NEARLY pT_i-CONTINUOUS MAPPINGS

Milena Jelić

Abstract. Some generalizations of T_i -pairwise continuous functions and similar generalizations of pairwise T_i -spaces, for i = 1, 2, 3 are introduced and their relationship with the concept of T_i -pairwise continuity is studied.

1. Introduction

In a bitopological space $X = (X, \tau_1, \tau_2)$ a cover \mathcal{U} of X is pairwise open if $\mathcal{U} \subset \tau_1 \cup \tau_2$ and if furthermore \mathcal{U} contains a non-empty member of τ_1 and a nonempty member of τ_2 [1]. A pairwise open cover is called pT_1 -open. A pairwise open cover \mathcal{U} of a bitopological space X is said to be pT_2 -open if for each $U \in \mathcal{U}$, τ_i -int $(X \setminus U) \neq \emptyset$, for i = 1 or i = 2. A pairwise open cover \mathcal{W} of a bitopological space X is called pT_3 -open if for each $W \in \mathcal{W}$ whenever $W \in \tau_i$, there exist τ_j -open sets V_1 and V_2 such that $V_1, V_2 \neq \emptyset, V_1 \subset \tau_i$ -cl $V_1 \subset V_2 \subset X \setminus W$, for $i \neq j$ and i, j = 1, 2 [3]. A function f from a bitopological space X into a bitopological space Y is called T_i -pairwise continuous if for every pT_i -open cover \mathcal{V} of Y there exists a τ_k -open cover \mathcal{W} of X such that for every $W \in \mathcal{W}$ there is a $V \in \mathcal{V}$ such that $f(W) \subset V$, where $k \in \{1, 2\}$ and $i \in \{1, 2, 3\}$ [3]. Pairwise T_1, T_2 and R_0 axioms will be denoted by PT_1, PT_2 and PR_0 respectively [9,11].

2. Some new bitopological axioms

DEFINITION 2.1. A bitopological space X is mPT_1 if for every pair of distinct points x and y in X the following holds: τ_1 -cl{x} $\cap \tau_2$ -cl{y} = \emptyset or τ_2 -cl{x} $\cap \tau_1$ cl{y} = \emptyset [5].

A bitopological space X is $MNPT_1$ if for every pair of distinct points x and y in X there exists a τ_1 -open set or a τ_2 -open set containing x but not y [6].

A bitopological space X is wPT_1 if for each pair of distinct points there is a τ_1 -open set containing one of the points but not the other and a τ_2 -open set containing the second point but not the first [10].

Keywords and phrases: Nearly PT_i -spaces, PT(i, k)-spaces, nearly pT_i -continuous mappings AMS Subject Classification (1980): 54E55

This research was supported by Science Fund of Serbia, grant number 0401A, through Matematički Institut

DEFINITION 2.2. A bitopological space X is said to be a nearly PT_i -space (briefly nPT_i -space), $i \in \{1, 2, 3\}$, if for each point $x \in X$ and a τ_k -open neighbourhood V of $x, k \in \{1, 2\}$, there exists a pT_i -open cover \mathcal{U} of X such that $St(x, \mathcal{U}) \subset V$.

It is easy to verify that every PT_i -space is nPT_i , but the converse is not true in general, as it follows from

EXAMPLE 1. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{X, \emptyset, \{b, c\}\}$. Then X is nPT_1 but not $MNPT_1$. Hence it does not satisfy any of the axioms wPT_1 , mPT_1 or PT_1 . Also X is nPT_2 but not wPT_2 .

EXAMPLE 2. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a, c\}, \{b, a\}, \{a\}\}$ and $\tau_2 = \{\emptyset, X, \{b, c\}\}$. Then X is $MNPT_1$ but not nPT_1 .

The following diagram of implications holds and none of these implications is reversible.

Moreover, the axiom nPT_1 is independent from any of $MNPT_1$, wPT_1 and mPT_1 .

PROPOSITION 2.3. Every PR_0 space is nPT_1 .

Proof. Let $x \in X$ and let U be a τ_i -open neighbourhood of x where $i \in \{1, 2\}$. Since X is PR_0 , then τ_j -cl $\{x\} \subset U$, for $i \neq j$ and $j \in \{1, 2\}$. Then $\mathcal{U} = \{U, X \setminus \tau_j$ -cl $\{x\}$ is a pT_1 -open cover of the bitopological space X and $St(x, \mathcal{U}) = U$. Therefore X is an nPT_1 space.

REMARK 1. The converse of Proposition 2.3 is not true in general, which follows from

EXAMPLE 3. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{c\}, \{b, c\}\},$ and $\tau_2 = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$. Then X is nPT_1 but not a PR_0 space.

DEFINITION 2.4. A bitopological space X is said to be a PT(i, k) space, $i, k \in \{1, 2, 3\}$, if for every $x \in X$ and every pT_k -open cover \mathcal{U} of X there exists a pT_i -open cover \mathcal{V} of X and a $U \in \mathcal{U}$ such that $St(x, \mathcal{V}) \subset \mathcal{U}$.

It is easy to prove that the following diagram holds:

The following example shows that any of PT(i, k) axioms does not imply nPT_j , $j \in \{1, 2, 3\}$.

EXAMPLE 4. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}, \{a, c\}\}$ and $\tau_2 = \{X, \emptyset, \{b, c\}\}$. Then X is PT(3, 1) but not nPT_1 .

3. Nearly pT_i -continuous mappings

In the following properties, corollaries, examples and definition, $i \in \{1, 2, 3\}$ and $k \in \{1, 2\}$.

DEFINITION 3.1. A mapping $f: (X, \tau_1, \tau_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ is said to be *nearly* pT_i -continuous at a point $x \in X$ if for every pT_i -open cover \mathcal{U} of Y there exists a τ_k -open neighbourhood $V \subset X$ of x such that $f(V) \subset St(f(x), \mathcal{U})$.

A mapping f is nearly pT_i -continuous if it is nearly pT_i -continuous at each point of X. It is evident that every T_i -pairwise continuous mapping is nearly pT_i -continuous, but the converse is not necessarily true in general, as the following example shows.

EXAMPLE 5. Let $X = \{a, b, c, d\}, \tau_1 = \{\emptyset, X, \{a, d\}, \{a\}, \{d\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}, \tau_2 = \{\emptyset, X, \{a\}, \{d\}, \{a, d\}, \{a, c\}, \{a, c, d\}, \{a, b, d\}\} \text{ and } Y = \{1, 2, 3\}, U_1 = \{\emptyset, Y, \{1, 3\}\}, U_2 = \{\emptyset, Y, \{2, 3\}\}.$ Define $f: X \to Y$ as follows: f(a) = 2, f(b) = 3 = f(c) and f(d) = 1. Then f is nearly pT_1 -continuous but not T_1 -pairwise continuous.

PROPOSITION 3.2. Let a bitopological space $(Y, \mathcal{U}_1, \mathcal{U}_2)$ be nPT_i and let $f: X \to Y$ be a nearly pT_i -continuous mapping from a bitopological space (X, τ_1, τ_2) . Then f is p-continuous.

Proof. Let $V \in \mathcal{U}_k$ be a neighbourhood of $f(x) \in Y$. Since Y is nPT_i , there exists a pT_i -open cover \mathcal{U} of Y such that $St(f(x),\mathcal{U}) \subset V$. Since f is nearly pT_i -continuous, there exists a τ_k -open neighbourhood U of x such that $f(U) \subset St(f(x),\mathcal{U}) \subset V$. Thus f is p-continuous.

REMARK 2. A *p*-continuous mapping $f: X \to Y$, where Y is an nPT_i space, need not be nearly pT_i -continuous, which follows from

EXAMPLE 6. Let $X = \{1, 2, 3\}, \tau_1 = \{\emptyset, X, \{1\}, \{1, 2\}, \{1, 3\}\}, \tau_2 = \{\emptyset, X, \{3\}, \{2, 3\}\}$ and $Y = \{a, b, c\}, U_1 = \{\emptyset, Y, \{a\}\}, U_2 = \{\emptyset, Y, \{b, c\}\}$. Define the mapping $f: X \to Y$ as follows: f(1) = a, f(2) = c and f(3) = b. Then Y is nPT_1, f is p-continuous but not nearly pT_1 -continuous.

COROLLARY 1. a) Let Y be a PR_0 space and let $f: X \to Y$ be a nearly pT_1 -continuous mapping. Then f is p-continuous.

b) Let Y be a PT_i space and let $f: X \to Y$ be a nearly pT_i -continuous mapping. Then f is p-continuous.

COROLLARY 2. a) Let Y be an nPT_i space and let $f: X \to Y$ be a T_i -pairwise continuous mapping. Then f is p-continuous.

b) Let Y be a PT_i space and $f: X \to Y$ be a T_i -pairwise continuous mapping. Then f is p-continuous.

M. Jelić

PROPOSITION 3.3. Let Y be a PT(i,k) bitopological space, for $i, k \in \{1,2,3\}$ and let $f: X \to Y$ be a nearly pT_i -continuous mapping. Then f is T_k -pairwise continuous.

Proof. Let X be a bitopological space and let $f: X \to Y$ be nearly pT_i continuous. Let \mathcal{U} be a pT_k -open cover of Y and let $x \in X$. Since Y is PT(i, k), there exists a pT_i -open cover \mathcal{V} of Y and $U \in \mathcal{U}$ such that $St(f(x), \mathcal{V}) \subset U$. Since f is nearly pT_i -continuous, there is a τ_j -open neighbourhood $W \subset X$ of x such that $f(W) \subset St(f(x), \mathcal{V}) \subset U$, for $j \in \{1, 2\}$. Thus f is T_k -pairwise continuous.

REMARK 3. Let $f: X \to Y$ be a nearly pT_3 -continuous mapping and let X be a p-connected space. Then Y need not be p-connected [8].

The last Remark is true even if (X, τ_1) and (X, τ_2) are connected spaces, which follows from

EXAMPLE 7. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}, \{a, b\}\}, \tau_2 = \{\emptyset, X, \{b\}\}$ and $Y = \{1, 2, 3\}, U_1 = \{\emptyset, Y, \{2\}\}, U_2 = \{\emptyset, Y, \{3\}, \{1, 3\}\}$. Define $f: X \to Y$ by f(b) = 1 and f(a) = f(c) = 3. Then f is nearly pT_3 -continuous, X is p-connected, (X, τ_1) and (X, τ_2) are connected, but Y is not p-connected.

REMARK 4. Let $f: (X, \tau_1, \tau_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a nearly pT_i -continuous mapping onto a PT(i, 3) space Y and let (X, τ_k) be connected. Then Y is p-connected. The proof follows from Theorem 4.4 in [3] and Proposition 3.3.

REFERENCES

- P. Flether, H. B. Hoyle and C. W. Patty, The comparison of topologies, Duke Math. J. 36, 2 (1969), 325-331
- [2] K. R. Gentry and H. B. Hoyle, T_i-continuous functions and separation axioms, Glasnik mat. 17 (37) (1982), 139-145
- [3] M. Jelić, T_i -pairwise continuous functions and bitopological separation axioms, Mat. vesnik **41**, 3 (1989), 155–159
- [4] C. J. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89
- [5] M. Mršević, On bitopological separation axioms, Mat. vesnik 38 (1986), 313-318
- [6] M. G. Murdeshwar and S. A. Naimpally, *Quasi-uniform topological spaces*, Nordhoff, Groningen 1966.
- [7] J. W. Pervin, Connectedness in bitopological spaces, Indag. Math. 29 (1967), 369-372
- $[\mathbf{8}]$ M. Przemski, Nearly $T_i\text{-}continuous$ functions and some separation axioms, Glasnik mat. $\mathbf{21}$ (41) (1986), 431–435
- [9] I. L. Reilly, On bitopological separation properties, Nanta Math. 5 (1972), 14-25
- [10] J. M. Saegrove, Pairwise complete regularity and compactification in bitopological spaces, J. London Math. Soc. 2 (7) (1971), 286-290
- [11] M. K. Singal and A. R. Singal, Some more separation axioms in bitopological spaces, Ann. Soc. Sci. Bruxelles 84 II (1970), 207–230

(received 08.11.1993.)

Poljoprivredni fakultet, University of Belgrade, 11080 Beograd