ON LOCALLY SUBADDITIVE FUNCTIONS

Slavko Simić and Stojan Radenović

Abstract. We define locally (on $C \subset \mathbf{R}^2$) subadditive functions $f, f: C \to \mathbf{R}$, by

$$f(x_1 + x_2, y_1 + y_2) \leqslant f(x_1, y_1) + f(x_2, y_2), \quad (x_1, y_1), (x_2, y_2) \in C$$

where C is some cone in \mathbf{R}^2 . The purpose of the paper is to find explicit form of such functions.

A function $f \colon \mathbf{R} \to \mathbf{R}$ is said to be additive if it satisfies the Cauchy functional equation

$$f(x+y) = f(x) + f(y), \quad x, y \in \mathbf{R}.$$

Under some smoothing restrictions (measurability or Baire property) the only form of additive functions, as is well known, is that of cx.

Two-dimensional case of Cauchy equation, i.e.

$$f(x_1 + x_2, y_1 + y_2) = f(x_1, y_1) + f(x_2, y_2), \quad (x_1, y_1), (x_2, y_2) \in \mathbf{R}^2,$$

in a similar way has the solution $f(x, y) = c_1 x + c_2 y$.

We define locally (on $C \subset \mathbf{R}^2$) subadditive functions $f, f: C \to \mathbf{R}$, by

$$f(x_1 + x_2, y_1 + y_2) \leqslant f(x_1, y_1) + f(x_2, y_2), \quad (x_1, y_1), (x_2, y_2) \in C, \tag{1}$$

where C is some cone in \mathbb{R}^2 . A non-empty convex subset C of \mathbb{R}^n is called a cone if $\lambda C \subset C$ for all $\lambda \ge 0$. For the definition of a cone in an arbitrary vector space see [2]. We shall denote the class of all such functions on C by LS_C . In these considerations we also admit sets C which are cones without the point 0.

Our task in this paper is to "solve" functional inequality (1), i.e. to give an explicit form of $f \in LS_C$.

We begin with the following results:

PROPOSITION 1. If $f_k \in LS_{C_k}$, k = 1, 2, ..., n then:

$$c_1 f_1 + c_2 f_2 + \dots + c_n f_n = f \in LS_C,$$
 (2)

where $C = \bigcap_{k=1}^{n} C_k$ and c_1, c_2, \ldots, c_n are arbitrary positive constants.

Proof follows immediately from definition (1) of locally subadditive functions and the fact that intersection of any family of cones is a cone.

PROPOSITION 2. If g(t) is a convex function defined for $t \in (a, b)$, then

$$x \cdot g(y/x) = f(x, y) \in LS_C,$$

where $C = \{ (x, y) \mid a < y/x < b, x > 0 \}$ is a subset of \mathbf{R}^2 .

Proof. It is clear that C is a non-empty convex subset of \mathbf{R}^2 with $\lambda C \subset C$ for all $\lambda > 0$. From this it follows that $C + C \subset C$. Now, according to definition of a convex function $g(t), t \in (a, b)$

$$g(pr+qs) \leqslant pg(r) + qg(s) \tag{3}$$

for each $r, s \in (a, b)$ and each $p, q \ge 0, p + q = 1$, and since $(x_1, y_1), (x_2, y_2) \in C$ implies that $(x_1 + x_2, y_1 + y_2) = (x_1, y_1) + (x_2, y_2) \in C + C \subset C$, we have

$$\begin{aligned} f(x_1 + x_2, y_1 + y_2) &= (x_1 + x_2)g\left(\frac{y_1 + y_2}{x_1 + x_2}\right) \\ &= (x_1 + x_2)g\left(\frac{x_1}{x_1 + x_2} \cdot \frac{y_1}{x_1} + \frac{x_2}{x_1 + x_2} \cdot \frac{y_2}{x_2}\right) \\ &\leqslant (x_1 + x_2)\left(\frac{x_1}{x_1 + x_2}g\left(\frac{y_1}{x_1}\right) + \frac{x_2}{x_1 + x_2}g\left(\frac{y_2}{x_2}\right)\right) \\ &= x_1g\left(\frac{y_1}{x_1}\right) + x_2g\left(\frac{y_2}{x_2}\right) = f(x_1, y_1) + f(x_2, y_2), \end{aligned}$$

i.e. $f \in LS_C$.

REMARK 1. Since $0 \notin C$, the subset C from the proposition 2 is not a cone, but this is permitted, by our previous convention.

REMARK 2. We can conclude that a system of functions $g_i(t)$, convex for $t \in (a, b)$, produces a system of subadditive functions $f_i(x, y)$ over $C \subset \mathbf{R}^2$ (denoted as $g(t) \rightrightarrows f(x, y)$), so, according to proposition 1, we obtain a solution of (1) in the form

$$f(x,y) = \sum_{i=1}^{n} c_i f_i(x,y), \quad c_i > 0, \quad (x,y) \in C.$$

Conversely to proposition 2, we have the following

PROPOSITION 2'. If the function $f \in LS_C$, where C is the same subset of \mathbf{R}^2 as in the proposition 2 and $f(\alpha x, \alpha y) = \alpha f(x, y)$ for every $\alpha \in \mathbf{R}^+$, then $f(x, y) = x \cdot g(y/x)$, where g(t) is a convex function.

Proof. The function g(y) = f(1, y) is convex. Indeed, for $p \ge 0, q \ge 0$, p + q = 1:

$$g(py_1 + qy_2) = f(1, py_1 + qy_2) = f(p + q, py_1 + qy_2) \leq f(p, py_1) + f(q, qy_2)$$

= $pf(1, py_1) + qf(1, y_2) = pg(y_1) + qg(y_2).$

90

Now, for $\alpha = 1/x$ we obtain

$$\frac{1}{x} \cdot f(x, y) = f\left(\frac{1}{x} \cdot x, \frac{1}{x} \cdot y\right) = f\left(1, \frac{y}{x}\right) = g\left(\frac{y}{x}\right),$$

i.e. f(x, y) = xg(y/x). This prove the proposition.

REMARK 3. A method of obtaining the function from LS_C is following: If $\sup_{(x,y)}(f(x+a,y+b)-f(x,y))=g(a,b)$, then $g\in LS_C$, where $f\colon C\to \mathbf{R}$.

Proof. Since

$$\begin{split} g(a_1 + b_1, a_2 + b_2) &= \sup_{(x,y)} \left(f(x + a_1 + b_1, y + a_2 + b_2) - f(x, y) \right) \\ &= \sup_{(x,y)} \left(f(x + a_1 + b_1, y + a_2 + b_2) - f(x + b_1, y + b_2) + f(x + b_1, y + b_2) - f(x, y) \right) \\ &\leqslant \sup_{(x,y)} \left(f(x + a_1 + b_1, y + a_2 + b_2) - f(x + b_1, y + b_2) \right) + \sup_{(x,y)} \left(f(x + b_1, y + b_2) - f(x, y) \right) \\ &= g(a_1, a_2) + g(b_1, b_2), \end{split}$$

then $g \in LS_C$.

Another property of subadditive functions is the following

PROPOSITION 3. If $f \in LS_C$ then

$$f\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} y_{i}\right) \leqslant \sum_{i=1}^{n} f(x_{i}, y_{i}) \text{ for } (x_{i}, y_{i}) \in C, i = 1, 2, \dots, n$$

Proof. This is easy to prove by induction on n, since from $(x_i, y_i) \in C$, i = $1, 2, \ldots, n$ it follows that

$$\left(\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} y_i\right) = \sum_{i=1}^{n} (x_i, y_i) \in \underbrace{C + C + \dots + C}_{n}$$
$$\subset \underbrace{C + C + \dots + C}_{n-1} \subset \dots \subset C + C \subset C. \quad \blacksquare$$

Propositions 2 and 3 are the source for obtaining several kinds of two-parameter inequalities. We illustrate this with some examples.

EXAMPLE 1. Since $\ln t \Rightarrow -x \ln(y/x)$, x, y > 0, using proposition 3 and putting $x_i = b_i, y_i = a_i b_i, i = 1, 2, \dots, n$, we obtain generalized arithmetic-geometric inequality

$$\prod_{i=1}^{n} a_i^{b_i} \leqslant \left(\sum_{i=1}^{n} a_i b_i / \sum_{i=1}^{n} b_i\right)^{\sum_{i=1}^{n} b_i}, \quad a_i, b_i > 0,$$
$$b_i / \sum_{i=1}^{n} b_i = p_i, \ i = 1, 2, \dots, n:$$

i.e. putting

$$\prod_{i=1}^{n} a_i^{p_i} \leqslant \sum_{i=1}^{n} a_i p_i, \quad p_i, a_i > 0, \ \sum_{i=1}^{n} p_i = 1$$

EXAMPLE 2. Since $t^r \Rightarrow \begin{cases} -x(y/x)^r, & \text{for } r \in (0,1), \\ x(y/x)^r, & \text{for } r \in \mathbf{R} \setminus [0,1], \end{cases}$ x, y > 0, putting $x_i = b_i^q, y_i = a_i^p$ and r = 1/p, 1 - r = 1/q in proposition 3, we obtain Hölder's inequality

$$\sum_{i=1}^{n} a_i b_i \leqslant \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \left(\sum_{i=1}^{n} b_i^q\right)^{1/q}, \quad \frac{1}{p} + \frac{1}{q} = 1; \ p, q > 1, \text{ and}$$
$$\sum_{i=1}^{n} a_i b_i \geqslant \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \left(\sum_{i=1}^{n} b_i^q\right)^{1/q}, \quad \frac{1}{p} + \frac{1}{q} = 1; \ p < 1, \text{ or } q < 1.$$

EXAMPLE 3. Since $\ln \sin t \Rightarrow -x \ln \sin y/x$, using proposition 3 with $x_i = 1$, i = 1, 2, ..., n we have

$$\prod_{i=1}^{n} \sin y_i \leqslant \sin^n \left(\frac{1}{n} \sum_{i=1}^{n} y_i \right), \quad y_i \in (0, \pi)$$

For the *n*-dimensional case of locally subadditive functions we give the following definition: A function $f \in LS_C$ if

 $f(x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \leqslant f(x_1, x_2, \dots, x_n) + f(y_1, y_2, \dots, y_n)$ (4) for each $(x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \in C$, where C is a cone in \mathbf{R}^n .

Now we have the following

PROPOSITION 4. A function g(t), convex for $t \in (a, b)$, produces a locally subadditive function $f(\cdot)$ on $C \subset \mathbf{R}^n$ by

$$f(x_1, x_2, \dots, x_n) = \left(\sum_{i=1}^n A_i x_i\right) g\left(\sum_{i=1}^n B_i x_i \middle/ \sum_{i=1}^n A_i x_i\right),$$

where

$$C = \left\{ \left(x_1, x_2, \dots, x_n \right) \middle| \sum_{i=1}^n A_i x_i > 0, a < \sum_{i=1}^n B_i x_i \middle| \sum_{i=1}^n A_i x_i < b \right\},$$

and A_i , B_i are arbitrary constants, not all equal to zero.

Proof is similar to that of proposition 2. Since $(x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n) \in C$ imply that $(x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n) \in C$, putting

$$p = \frac{\sum_{i=1}^{n} A_i x_i}{\sum_{i=1}^{n} A_i (x_i + y_i)}, \quad q = \frac{\sum_{i=1}^{n} A_i y_i}{\sum_{i=1}^{n} A_i (x_i + y_i)}, \quad r = \frac{\sum_{i=1}^{n} B_i x_i}{\sum_{i=1}^{n} A_i x_i}, \quad s = \frac{\sum_{i=1}^{n} B_i y_i}{\sum_{i=1}^{n} A_i y_i}$$

in (3), we obtain (4), i.e. that $f \in LS_C$.

It is obvious that propositions 1 and 3 could be easily transformed to \mathbf{R}^{n} .

Authors are indebted to Prof. D. Adamović for help in preparing this article.

REFERENCES

[1] D. S. Mitrinović, P. M. Vasić, Analytic Inequalities, Beograd 1970

[2] Y. Wong and Ng, K.F., Partially Ordered Topological Vector Spaces, Oxford 1973

(received 07.09.1994.)

Stojan Radenović, Mutapova 63, st. 1, 11000 Beograd