ON A SUBFAMILY OF p-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

S. R. Kulkarni, M. K. Aouf, S. B. Joshi

Abstract. Sharp results concerning coefficients, distortion theorem and the radius of convexity for the class $P_p^*(\alpha, \beta, \xi)$ are determined. Furthermore it is shown that the class $P_p^*(\alpha, \beta, \xi)$ is closed under convex linear combinations. The extreme points of $P_p^*(\alpha, \beta, \xi)$ are also determined

1. Introduction

Let S_p (p a fixed integer greater than 0) denote the class of functions of the form $f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n}$ that are holomorphic and p-valent in the unit disc |z| < 1. Also let T_p denote the subclass of S_p consisting of functions that can be expressed in the form $f(z) = z^p - \sum_{n=1}^{\infty} |a_{p+n}| z^{p+n}$. A function $f \in T_p$ is in $P_p^*(\alpha, \beta, \xi)$ if and only if

$$\left|\frac{f'(z)z^{1-p}-p}{2\xi(f'(z)z^{1-p}-\alpha)-(f'(z)z^{1-p}-p)}\right| < \beta,$$

|z| < 1, for $0 \le \alpha < p/2\xi$, $0 < \beta \le 1$, $1/2 < \xi \le 1$.

Such type of study was carried out by Aouf [1] for $P_p^*(\alpha, \beta)$. We note that $P_1^*(\alpha) = P_1^*(0, \alpha, 1)$ is precisely the class of functions in E studied by Caplinger [2]. The class $P_1^*(\alpha, 1, \beta) = P_1^*(\alpha, \beta)$ is the class of holomorphic functions discussed by Juneja-Mogra [4]. Gupta-Jain [3] studied the family of holomorphic univalent functions that have the form $f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n$ and satisfy the condition

$$\left|\frac{f'(z)-1}{f'(z)+(1-2\alpha)}\right| < \beta, \quad 0 \leqslant \alpha < 1, \quad 0 < \beta \leqslant 1.$$

Kulkarni [5] has studied above mentioned properties for the functions having Taylor series expansion of the type $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$

In this paper sharp results concerning coefficients, distortion theorem and the radius of convexity for the class $P_p^*(\alpha, \beta, \xi)$ are determined. Finally we prove that

AMS Subject Classification (1980): Primary 30C45

the class $P_p^*(\alpha,\beta,\xi)$ is closed under the arithmetic mean and convex linear combinations.

2. Coefficient Theorem

THEOREM 1. A function $f(z) = z^p - \sum_{n=1}^{\infty} |a_{p+n}| z^{p+n}$ is in $P_p^*(\alpha, \beta, \xi)$ if and only if

$$\sum_{n=1}^{\infty} (p+n)[1+\beta(2\xi-1)]|a_{p+n}| \le 2\beta\xi(p-\alpha).$$

The result is sharp, the extremal function being

$$f(z) = z^{p} - \frac{2\beta\xi(p-\alpha)}{(p+n)(2\xi-1)\beta+1}z^{p+n}.$$
 (1)

Proof. Let |z| = 1. Then

$$\begin{aligned} |f'(z)z^{1-p} - p| &- \beta |2\xi(f'(z)z^{1-p} - \alpha) - (f'(z)z^{1-p} - p)| \\ &= \left| -\sum_{n=1}^{\infty} (p+n)|a_{p+n}|z^n \right| - \beta \left| 2\xi(p-\alpha) - (2\xi - 1)\sum_{n=1}^{\infty} (p+n)|a_{p+n}|z^n \right| \\ &\leqslant \sum_{n=1}^{\infty} (p+n)[1 + (2\xi - 1)\beta]|a_{p+n}| - 2\beta\xi(p-\alpha) \leqslant 0 \end{aligned}$$

by hypothesis. Hence, by the maximum modulus theorem $f \in P_p^*(\alpha, \beta, \xi)$.

For the converse we assume that

$$\begin{aligned} \left| \frac{f'(z)z^{1-p} - p}{2\xi(f'(z)z^{1-p} - \alpha) - (f'(z)z^{1-p} - p)} \right| \\ &= \left| \frac{-\sum_{n=1}^{\infty} (p+n)|a_{p+n}|z^n}{2\xi(p-\alpha) - \sum_{n=1}^{\infty} (p+n)|a_{p+n}|(2\xi - 1)z^n} \right| < \beta. \end{aligned}$$

Since $|\Re(z)| \leq |z|$ for all z we have

$$\Re\left[\frac{\sum_{n=1}^{\infty}(p+n)|a_{p+n}|z^{n}}{2\xi(p-\alpha)-(2\xi-1)\sum_{n=1}^{\infty}(p+n)|a_{p+n}|z^{n}}\right] < \beta.$$

We select the values of z on the real axis so that $f'(z)z^{1-p}$ is real. Simplifying the denominator in the above expression and letting $z \to 1$ through real values, we obtain

$$\sum_{n=1}^{\infty} (p+n)|a_{p+n}| \leq 2\beta\xi(p-\alpha) - (2\xi-1)\beta\sum_{n=1}^{\infty} (p+n)|a_{p+n}|,$$

and it results in the required condition.

The result is sharp for the function (1). \blacksquare

3. Distortion Theorem

THEOREM 2. If $f \in P_p^*(\alpha, \beta\xi)$, then for |z| = 1,

$$r^{p} - \frac{2\beta\xi(p-\alpha)}{(p+1)[1+\beta(2\xi-1)]}r^{p+1} \le |f(z)| \le r^{p} + \frac{2\beta\xi(p-\alpha)}{(p+1)[1+\beta(2\xi-1)]}r^{p+1}, \quad (2)$$

and

$$pr^{p-1} - \frac{2\beta\xi(p-\alpha)}{1+\beta(2\xi-1)}r^p \leqslant |f'(z)| \leqslant pr^{p-1} + \frac{2\beta\xi(p-\alpha)}{1+\beta(2\xi-1)}r^p,$$
(3)

Proof. In view of theorem 1 we have

$$\sum_{n=1}^{\infty} |a_{p+n}| \leqslant \frac{2\beta\xi(p-\alpha)}{(p+1)[1+\beta(2\xi-1)]}.$$

Hence

$$|f(z)| \leq r^p + \sum_{n=1}^{\infty} |a_{p+n}| r^{p+n} \leq r^p + \frac{2\beta\xi(p-\alpha)}{(p+1)[1+\beta(2\xi-1)]} r^{p+1}$$

and $\left(\begin{array}{c} \operatorname{and} \right) \right)$

$$|f(z)| \ge r^p - \sum_{n=1}^{\infty} |a_{p+n}| r^{p+n} \ge r^p - \frac{2\beta\xi(p-\alpha)}{(p+1)[1+\beta(2\xi-1)]} r^{p+1}$$

In the same way we have

$$|f'(z)| \leq pr^{p-1} + \sum_{n=1}^{\infty} (p+n)|a_{p+n}|r^{p+n-1} \leq pr^{p-1} + \frac{2\beta\xi(p-\alpha)}{1+\beta(2\xi-1)}r^p$$

 and

$$|f'(z)| \ge pr^{p-1} - \sum_{n=1}^{\infty} (p+n)|a_{p+n}|r^{p+n-1} \ge pr^{p-1} - \frac{2\beta\xi(p-\alpha)}{1+\beta(2\xi-1)}r^p.$$

This completes the proof of the theorem. \blacksquare

The above bounds are sharp. Equalities are attended for the following function

$$f(z) = z^{p} - \frac{2\beta\xi(p-\alpha)}{(p+1)(2\xi-1)\beta+1}z^{p+1}, \quad z = \pm r.$$
 (4)

THEOREM 3. Let $f \in P - p^*(\alpha, \beta, \xi)$. Then the disc |z| < 1 is mapped onto a domain that contains the disc

$$|w| < \frac{(p+1) + \beta[(2\xi - 1) - p + 2\xi\alpha]}{(p+1)[1 + \beta(2\xi - 1)]}$$

The result is sharp with extremal function (4).

Proof. The result follows upon letting $r \to 1$ in (2).

Theorem 4. $f \in P_p^*(\alpha, \beta, \xi)$, then f is convex in the disc |z| < r = $r(p, \alpha, \beta, \xi)$, where

$$r(p,\alpha,\beta,\xi) = \inf_{n \in \mathbf{N}} \left\{ \frac{p^2 [1 + \beta(2\xi - 1)]}{(p+n)2\beta\xi(p-\alpha)} \right\}^{1/n}$$

The result is sharp, the extremal function being of the form (1).

Proof. It is enough to show that

$$\left(1 + \frac{zf''(z)}{f'(z)}\right) - p \leqslant p \quad \text{for } |z| < 1.$$

First we note that

$$\left| \left(1 + \frac{zf''(z)}{f'(z)} \right) - p \right| = \left| \frac{zf''(z) + (1-p)f'(z)}{f'(z)} \right| \leq \frac{\sum_{n=1}^{\infty} n(p+n) |a_{p+n}| |z|^n}{p - \sum_{n=1}^{\infty} (p+n) |a_{p+n}| |z|^n}.$$
hus, the result follows if

Thus, the result follows if

$$\sum_{n=1}^{\infty} n(p+n) |a_{p+n}| |z|^n \leq p \left\{ p - \sum_{n=1}^{\infty} (p+n) |a_{p+n}| |z|^n \right\},$$

or, equivalently, $\sum_{n=1}^{\infty} (\frac{p+n}{p})^2 |a_{p+n}|| z|^n \leq 1.$

But, in view of Theorem 1, we have

$$\sum_{n=1}^{\infty} (p+n)[1+\beta(2\xi-1)]|a_{p+n}| \leq 2\beta\xi(p-\alpha).$$

Thus f is convex if

$$\left(\frac{p+n}{p}\right)^2 |z|^n \leqslant \frac{(p+n)[1+\beta(2\xi-1)]}{2\beta\xi(p-\alpha)}, \quad n = 1, 2, 3, \dots,$$

i.e.

$$|z| \leqslant \left\{ \frac{p^2 [1 + \beta(2\xi - 1)]}{(p+n)2\beta\xi(p-\alpha)} \right\}^{1/n}, \quad n = 1, 2, 3, \dots,$$

which completes the proof. \blacksquare

4. Closure Theorem

Next two results respectively show that the family $P_p^*(\alpha, \beta, \xi)$ is closed under taking "arithmetic mean" and "convex linear combinations".

THEOREM 5. If $f(z) = z^p - \sum_{n=1}^{\infty} |a_{p+n}| z^{p+n}$ and $g(z) = z^p - \sum_{n=1}^{\infty} |b_{p+n}| z^{p+n}$ are in $P_p^*(\alpha, \beta, \xi)$, then $h(z) = z^p - \frac{1}{2} \sum_{n=1}^{\infty} |a_{p+n} + b_{p+n}| z^{p+n}$ is also in $P_p^*(\alpha, \beta, \xi)$.

Proof. f and g both being members of $P_p^*(\alpha, \beta, \xi)$, we have in accordance with Theorem 1

$$\sum_{n=1}^{\infty} (p+n)[1+\beta(2\xi-1)]|a_{p+n}| \le 2\beta\xi(p-\alpha)$$
(5)

and
$$\sum_{n=1}^{\infty} (p+n)[1+\beta(2\xi-1)]|b_{p+n}| \leq 2\beta\xi(p-\alpha).$$
 (6)

To show that h is a member of $P_p^*(\alpha, \beta, \xi)$ it is enough to show that

$$\frac{1}{2}\sum_{n=1}^{\infty} (p+n)[1+\beta(2\xi-1)]|a_{p+n}+b_{p+n}| \leq 2\beta\xi(p-\alpha).$$

This is exactly an immediate consequence of (5) and (6). \blacksquare

THEOREM 6. Let $f_p(z) = z^p$ and

$$f_{p+n}(z) = z^p - \frac{2\beta\xi(p-\alpha)}{(p+n)(2\xi-1)\beta+1} z^{p+n}, \quad n = 1, 2, 3, \dots$$

Then $f \in P_p^*(\alpha, \beta, \xi)$ if and only if it can be expressed in the form $f(z) = \sum_{n=0}^{\infty} \lambda_{p+n} f_{p+n}(z)$, where $\lambda_{p+n} \ge 0$ and $\sum_{n=0}^{\infty} \lambda_{p+n} = 1$.

Proof. The proof of this theorem follows along the same lines as the proof of Theorem 3.3 in Kulkarni [5]. The details are omiited. \blacksquare

COROLLARY. The extreme points of
$$P_p^*(\alpha, \beta, \xi)$$
 are the functions $f_p(z) = z^p$
and $f_{p+n}(z) = z^p - \frac{2\beta\xi(p-\alpha)}{(p+n)(2\xi-1)\beta+1}z^{p+n}$, $n = 1, 2, ...$.

REFERENCES

- M. K. Aouf, Certain classes of p-valent functions with negative coefficients II, Indian J. Pure appl. Math. 19(8), 1988, 761-767
- T. R. Caplinger, On certain classes of analytic functions, Ph.D. dissertation, University of Mississipi, 1972
- [3] V. P. Gupta, P. K. Jain, Certain classes of univalent functions with negative coefficients, Bull. Austr. Math. Soc 15, 1976, 467-473
- [4] O. P. Juneja, M. L. Mogra, Radii of convexity for certain classes of univalent analytic functions, Pacific Jour. Math. 78, 1978, 359-368
- [5] S. R. Kulkarni, Some problems connected with univalent functions, Ph.D. Thesis, Shivaji University, Kolhapur 1981, unpublished

(received 02.06.1993.)

Dept. of Mathematics, Willingdon College, Sangli - 416 415, India

- Dept. of Mathematics, Faculty of Science, University of Mansoura, Mansoura, Egypt
- Dept. of Mathematics, Walchand College of Eng., Sangli 416 415, India