NEARLY pT_i-CONTINUOUS MAPPINGS

Milena Jelic

Abstract. Some generalizations of T_i -pairwise continuous functions and similar generalizations of pairwise T_i -spaces, for $i = 1, 2, 3$ are introduced and their relationship with the concept of T_i -pairwise continuity is studied.

In a bitopological space $X = (X, \tau_1, \tau_2)$ a cover U of X is pairwise open if $U \subset \tau_1 \cup \tau_2$ and if furthermore U contains a non-empty member of τ_1 and a nonempty member of τ_2 [1]. A pairwise open cover is called pT_1 -open. A pairwise **1. Introduction**
In a bitopological space $X = (X, \tau_1, \tau_2)$ a cover U of X is pairwise open if
 $U \subset \tau_1 \cup \tau_2$ and if furthermore U contains a non-empty member of τ_1 and a non-
empty member of τ_2 [1]. A pai τ_i -int $(X \setminus U) \neq \emptyset$, for $i = 1$ or $i = 2$. A pairwise open cover W of a bitopological open cover \mathcal{U} of a bitopological space X is said to be pT_2 -open if for each $U \in \mathcal{U}$, τ_i -int $(X \setminus U) \neq \emptyset$, for $i = 1$ or $i = 2$. A pairwise open cover \mathcal{W} of a bitopological space X is called pT_3 -o sets V_1 and V_2 such that $V_1, V_2 \neq \emptyset$, $V_1 \subset \tau_i$ -cl $V_1 \subset V_2 \subset X \setminus W$, for $i \neq j$ and i , $j = 1, 2$ [3]. A function f from a bitopological space X into a bitopological space Y is called T_i -pairwise continuous if for every pT_i -open cover V of Y there exists space X is called pT_3 -open if for each $W \in W$ whenever $W \in \tau_i$, there exist τ_j -open
sets V_1 and V_2 such that V_1 , $V_2 \neq \emptyset$, $V_1 \subset \tau_i$ -cl $V_1 \subset V_2 \subset X \setminus W$, for $i \neq j$ and i ,
 $j = 1, 2$ [3]. A function space X is called p_1 ₃-open if for each $W \in W$ whenever $W \in \gamma_i$, there exist γ_j -open
sets V_1 and V_2 such that V_1 , $V_2 \neq \emptyset$, $V_1 \subset \tau_i$ -cl $V_1 \subset V_2 \subset X \setminus W$, for $i \neq j$ and i ,
 $j = 1, 2$ [3]. A functio will be denoted by PT_1 , PT_2 and PR_0 respectively [9,11]. $f(W) \subset V$, where $k \in \{1, 2\}$ and $i \in \{1, 2, 3\}$ [3]. Pairwise T_1 , T_2 and R_0 axioms
will be denoted by PT_1 , PT_2 and PR_0 respectively [9,11].
2. Some new bitopological axioms
DEFINITION 2.1. A bitopologi

2. Some new bitopological axioms

DEFINITION 2.1. A bitopological space X is mPT_1 if for every pair of distinct $cl{y} = \emptyset$ [5].

A bitopological space X is $MNPT_1$ if for every pair of distinct points x and y in X there exists a τ_1 -open set or a τ_2 -open set containing x but not y [6].

A bitopological space X is wPT_1 if for each pair of distinct points there is a τ_1 -open set containing one of the points but not the other and a τ_2 -open set containing the second point but not the first $[10]$.

Keywords and phrases: Nearly PT_i -spaces, $PT(i, k)$ -spaces, nearly pT_i -continuous mappings AMS Subject Classification (1980): 54E55

This research was supported by Science Fund of Serbia, grant number 0401A, through Matematicki Institut

DEFINITION 2.2. A bitopological space X is said to be a nearly PT_i -space (briefly nPT_i -space), $i \in \{1,2,3\}$, if for each point $x \in X$ and a τ_k -open neighbourhood V of x, $k \in \{1, 2\}$, there exists a pT_i -open cover U of X such that $St(x, \mathcal{U}) \subset V$.

It is easy to verify that every PT_i -space is nPT_i , but the converse is not true in general, as it follows from

EXAMPLE 1. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}\}\$ and $\tau_2 = \{X, \emptyset, \{b, c\}\}\$. Then X is nPT_1 but not $MNPT_1$. Hence it does not satisfy any of the axioms wPT_1 , mPT_1 or PT_1 . Also X is nPT_2 but not wPT_2 .

EXAMPLE 2. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a, c\}, \{b, a\}, \{a\}\}\$ and $\tau_2 =$ $\{\emptyset, X, \{b, c\}\}\$. Then X is $MNPT_1$ but not nPT_1 .

The following diagram of implications holds and none of these implications is reversible.

$$
mPT_1 \longrightarrow wPT_1 \longrightarrow MNPT_1
$$

\n
$$
\uparrow
$$

\n
$$
PT_1 \longrightarrow nPT_1
$$

 m is equal to a set of \mathbb{F}_1 is independent from any of MITITI \mathbb{F}_1 , we rid and me \mathbb{F}_1 .

PROPOSITION 2.3. Every PR_0 space is nPT_1 .

Proof. Let $x \in X$ and let U be a τ_i -open neighbourhood of x where $i \in \{1,2\}$. $PT_1 \longrightarrow nPT_1$
he axiom nPT_1 is independent from any of $MNPT_1$, wPT_1 and mPT_1 .
sition 2.3. Every PR_0 space is nPT_1 .
Let $x \in X$ and let U be a τ_i -open neighbourhood of x where $i \in \{1, 2\}$. Since X is PR₀, then nPT_1 is independent from any of $M NPT_1$, wPT_1 and mPT_1 .

PROPOSITION 2.3. Every PR₀ space is nPT_1 .

Proof. Let $x \in X$ and let U be a τ_i -open neighbourhood of x where $i \in \{1, 2\}$.

Sin $cl\{x\}$ is a pT₁-open cover of the bitopological space X and $St(x, U) = U$. Therefore X is an nPT_1 space.

Remark 1. The converse of Proposition 2.3 is not true in general, which follows from

EXAMPLE 3. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{c\}, \{b, c\}\}, \text{ and } \tau_2 =$ $\{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}\$. Then X is nPT_1 but not a PR_0 space. follows from
EXAMPLE 3. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{c\}, \{b, c\}\}$, and $\tau_2 = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$. Then X is nPT_1 but not a PR_0 space.
DEFINITION 2.4. A bitopological space X is said to be a $PT(i, k)$ spac

DEFINITION 2.4. A bitopological space X is said to be a $PT(i, k)$ space, EXAMPLE 3. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{c\}, \{b, c\}\}$, and $\{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$. Then X is nPT_1 but not a PR_0 space.
DEFINITION 2.4. A bitopological space X is said to be a $PT(i, i, k \in \{1, 2, 3\})$, if for

It is easy to prove that the following diagram holds:

$$
PT(3,3) \longrightarrow PT(2,3) \longrightarrow PT(1,3)
$$
\n
$$
\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow
$$
\n
$$
PT(3,2) \longrightarrow PT(2,2) \longrightarrow PT(1,2)
$$
\n
$$
\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow
$$
\n
$$
PT(3,1) \longrightarrow PT(2,1) \longrightarrow PT(1,1)
$$
\n
$$
\uparrow \qquad \qquad \uparrow
$$
\n
$$
nPT_3 \longrightarrow nPT_2 \longrightarrow nPT_1
$$

The following example shows that any of P $($ i; k) axioms does not imply $(x - 1)$ The following exar $j \in \{1, 2, 3\}$.

EXAMPLE 4. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}, \{a, c\}\}\$ and $\tau_2 = \{X, \emptyset, \{b, c\}\}.$ T is T is T \rightarrow $(9, 1)$ but not not T_1 .

3. Nearly pT_i -continuous mappings

In the following properties, corollaries, examples and definition, $i \in \{1, 2, 3\}$ Then X is $PT(3, 1)$ but
3.
3.
In the following pr
and $k \in \{1, 2\}$.

DEFINITION 3.1. A mapping $f: (X, \tau_1, \tau_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ is said to be nearly pT_i -continuous at a point $x \in X$ if for every pT_i -open cover U of Y there exists a τ_k -open neighbourhood $V \subset X$ of x such that $f(V) \subset St(f(x), {\mathcal U}).$

A mapping f is nearly pT_i -continuous if it is nearly pT_i -continuous at each point of X. It is evident that every T_i -pairwise continuous mapping is nearly pT_i continuous, but the converse is not necessarily true in general, as the following example shows.

EXAMPLE 5. Let $X = \{a, b, c, d\}, \tau_1 = \{\emptyset, X, \{a, d\}, \{a\}, \{b, c\}, \{a, b, c\},\$ $\{b, c, d\}, \tau_2 = \{\emptyset, X, \{a\}, \{d\}, \{a, d\}, \{a, c\}, \{a, c, d\}, \{a, b, d\}\}\$ and $Y = \{1, 2, 3\},\$ $\mathcal{U}_1 = \{\emptyset, Y, \{1,3\}\}, \mathcal{U}_2 = \{\emptyset, Y, \{2,3\}\}.$ Define $f: X \to Y$ as follows: $f(a) = 2$, $f(b)=3=f (c)$ and $f(d) = 1$. Then f is nearly pT_1 -continuous but not T_1 -pairwise continuous.

PROPOSITION 3.2. Let a bitopological space $(Y, \mathcal{U}_1, \mathcal{U}_2)$ be nPT_i and let $f: X \to$ T be a nearly pT_i -continuous mapping from a bitopological space (X, t_1, t_2) . Then ^f is ^p-continuous. SITION 3.2. Let a bitopological space $(Y, \mathcal{U}_1, \mathcal{U}_2)$ be nPT_i and let $f: X \to \mathcal{U}_y$ pT_i -continuous mapping from a bitopological space (X, τ_1, τ_2) . Then nuous.
Let $V \in \mathcal{U}_k$ be a neighbourhood of $f(x) \in Y$. S

Proof. Let $V \in \mathcal{U}_k$ be a neighbourhood of $f(x) \in Y$. Since Y is nPT_i , there exists a pT_i-open cover U of Y such that $St(f(x), U) \subset V$. Since f is nearly pT_i -continuous, there exists a τ_k -open neighbourhood U of x such that $f(U) \subset$ $St(f(x),\mathcal{U}) \subset V$. Thus f is p-continuous.

REMARK 2. A p-continuous mapping $f: X \to Y$, where Y is an nPT_i space, need not be nearly pT_i -continuous, which follows from

EXAMPLE 6. Let $X = \{1, 2, 3\}, \tau_1 = \{\emptyset, X, \{1\}, \{1, 2\}, \{1, 3\}\}, \tau_2 = \{\emptyset, X, \{3\},\tau_3 = \{\emptyset, \{1, 3\}\}\}$ $\{2,3\}\}\$ and $Y = \{a,b,c\}, \mathcal{U}_1 = \{\emptyset, Y, \{a\}\}, \mathcal{U}_2 = \{\emptyset, Y, \{b,c\}\}.$ Define the mapping $f: X \to Y$ as follows: $f(1) = a, f(2) = c$ and $f(3) = b$. Then Y is nPT_1 , f is p-continuous but not nearly pT_1 -continuous.

COROLLARY 1. a) Let Y be a PR_0 space and let $f: X \rightarrow Y$ be a nearly pT_1 -continuous mapping. Then f is p-continuous.

b) Let Y be a PT_i space and let $f: X \to Y$ be a nearly pT_i-continuous mapping. Then ^f is ^p-continuous.

COROLLARY 2. a) Let Y be an nPT_i space and let $f: X \to Y$ be a T_i -pairwise continuous mapping. Then ^f is p-continuous.

b) Let Y be a PT_i space and $f: X \to Y$ be a T_i-pairwise continuous mapping. Then ^f is ^p-continuous.

M. Jelić

PROPOSITION 3.3. Let Y be a $PT(i, k)$ bitopological space, for $i, k \in \{1, 2, 3\}$ and let $f: X \to Y$ be a nearly p T_i -continuous mapping. Then f is T_k -pairwise continuous.

Proof. Let X be a bitopological space and let $f: X \to Y$ be nearly pT_i continuous. Let U be a pT_k -open cover of Y and let $x \in X$. Since Y is $PT(i,k)$, and let $f: X \to Y$ be a nearly pT_i -continuous mapping. Then f is T_k -pairwise
continuous.
Proof. Let X be a bitopological space and let $f: X \to Y$ be nearly pT_i -
continuous. Let U be a pT_k -open cover of Y and l is nearly pT_i -continuous, there is a τ_i -open neighbourhood $W \subset X$ of x such that *Proof.* Let X be a bitopological space and let $f: X \to Y$ be nearly p continuous. Let U be a pT_k -open cover of Y and let $x \in X$. Since Y is $PT(i)$, there exists a pT_i -open cover V of Y and $U \in U$ such that $St(f(x), V) \subset U$

REMARK 3. Let $f: X \to Y$ be a nearly pT_3 -continuous mapping and let X be a p-connected space. Then Y need not be p-connected $[8]$.

The last Remark is true even if (X, τ_1) and (X, τ_2) are connected spaces, which follows from

EXAMPLE 7. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}, \{a, b\}\}, \tau_2 = \{\emptyset, X, \{b\}\}\$ and $Y = \{1, 2, 3\}, \; \mathcal{U}_1 = \{\emptyset, Y, \{2\}\}, \; \mathcal{U}_2 = \{\emptyset, Y, \{3\}, \{1, 3\}\}.$ Define $f: X \to Y$ by $f(b) = 1$ and $f(a) = f(c) = 3$. Then f is nearly pT_3 -continuous, X is p-connected, (X, τ_1) and (X, τ_2) are connected, but Y is not p-connected.

REMARK 4. Let $f: (X, \tau_1, \tau_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a nearly pT_i -continuous mapping onto a $PT(i, 3)$ space Y and let (X, τ_k) be connected. Then Y is p-connected. The proof follows from Theorem 4.4 in [3] and Proposition 3.3.

REFERENCES

- [1] P. Flether, H. B. Hoyle and C. W. Patty, The comparison of topologies, Duke Math. J. 36, $2(1969), 325 - 331$
- [2] K. R. Gentry and H. B. Hoyle, T_i -continuous functions and separation axioms, Glasnik mat. 17 (37) (1982), 139-145
- [3] M. Jelic, Ti -pairwise continuous functions and bitopological separation axioms, Mat. vesnik 41, 3 (1989) , 155-159
- [4] C. J. Kelly, *Bitopological spaces*, Proc. London Math. Soc. 13 (1963), 71-89
- [5] M. Mršević, On bitopological separation axioms, Mat. vesnik 38 (1986), 313-318
- [6] M. G. Murdeshwar and S. A. Naimpally, *Quasi-uniform topological spaces*, Nordhoff, Groningen 1966.
- $[7]$ J. W. Pervin, Connectedness in bitopological spaces, Indag. Math. 29 (1967), 369-372
- [8] M. Przemski, Nearly T_i -continuous functions and some separation axioms, Glasnik mat. 21 (41) (1986) , $431-435$
- [9] I. L. Reilly, On bitopological separation properties, Nanta Math. 5 (1972), 14-25
- [10] J. M. Saegrove, Pairwise complete regularity and compactification in bitopological spaces, J. London Math. Soc. 2 (7) (1971), 286-290
- [11] M. K. Singal and A. R. Singal, Some more separation axioms in bitopological spaces, Ann. Soc. Sci. Bruxelles 84 II (1970), 207-230

(received 08.11.1993.)

Poljoprivredni fakultet, University of Belgrade, 11080 Beograd