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A NOTE ON A SUPPORT OF A LINEAR MAPPING

Lj. �Cuki�c

Abstract. In this note a notion of the support of a linear mapping from Cb(T ) into a locally
convex space is introduced. Some of its properties are established.

Introduction

If E is a locally convex space and P � E0 is a weakly-�-bounded set, then P is
equicontinuous i� the linear mapping f from E into the Banach space Cb(P ), de-
�ned by f(e)(p) = p(e) (p 2 P , e 2 E) is continuous. For the case E = (Cb(T ); �t),
as we will see, some information concerning the continuity of the mapping f is
provided by its support.

Preliminaries

All topological spaces considered here are assumed to be completely regular
Hausdor�. If T is such a spce, then Cb(T ) (resp. C(T )) denotes the space of
bounded (resp. all) real-valued continuous functions on T . �T is the Stone-�Cech
compacti�cation of T . For each x 2 Cb(T ) its continuous extension to �T is denoted
by x� . If x 2 C(�T ) and if A � �T , then xjA denotes the restriction of x to A.
clX A is the closure of A � X .

We denote by k k supremum norm on Cb(T ), and by B the unit ball fx 2
Cb(T ) : kxk 6 1 g. M(T ) is the Banach space dual to (Cb(T ); k k). If H � Cb(T )
(or if H � M(T )), then H+ denotes the set fh 2 H : h > 0 g. For such H , if
h 2 H , then h+ = supfh; 0g, h� = supf�h; 0g, jhj = h+ + h�.

Let tco be the compact-open topology on Cb(T ), i.e. tco is the locally convex
topology on Cb(T ) de�ned by the family of seminorms p

K
(x) = supf jx(t)j : t 2

K g, K runs through the compact subsets of T . Then, the strict topology �t on
Cb(T ) is the �nest locally convex topology on Cb(T ) coinciding with tco on the
unit ball B ([2],[6]). From de�nition of �t immediately follows that if f is a linear
mapping from Cb(T ) into an LCS (a locally convex Hausdor� space) then f is �t-
continuous i� its restriction f jB is tco - continuous. Mt(T ) denotes the continuous
dual of (Cb(T ); �t).
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Results

A well-known theorem of Nachbin (see [5], III.1.2) says that if F � C(T ) is
absolutely convex and if "B � F for some " > 0, then there is a minimal compact
set K � �T with the property: if x 2 C(T ) and if x� jK = 0, then x 2 F . We
prove the following variant of Nachbin's theorm.

Theorem 1. If F 6= f0g is a non-empty norm-closed absolutely convex subset
of Cb(T ), then there is a minimal compact set S(F ) � �T with the property: if
x 2 Cb(T ) and if x� jS(F ) = 0, then x 2 F .

Proof. Let L = fL � �T : L is compact such that (8x 2 Cb(T ))x
� jL = 0 )

x 2 F g and letMK = fx 2 Cb(T ) : there exists an open G � K with x� jG = 0 g,
for compact K � �T . Then: (1) L 2 L i� ML � F ; (2) if L1, L2 2 L, then
L1 \ L2 2 L; (3) S(F ) =

T
fL : L 2 Lg. Proofs of (2) and (3) are the same

as in [5], pp. 63{64. One half of (1) is trivial. To obtain the other half, suppose
that ML � F and x 2 Cb(T ), x

� jL = 0. Let yn(t) = x�(t) if jx�(t)j < 1=n and
yn(t) = x�(t)=(njx�(t)j) if jx�(t)j > 1=n. Then yn 2 C(�T ) and (x� � yn)jGn = 0,
for Gn = f t 2 �T : jx�(t)j < 1=n g. From L � Gn it follows that (x� � yn)jT 2 F
for each n = 1; 2; . . . . Then x 2 F , because F is closed and kynjTk 6 1=n.

Remark 2. If F is as in theorem 1 and if F is norm-bounded, then S(F ) = �T .
In fact, if t 2 �T n S(F ), then there is x 2 Cb(T ) with x�(t) = 1, x� jS(F ) = 0.
Hence nx 2 F , because nx� jS(F ) = 0 (n = 1, 2, . . . ), i.e. F is not norm-bounded.

Definition 3. Let f 6= 0 be a norm-continuous linear mapping from Cb(T )
into an LCS E. The big support of f is bsupp f = S(f�1(0)) and the support of f
is supp f = bsupp f \ T .

Remark 4. If f is a norm-continuous linear functional on Cb(T ), then f
can be identi�ed, via Alexandro� representation theorem ([6], 5.1) with the unique
Baire measure � on the minimal algebra which contains all zero sets from T . It is
not di�cult to see that supp f and supp� coincide.

In the light of the preceeding remark, next result is not new, but we give a
proof which is independent from the measure theory.

Proposition 5. Let f 2M+(T ) and f 6= 0. Then:

(a) If x 2 C+

b (T ) and f(x) = 0, then x� j bsupp f = 0.

(b) The space bsupp f with the induced topology satis�es the countable chain
condition.

Proof. (a) Let x�(s) > 0 for some s 2 bsupp f . Then there exist an open set
G � �T and r > 0 with x�(t) > r for all t 2 G. We will prove that bsupp f is
contained in �T nG, which is impossible because s 2 bsupp f \G. Let y 2 Cb(T ),
y�j�T n G = 0 and kyk < k. From x�(t) > r(y�)�(t)=k for all t 2 �T and from
non-negativity of f it follows that f(y�) = 0. Then f(y) = f(y+) � f(y�) = 0.
Hence bsupp f � �T nG, by the minimality of bsupp.
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(b) Let S = bsupp f and let the functional g0 on C
+

b (S) be de�ned by g0(x) =

f(�x), where �x is any non-negative continuous extension of x 2 C+

b (S) on �T . The
functional g0 is well-de�ned because each two such extensions coincide on S. It is
trivial to see that g0 is a non-negative additive functional, and by [1, Chap.II, x2,
Prop.2] there is a non-negative linear functional g on Cb(S) that extends g0. By
[4, V.5.5], g 2M+(S).

Let fG� : � 2 A g be a family of non-empty pairwise disjoint open subsets of
S and let t� 2 G�. Then there are x� 2 C+

b (S), x� 6 1, such that x�(t�) = 1 and
x�jS nG� = 0. From 0 6

P
�
x� 6 1 on S it follows that 0 6

P
�
g(x�) 6 g(1) for

all �nite � � A. Then the set f� 2 A : g(x�) > g(1)=n g is �nite for each n 2 N.
Countability of A then follows from the inequality g(x�) > 0 (by (a)).

Theorem 6. Let E be a metrizable LCS, let (Un) be its neighborhood basis
of origin consisting of absolutely convex sets with 2Un+1 � Un, and let f 6= 0 be
a norm-continuous linear mapping from Cb(T ) into E. Then f is �t-continuous
if and only if there are compact sets Ln � T (n 2 N) with the property that
f(x) 2 Un, whenever x 2 B+ and xjLn = 0. Moreover, Ln's may be chosen such
that supp f = clT (

S1
n=1 Ln).

Proof. =) The restriction f jB is tco-continuous. Then there are an increasing
sequence of compact sets Kn � T and a decreasing sequence "n of positive numbers
with the property: if x 2 B and p

Kn

(x) < "n, then f(x) 2 Un. We will �rst prove

that
S1
n=1Kn \ bsupp f 6= ;. Suppose the contrary. Then, there are xn 2 B+

such that xnjKn = 0, xnj bsupp f = 1. There is u 2 B such that f(u) 6= 0. From
(uxn)

� jKn = 0, (uxn)
� j bsupp f = u� j bsupp f it follows that f(u) = f(uxn) 2 Un

for all n, which is in contradiction with f(u) 6= 0.

Hence, there is k 2 N such that Kn \ bsupp f is non-empty for all n > k. Let
Ln = Kn+k \ bsupp f , �n = "n+k and let x 2 B+, xjLn = 0. If Kn+k � Gn = f t 2
�T : x�(t) < �n g then f(x) 2 Un+k � Un. If Kn+k 6� Gn, then from Ln � Gn it
follows that there is y 2 B+ with y� jKn+k \ (T nGn) = 0, y�j bsupp f = 1. Since
Kn+k = (Ln [ (Kn+k n (T n Gn))) [ (Kn+k \ (Gn n Ln)), then p

Kn+k

(xy) < �n.

From this and from the fact that x� and (xy)� coincide on bsupp f it follows that
f(x) = f(xy) 2 Un+k � Un.

For the equality supp f = clT (
S1
n=1 Ln), only inclusion bsupp f �

cl�T (
S1
n=1 Ln) needs a proof. If z 2 Cb(T ) and z�j cl�T (

S1
n=1 Ln) = 0, then

(z�=kzk) 2 B+ and (z�=kzk)jLn = 0. It follows that f(z�) 2 kzkUn for all n, i.e.
f(z) = 0. By the minimality of bsupp f , the proof is �nished.

(= Since f is norm-continuous, we may choose positive numbers an < 1 so
that 4f(anB) � Un+1 for each n. We will show that f(Vn \ B) � Un, where Vn is
the set fx 2 Cb(T ) : p

Ln+2
(x) < an g. Let x 2 Vn \ B and let

y+(t) =

�
x+(t); if x+(t) < an,

an; if x+(t) > an,
y�(t) =

�
x�(t); if x�(t) < an,

an; if x�(t) > an.

Then x� � y� 2 B+, y� 2 anB, (x
� � y�)jLn+2 = 0, and so f(x� � y�) 2 Un+2

and 4f(y�) 2 Un+1. From this it follows that f(x) = f(x+) � f(x�) = (f(x+ �
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y+)+ f(y+))� (f(x�� y�)+ f(y�)) 2 2Un+2+
1

2
Un+1 � Un, which completes the

proof of the theorem.

Remark 7. If E is a non-metrizable LCS, then supp f need not be the closure
of a �-compact subset of T , as the following example shows. Let T be the discrete
space, cardT = c. Then T is a realcomplete ([3,11.D.(a)]) metrizable space. By
[5,III.3.5 and III.4.3] E = (C(T ); tco) is a bornological barrellled complete LCS.
The inclusion mapping i from Cb(T ) into E is �t-continuous and from remark 2 it
follows that supp i = T . Each compact subset of T is �nite, hence clT (

S1
n=1 Ln) =S1

n=1 Ln 6= T for all compact Ln's.

Remark 8. In the proof of theorem 6 we showed also that clT
S1
n=1 Ln is

dense in bsupp f . Hence, supp f is dense in bsupp f .

The next lemma is well-known and we omit the proof.

Lemma 9. Let fn 2 M+
t (T ), kfnk 6 1 and let f =

P1

n=1 2
�nfn. Then

f 2M+
t (T ), kfk 6 1 and supp f = clT (

S1
n=1 supp fn).

Theorem 10. Let f 6= 0 be a weakly continuous linear mapping from
(Cb(T ); �t) into an LCS E. Then:

(a) If F � E0 is weakly-�-dense in E0, then supp f = clT (
S
w2F supp(wf)).

(b) supp f is dense in bsupp f .

(c) If E0 is weakly-�-separable, then there is � 2 M+
t (T ), k�k 6 1 such that

supp f = supp�.

(d) If E0 is weakly-�-separable, then supp f satis�es the countable chain con-
dition.

Proof. (a) From f�1(0) � (wf)�1(0) and the theorem 1 it follows that
bsupp(wf) � bsupp f for each w 2 F . On the other hand, if
x� j cl�T (

S
w2F supp(wf)) = 0, then by the remark 8, x� j bsupp(wf) = 0. This

gives that wf(x) = 0 for all w 2 F . Hence f(x) = 0. From the theorem 1 it follows
that bsupp f � cl�T (

S
w2F supp(wf)).

(b) Immediately follows from (a).

(c) Let fwn : n 2 N g be weakly-�-dense in E0. Then supp f =
clT (
S1
n=1 supp(wnf)), by (a). If � =

P
n2N1

2�n(jwnf j=kwnfk), where N1 = fn :

wnf 6= 0 g, then � 2M+
t (T ) and supp f = supp�, by the lemma 9.

(d) From (b) and (c) it follows that supp f is dense in bsupp�. Then, by the
proposition 5, from [3, 2.J.(d)] it follows that supp f satis�es the countable chain
condition.

Remark 11. Assertions in (c), (d) are not true if we omit the separability
condition, even if E is a Banach space. For example, let T be the compact space
�N nN and let f be the identity mapping on (C(T ); k k). Then supp f = T , but
T does not satisfy the countable chain condition [3, 3.6.Example 2].

Applications of our results will be given in a subsequent paper.
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