TWO ESTIMATES FOR INTEGRAL MEANS OF ANALYTIC FUNCTIONS IN THE UNIT DISC

Stojan Duborija

Abstract. In this note two estimates for integral means of analytic functions in the unit disc are obtained. It is also shown that both estimates are sharp.

If f is an analytic function in the unit disc $D = \{z : |z| < 1\}$, as usual, integral mean of order p, 0 , of function f, is defined by

$$M_p(r,f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta\right)^{1/p}, \quad 0 < r < 1.$$

To prove our main result we need two Littlewood-Paley's theorems.

THEOREM 1. [2, p. 315] Let 0 . Then there exists a constant <math>C > 0 such that

$$M_{p}^{p}(r,f) \leqslant C \int_{0}^{1} (1-\rho)^{p-1} M_{p}^{p}(r\rho,f') \, d\rho, \tag{1}$$

for every f analytic in D.

Theorem 2. [2, p. 316] Let $2\leqslant p<\infty.$ There exists a constant C>0 such that

$$M_p^2(r, f) \leqslant C \int_0^1 (1 - \rho) M_p^2(r\rho, f') \, d\rho,$$
(2)

for every f analytic in D.

The following Lemma will also be needed.

LEMMA 1. [2] If 0 , then there exists a constant <math>C > 0 such that

$$\int_0^1 (1-\rho)^{p-1} (1-r\rho)^{-p} \, d\rho \leqslant C \log \frac{1}{1-r}, \quad 0 < r < 1.$$

S. Duborija

THEOREM. Let $M_p(r, f') = O((1 - r)^{-1})$. Then a) if $0 , then <math>M_p^p(r, f) = O(\log(1 - r)^{-1})$; b) if $2 \leq p < \infty$, then $M_p^2(r, f) = O(\log(1 - r)^{-1})$. Both estimates are sharp.

Note that from the same assumption $M_p(r, f') = O((1 - r)^{-1})$ two different conclusions follows:

$$M_p(r, f) = O\left(\log^{1/p} \frac{1}{1-r}\right), \quad \text{if } 0
$$M_p(r, f) = O\left(\log^{1/2} \frac{1}{1-r}\right), \quad \text{if } 2 \leq p < \infty.$$$$

Proof. a) Using (1) we find that

$$M_p^p(r, f) \leq C \int_0^1 (1-\rho)^{p-1} (1-r\rho)^{-p} \, d\rho.$$

Now a) follows by Lemma 1.

We use C to denote a positive constant not necessarily the same on any two occurrences.

b) By assumption,

$$M_p(r\rho, f') \leqslant \frac{C}{1 - r\rho}.$$
(3)

From (2) and (3) we conclude that

$$M_p^2(r, f) \leqslant C \int_0^1 (1-\rho)(1-r\rho)^{-2} d\rho.$$

Using Lemma 1 (p = 2) and (3) we find that $M_p^2(r, f) \leq C \log((1 - r)^{-1})$.

We show that both estimates are sharp in the sense that there exists f, analytic in D, such that $M_p(r, f') \leq C(1-r)^{-1}$, 0 , and

$$C^{-1}\log\frac{1}{1-r} \leqslant M_p^p(r,f) \leqslant C\log\frac{1}{1-r},$$
(4)

and that there exists g, analytic in D, such that $M_p(r, g') \leq C(1-r)^{-1}, 2 \leq p < \infty$, and

$$C^{-1}\log\frac{1}{1-r} \leqslant M_p^2(r,f) \leqslant C\log\frac{1}{1-r}.$$
 (5)

We show that the functions f and g defined by $f(z) = (1-z)^{-1/p}$ and $g(z) = \sum_{n=0}^{\infty} z^{2^n}$ satisfy conditions mentioned above. Using Lemma [1, p. 65] we find that

$$M_p(r, f') \leqslant C \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{dt}{|1 - re^{it}|^{p+1}}\right)^{1/p} \leqslant \frac{C}{1 - r}.$$

64

On the other hand, $M_p^p(r,f) = (2\pi)^{-1} \int_0^{2\pi} dt/|1 - re^{it}|$. It is easily seen that there exists a constant C > 0 so that

$$C^{-1}\log\frac{1}{1-r} \le \int_0^{2\pi} \frac{dt}{|1-re^{it}|} \le C\log\frac{1}{1-r}$$

Hence, we obtain (4).

Using inequality $M_p(r,g') \leqslant M_{\infty}(r,g')$, where $M_{\infty}(r,g') = \sup_{0 \leqslant t \leqslant 2\pi} |g'(re^{it})|$, we find that

$$M_p(r, g') \leqslant \sum_{n=0}^{\infty} 2^n r^{2^n - 1} \leqslant C \frac{1}{1 - r}$$

(for the last inequality see [1, p. 66]). In [2, p. 316] it is proved that (5) is valid.

This completes the proof of the Theorem. \blacksquare

REFERENCES

[1] P. Duran, Theory of H^p spaces, Academic Press, New York 1970.

[2] A. Zygmund, Trigonometric Series, Volume III, University Press, Cambridge 1959.

(received 07.04.1989, in revised form 23.12.1994.)

University of Montenegro, Faculty of Mathematical and Physical Science, 81000 Podgorica, P.O.Box 211, Yugoslavia