) = g\left(\frac{y}{x}\right),\,
$$

i.e. $f(x, y) = xg(y/x)$. This prove the proposition.

REMARK 3. A method of obtaining the function from LS_C is following: If $\sup_{(x,y)}(f(x+a,y+b)-f(x,y))=g(a,b),$ then $g\in LS_C$, where $f: C\to \mathbf{R}$.

Proof. Since

$$
g(a_1 + b_1, a_2 + b_2) = \sup_{(x,y)} (f(x + a_1 + b_1, y + a_2 + b_2) - f(x, y))
$$

\n
$$
= \sup_{(x,y)} (f(x + a_1 + b_1, y + a_2 + b_2) - f(x + b_1, y + b_2) + f(x + b_1, y + b_2) - f(x, y))
$$

\n
$$
\leq \sup_{(x,y)} (f(x + a_1 + b_1, y + a_2 + b_2) - f(x + b_1, y + b_2)) + \sup_{(x,y)} (f(x + b_1, y + b_2) - f(x, y))
$$

\n
$$
= g(a_1, a_2) + g(b_1, b_2),
$$

then $g \in LS_C$.

Another property of subadditive functions is the following

PROPOSITION 3. If $f \in LS_C$ then

$$
f\left(\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} y_i\right) \leq \sum_{i=1}^{n} f(x_i, y_i) \text{ for } (x_i, y_i) \in C, i = 1, 2, ..., n.
$$

Proof. This is easy to prove by induction on n, since from $(x_i, y_i) \in C$, $i=$ $1, 2, \ldots, n$ it follows that

$$
\left(\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} y_i\right) = \sum_{i=1}^{n} (x_i, y_i) \in \underbrace{C + C + \dots + C}_{n}
$$
\n
$$
\subset \underbrace{C + C + \dots + C}_{n-1} \subset \dots \subset C + C \subset C. \blacksquare
$$

Propositions 2 and 3 are the source for obtaining several kinds of two-parameter inequalities. We illustrate this with some examples.

EXAMPLE 1. Since $\ln t \Rightarrow -x\ln(y/x), x, y > 0$, using proposition 3 and putting $x_i = b_i, y_i = a_i b_i, i = 1, 2, \ldots, n$, we obtain generalized arithmetic-geometric inequality

$$
\prod_{i=1}^{n} a_i^{b_i} \leqslant \left(\sum_{i=1}^{n} a_i b_i \bigg/ \sum_{i=1}^{n} b_i \right)^{\sum_{i=1}^{n} b_i}, \quad a_i, b_i > 0,
$$

i.e. putting $b_i / \sum_{i=1}^{n} b_i = p_i, i = 1$, bi ⁼ pi , ⁱ = 1; 2; ... ; n:

$$
\prod_{i=1}^{n} a_i^{p_i} \leqslant \sum_{i=1}^{n} a_i p_i, \quad p_i, a_i > 0, \ \sum_{i=1}^{n} p_i = 1.
$$

EXAMPLE 2. SINCE $t = \pm 3$ \int $-x(y/x)^r$, for $r \in (0,1)$, $x(y/x)^r$, for $r \in \mathbf{R} \setminus [0,1]$, \ldots , y putting $x_i = b_i^q$, $y_i = a_i^p$ and $r = 1/p$, $1 - r = 1/q$ in proposition 3, we obtain Hölder's inequality

$$
\sum_{i=1}^{n} a_i b_i \leqslant \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \left(\sum_{i=1}^{n} b_i^q\right)^{1/q}, \quad \frac{1}{p} + \frac{1}{q} = 1; \ p, q > 1, \text{ and}
$$
\n
$$
\sum_{i=1}^{n} a_i b_i \geqslant \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \left(\sum_{i=1}^{n} b_i^q\right)^{1/q}, \quad \frac{1}{p} + \frac{1}{q} = 1; \ p < 1, \text{ or } q < 1.
$$

EXAMPLE 3. Since $\ln \sin t \Rightarrow -x \ln \sin y/x$, using proposition 3 with $x_i = 1$, $i = 1, 2, \ldots, n$ we have

$$
\prod_{i=1}^{n} \sin y_i \leqslant \sin^n \left(\frac{1}{n} \sum_{i=1}^{n} y_i \right), \quad y_i \in (0, \pi).
$$

For the n-dimensional case of locally subadditive functions we give the following definition: A function $f \in LS_C$ if

 $f(x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n) \leqslant f(x_1, x_2, \ldots, x_n) + f(y_1, y_2, \ldots, y_n)$ (4) for each (x_1, x_2, \ldots, x_n) , $(y_1, y_2, \ldots, y_n) \in C$, where C is a cone in \mathbb{R}^n .

.Now we have the following

PROPOSITION 4. A function $g(t)$, convex for $t \in (a, b)$, produces a locally subadditive function $f(\cdot)$ on $C \subset \mathbf{R}^n$ by

$$
f(x_1,x_2,\ldots,x_n)=\left(\sum_{i=1}^n A_ix_i\right)g\left(\sum_{i=1}^n B_ix_i\bigg/\sum_{i=1}^n A_ix_i\right),
$$

where

$$
C = \left\{ (x_1, x_2, \dots, x_n) \middle| \sum_{i=1}^n A_i x_i > 0, a < \sum_{i=1}^n B_i x_i \middle/ \sum_{i=1}^n A_i x_i < b \right\},\
$$

and A_i , B_i are arbitrary constants, not all equal to zero.

Proof is similar to that of proposition 2. Since $(x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n) \in$ *C* imply that $(x_1 + y_1, x_2 + y_2, ..., x_n + y_n) \in C$, putting

$$
p = \frac{\sum\limits_{i=1}^{n} A_i x_i}{\sum\limits_{i=1}^{n} A_i (x_i + y_i)}, \quad q = \frac{\sum\limits_{i=1}^{n} A_i y_i}{\sum\limits_{i=1}^{n} A_i (x_i + y_i)}, \quad r = \frac{\sum\limits_{i=1}^{n} B_i x_i}{\sum\limits_{i=1}^{n} A_i x_i}, \quad s = \frac{\sum\limits_{i=1}^{n} B_i y_i}{\sum\limits_{i=1}^{n} A_i y_i}
$$

in (3), we obtain (4), i.e. that $f \in LS_C$.

It is obvious that propositions 1 and 3 could be easily transformed to ${\bf R}$.

Authors are indebted to Prof. D. Adamovic for help in preparing this article.

REFERENCES

[1] D. S. Mitrinovic, P. M. Vasic, Analytic Inequalities, Beograd 1970

[2] Y. Wong and Ng, K.F., Partially Ordered Topological Vector Spaces, Oxford 1973

(received 07.09.1994.)

Sto jan Radenovic, Mutapova 63, st. 1, 11000 Beograd