MATEMATIČKI VESNIK MATEMATИЧКИ ВЕСНИК 77, 4 (2025), 302–308 December 2025 research paper оригинални научни рад DOI: 10.57016/MV-HGLA1043 # ON $gr\text{-}C\text{-}2^A$ -SECONDARY SUBMODULES ### Thikrayat Alwardat, Khaldoun Al-Zoubi and Mohammed Al-Dolat **Abstract**. Let Ω be a group with identity e, Γ be a Ω -graded commutative ring and \Im a graded Γ -module. In this article, we introduce the concept of gr-C- 2^A -secondary submodules and investigate some properties of this new class of graded submodules. A non-zero graded submodule S of \Im is said to be a gr-C- 2^A -secondary submodule if whenever $r, s \in h(\Gamma)$, L is a graded submodule of \Im , and $rs S \subseteq L$, then either $r S \subseteq L$ or $s S \subseteq L$ or $rs \in Gr(Ann_{\Gamma}(S))$. # 1. Introduction In this article we assume that Γ is a commutative Ω -graded ring with identity and \Im is a unitary graded Γ -module. Let Ω be a group with identity e and Γ a commutative ring with identity 1_{Γ} . Then Γ is an Ω -graded ring if there exist additive subgroups Γ_g of Γ such that $\Gamma = \bigoplus_{g \in \Omega} \Gamma_g$ and $\Gamma_g \Gamma_g \Gamma_g \Gamma_g$ for all $g, h \in \Omega$. Furthermore, $h(\Gamma) = \bigcup_{g \in \Omega} \Gamma_g$, (see [13]). A left Γ -module \Im is called Ω -graded Γ -module if there exists a family of additive subgroups $\{\Im_{\alpha}\}_{\alpha\in\Omega}$ of \Im such that $\Im=\bigoplus_{\alpha\in\Omega}\Im_{\alpha}$ and $\Gamma_{\alpha}\Im_{\beta}\subseteq\Im_{\alpha\beta}$ for all $\alpha,\beta\in\Omega$. Even if an element of \Im belongs to $\cup_{\alpha\in\Omega}\Im_{\alpha}=h(\Im)$, it is called homogeneous. We refer to [9,11-13] for basic properties and more information about graded rings and graded modules. By $L\leq_{\Omega}\Im$ we mean that L is a Ω -graded submodule of \Im . Let Γ be a Ω -graded ring, \Im a graded Γ -module and S a graded submodule of \Im . Then $(S :_{\Gamma} \Im)$ is defined as $(S :_{\Gamma} \Im) = \{a \in \Gamma | a \Im \subseteq S\}$. The annihilator of \Im is defined as $(0 :_{\Gamma} \Im)$ and is denoted by $Ann_{\Gamma}(\Im)$. Let Γ be an Ω -graded ring. The graded radical of a graded ideal L, denoted by Gr(L), is the set of all $t = \sum_{\alpha \in \Omega} t_{\alpha} \in \Gamma$, so that for every $\alpha \in \Omega$ there exists $n_{\alpha} > 0$ with $t_{\alpha}^{n_{\alpha}} \in L$, (see [15]). A proper graded submodule S of \Im is called a completely graded irreducible if $S = \cap_{\alpha \in \Delta} S_{\alpha}$, where $\{S_{\alpha}\}_{\alpha \in \Delta}$ is a family of graded submodules of \Im , then $S = S_{\beta}$ for some $\beta \in \Delta$. The study of graded rings and modules has long attracted the attention of many researchers, as they have important applications in many fields such as geometry and $2020\ Mathematics\ Subject\ Classification:\ 13A02,\ 16W50$ Keywords and phrases: Graded classical 2-absorbing secondary submodules; graded 2-absorbing submodules; graded 2-absorbing primary submodules. physics. For example, graded Lie algebra plays an important role in differential geometry, such as the Frolicher-Nijenhuis and Nijenhuis-Richardson brackets (see [10]). In addition, they solve many physical problems related to supermanifolds, supersymmetries and quantizations of systems with symmetry (see [8, 17]). The notion of graded 2-absorbing ideals was introduced and studied in [1]. Al-Zoubi and Abu-Dawwas in [3] extended graded 2-absorbing ideals to graded 2-absorbing submodules. In [2], the authors introduced the concept of the graded 2-absorbing primary ideal, which is a generalization of the graded primary ideal. The notion of graded 2-absorbing primary submodules as a generalization of graded 2-absorbing primary ideals was introduced and studied in [7]. In [4,16], the authors introduced the dual notion of graded 2-absorbing submodules (i.e. graded 2-absorbing (resp., graded strongly 2-absorbing) second submodules) of 3 and investigated some properties of these classes of graded modules. In this paper, we introduce the concept of graded classical 2-absorbing secondary submodules as a dual notion of graded 2-absorbing primary submodules. We investigate the basic properties and characteristics of graded classical 2-absorbing secondary submodules. #### 2. Results DEFINITION 2.1. Let Γ be a Ω -graded ring and \Im a graded Γ -module. A non-zero graded submodule S of \Im is said to be graded classical 2-absorbing secondary (Abbreviated, $gr\text{-}C\text{-}2^A$ -secondary) submodule of \Im if whenever $r, s \in h(\Gamma), L \leq_{\Omega} \Im$, and $rs S \subseteq L$, then $r S \subseteq L$ or $s S \subseteq L$ or $rs \in Gr(Ann_{\Gamma}(S))$. We say that \Im is a $gr\text{-}C\text{-}2^A$ -secondary module if \Im is a $gr\text{-}C\text{-}2^A$ -secondary sub- module of itself. THEOREM 2.2. Let S be a $gr\text{-}C\text{-}2^A$ -secondary submodule of \Im , let $I = \bigoplus_{\alpha \in \Omega} I_\alpha$ and $J = \bigoplus_{\alpha \in \Omega} J_\alpha$ be a graded ideals of Γ . Then for every $\alpha, \beta \in \Omega$ and $L \leq_\Omega \Im$, with $I_\alpha J_\beta S \subseteq L$ either $I_\alpha S \subseteq L$ or $J_\beta S \subseteq L$ or $I_\alpha J_\beta \subseteq Gr(Ann_\Gamma(S))$. *Proof.* Let $\alpha, \beta \in \Omega$ such that $I_{\alpha}J_{\beta}S \subseteq L$ for some $L \leq_{\Omega} \Im$. Assume that $I_{\alpha}J_{\beta} \nsubseteq$ $Gr(Ann_{\Gamma}(S))$. Then there exist $r_{\alpha} \in I_{\alpha}$ and $s_{\beta} \in J_{\beta}$ such that $r_{\alpha}s_{\beta} \notin Gr(Ann_{\Gamma}(S))$. Now since $r_{\alpha}s_{\beta}S \subseteq L$, we get $r_{\alpha}S \subseteq L$ or $s_{\beta}S \subseteq L$. We show that either $I_{\alpha}S \subseteq L$ or $J_{\beta}S \subseteq L$. On contrary, we suppose that $I_{\alpha}S \nsubseteq L$ and $J_{\beta}S \nsubseteq L$. Then there exist $r'_{\alpha} \in I_{\alpha}$ and $s'_{\beta} \in J_{\beta}$ such that $r'_{\alpha}S \nsubseteq L$ and $s'_{\beta}S \nsubseteq L$. Since $r'_{\alpha}s'_{\beta}S \subseteq L$ and S be a $gr\text{-}C\text{-}2^A$ -secondary submodule of \Im , $r'_{\alpha}s'_{\beta} \in Gr(Ann_{\Gamma}(S))$. We have three cases: Case I: Suppose that $r_{\alpha}S \subseteq L$ but $s_{\beta}S \nsubseteq L$. Since $r'_{\alpha}s_{\beta}S \subseteq L$ and $s_{\beta}S \nsubseteq L$ and $r'_{\alpha}S \nsubseteq L$, this implies $r'_{\alpha}s_{\beta} \in Gr(Ann_{\Gamma}(S))$. Since $r_{\alpha}S \subseteq L$ and $r'_{\alpha}S \nsubseteq L$, we get $(r_{\alpha}+r'_{\alpha})S \nsubseteq L$. As $(r_{\alpha}+r'_{\alpha})s_{\beta}S \subseteq L$ and $s_{\beta}S \nsubseteq L$, then $(r_{\alpha}+r'_{\alpha})S \nsubseteq L$ implies $(r_{\alpha}+r'_{\alpha})s_{\beta} \in Gr(Ann_{\Gamma}(S))$. Since $r'_{\alpha}s_{\beta} \in Gr(Ann_{\Gamma}(S))$, we get $r_{\alpha}s_{\beta} \in Gr(Ann_{\Gamma}(S))$, a contradiction. Case II: Suppose $s_{\beta} S \subseteq L$ but $r_{\alpha} S \not\subseteq L$. Then similar to the Case I, we get a contradiction. Case III: Suppose $r_{\alpha} S \subseteq L$ and $s_{\beta} S \subseteq L$. Now $s_{\beta} S \subseteq L$ and $s'_{\beta} S \not\subseteq L$ imply $(s_{\beta} + s'_{\beta}) S \not\subseteq L$. Since $r'_{\alpha}(s_{\beta} + s'_{\beta}) S \subseteq L$ and $(s_{\beta} + s'_{\beta}) S \not\subseteq L$ and $r'_{\alpha} S \not\subseteq L$, we get $r'_{\alpha}(s_{\beta} + s'_{\beta}) \in Gr(Ann_{\Gamma}(S))$. Now as $r'_{\alpha}s'_{\beta} \in Gr(Ann_{\Gamma}(S))$, we get $r'_{\alpha}s_{\beta} \in Gr(Ann_{\Gamma}(S))$. Again $r_{\alpha} S \subseteq L$ and $r'_{\alpha} S \not\subseteq L$ imply $(r_{\alpha} + r'_{\alpha}) S \not\subseteq L$. Since $(r_{\alpha} + r'_{\alpha})s'_{\beta} S \subseteq L$ and $(r_{\alpha} + r'_{\alpha}) S \not\subseteq L$ and $s'_{\beta} S \not\subseteq L$, we have $(r_{\alpha} + r'_{\alpha})s'_{\beta} \in Gr(Ann_{\Gamma}(S))$. Since $r'_{\alpha}s'_{\beta} \in Gr(Ann_{\Gamma}(S))$, we get $r'_{\alpha}s'_{\beta} \in Gr(Ann_{\Gamma}(S))$. Since $(r_{\alpha} + r'_{\alpha})(s_{\beta} + s'_{\beta}) S \subseteq L$ and $(r_{\alpha} + r'_{\alpha}) S \not\subseteq L$ and $(s_{\beta} + s'_{\beta}) S \not\subseteq L$, we get $(r_{\alpha} + r'_{\alpha})(s_{\beta} + s'_{\beta}) \in Gr(Ann_{\Gamma}(S))$. Since $r'_{\alpha}s'_{\beta}, r''_{\alpha}s'_{\beta}, r''_{\alpha}s'_{\beta} \in Gr(Ann_{\Gamma}(S))$, we have $r'_{\alpha}s_{\beta} \in Gr(Ann_{\Gamma}(S))$, a contradiction. Thus $I_{\alpha}S \subseteq L$ or $I_{\beta}S \subseteq L$. THEOREM 2.3. Let S be a gr-C-2^A-secondary submodule of \Im , then for each $a, b \in h(\Gamma)$ we have abS = aS or abS = bS or $ab \in Gr(Ann_{\Gamma}(S))$. *Proof.* Let $a, b \in h(\Gamma)$, then $abS \subseteq abS$ implies that $aS \subseteq abS$ or $aS \subseteq abS$ or $ab \in Gr(Ann_{\Gamma}(S))$. Clearly, $abS \subseteq aS$ and $abS \subseteq bS$, so we have abS = aS or abS = bS or $ab \in Gr(Ann_{\Gamma}(S))$. Let U and P be two graded submodules of a graded Γ -module. To prove that $U \subseteq P$, it suffices to show that if V is a completely graded irreducible submodule of \Im such that $P \subseteq V$, then $U \subseteq V$ (see [4]). A proper graded ideal L of Γ is called a graded 2-absorbing primary (abbreviated, $gr\text{-}2^A$ -primary) ideal if whenever $a, b, c \in h(\Gamma)$ with $abc \in L$, then $ab \in L$ or $ac \in Gr(L)$ or $bc \in Gr(L)$. THEOREM 2.4. Let S be a gr-C-2^A-secondary submodule of a graded Γ -module \Im . Then $Ann_{\Gamma}(S)$ is a gr-2^A-primary ideal of Γ . Proof. Let $r, s, t \in h(\Gamma)$ wit $rst \in Ann_{\Gamma}(S)$. Assume that $rs \notin Ann_{\Gamma}(S)$ and $rt \notin Gr(Ann_{\Gamma}(S))$. We show that $st \in Gr(Ann_{\Gamma}(S))$. There exist completely irreducible submodule J_1 and J_2 of \Im such that $rs \not\subseteq J_1$ and $rt \not\subseteq J_2$. Since $rst S = 0 \subseteq J_1 \cap J_2$, $st S \subseteq (J_1 \cap J_2 :_{\Im} r)$. Since S is $gr\text{-}C\text{-}2^A$ -secondary submodule of \Im , we have $rs S \subseteq J_1 \cap J_2$ or $rt S \subseteq J_1 \cap J_2$ or $st \in Gr(Ann_{\Gamma}(S))$. If $rs S \subseteq J_1 \cap J_2$ or $rt S \subseteq J_1 \cap J_2$, then $rs S \subseteq J_1 \cap J_2$ which are contradictions. Therefore $st \in Gr(Ann_{\Gamma}(S))$. A proper graded ideal L of Γ is a graded 2-absorbing (abbreviated, $gr-2^A$) ideal of Γ if whenever $a, b, c \in h(\Gamma)$ with $abc \in L$, then $ab \in L$ or $ac \in L$ or $bc \in L$ (see [1]). COROLLARY 2.5. Let S be a gr-C-2^A-secondary submodule of a graded Γ -module \Im . Then $Gr(Ann_{\Gamma}(S))$ is a gr-2^A ideal of Γ . *Proof.* By Theorem 2.4, $Ann_{\Gamma}(S)$ is $gr-2^A$ -primary ideal of Γ . So by [2, Theorem 2.3], $Gr(Ann_{\Gamma}(S))$ is $gr-2^A$ ideal of Γ . The following example shows that the converse of Theorem 2.4 is not true in general. EXAMPLE 2.6. Let $\Gamma = \mathbb{Z}$ and $\Omega = \mathbb{Z}_2$, then Γ is a Ω -graded ring with $\Gamma_0 = \mathbb{Z}$ and $\Gamma_1 = \{0\}$. Consider $\Im = \mathbb{Z}_{pq} \oplus \mathbb{Q}$ as a \mathbb{Z} -module, where p, q are two prime integers, \Im is a Ω -graded module with $\Im_0 = \mathbb{Z}_{pq} \oplus \{0\}$ and $\Im_1 = \{\bar{0}\} \oplus \mathbb{Q}$. Then $Ann_{\Gamma}(\Im) = \{0\}$ is a $gr - 2^A$ -primary ideal of \mathbb{Z} . But \Im is not $gr - C - 2^A$ -secondary \mathbb{Z} -module, since $pq\Im \subseteq \{\bar{0}\} \oplus \mathbb{Q}$, but $pM = p\mathbb{Z}_{pq} \oplus \mathbb{Q} \nsubseteq \{\bar{0}\} \oplus \mathbb{Q}$ and $q\Im = q\mathbb{Z}_{pq} \oplus \mathbb{Q} \nsubseteq \{\bar{0}\} \oplus \mathbb{Q}$ and $pq \notin Gr(Ann_{\Gamma}(\Im))$. A graded domain Γ is called a gr-Dedekind ring if every graded ideal of Γ factorises into a product of graded prime ideals (see [19]). A graded Γ -module \Im is called a gr-comultiplication module if for every graded submodule S of \Im there exists a graded ideal P of Γ such that $S = (0 :_{\Im} P)$, or, equivalently, for each graded submodule S of \Im , we have $S = (0 :_{\Im} Ann_{\Gamma}(S))$ (see [5]). The gr-C- 2^A -secondary submodules of a gr-comultiplication module over a gr-Dedekind domain are described in the following theorem. THEOREM 2.7. Let Γ be a gr-Dedekind domain, and \Im be a gr-comultiplication Γ -module, if S is $\operatorname{gr-C-2^A}$ -secondary submodule of \Im , then $S=(0:_{\Im}Ann^n_{\Gamma}(L))$ or $S=(0:_{\Im}Ann^n_{\Gamma}(L_1)Ann^m_{\Gamma}(L_2))$, where L,L_1,L_2 are graded minimal submodules of \Im and n,m are positive integers. Proof. By Theorem 2.4, since S is $gr\text{-}C\text{-}2^A$ -secondary submodule of \Im , then $Ann_{\Gamma}(S)$ is a $gr\text{-}2^A$ -primary ideal of Γ . Using [18, Theorem 4.1] and [19, Lemma 1.1], we have either $Ann_{\Gamma}(S) = I^n$ or $Ann_{\Gamma}(S) = I^nI_2^m$, where I, I_1, I_2 are graded maximal ideals of Γ . First assume $Ann_{\Gamma}(S) = I^n$. If $(0:_{\Im}I) = 0$, then $(0:_{\Im}I^n) = 0$, and so we conclude that S = 0, a contradiction. Now by [5, Theorem 3.9], since I is graded maximal ideal of Γ , we have $(0:_{\Im}I)$ is graded minimal submodule of \Im . This implies that $S = (0:_{\Im}Ann_{\Gamma}^n(L))$, where $L = (0:_{\Im}I)$. Now assume that $Ann_{\Gamma}(S) = I_1^nI_2^m$. If $(0:_{\Im}I_1) = 0$ and $(0:_{\Im}I_2) = 0$, then S = 0, a contradiction. Thus either $(0:_{\Im}I_1) \neq 0$ or $(0:_{\Im}I_2) \neq 0$. Hence one can see that either $S = (0:_{\Im}Ann_{\Gamma}^n(L_1)Ann_{\Gamma}^m(L_2))$ or $S = (0:_{\Im}Ann_{\Gamma}^n(L_1))$ or $S = (0:_{\Im}Ann_{\Gamma}^n(L_2))$, where $L_1 = (0:_{\Im}I_1)$ and $L_2 = (0:_{\Im}I_2)$ are graded minimal submodules of \Im . For a graded Γ -submodule S of \Im , the graded second radical of S is defined as the sum of all gr-second Γ -submodules of \Im contained in S, and is denoted by GSec(S). If S does not contain any gr-second Γ -submodule, then $GSec(S) = \{0\}$. The graded second spectrum of \Im is the collection of all gr-second Γ submodules and is represented by the symbol $GSpec^s(\Im)$. The set of all gr-prime Γ -submodules of \Im is called the graded spectrum of \Im and is denoted by $GSpec(\Im)$. The mapping $\psi: GSpec^s(\Im) \to GSpec(\Gamma/Ann_{\Gamma}(\Im))$ is defined by $\psi(S) = Ann_{\Gamma}(S)/Ann_{\Gamma}(\Im)$ is called the natural mapping of $GSpec^s(\Im)$, see [16]. A graded submodule S of \Im is called a graded strongly 2-absorbing second (abbreviated, gr-S-S-second) submodule of \Im if whenever $a, b \in h(\Gamma)$, S_1, S_2 are completely graded irreducible submodules of \Im , and $abS \subseteq S_1 \cap S_2$, then $aS \subseteq S_1 \cap S_2$ or $bS \subseteq S_1 \cap S_2$ or $ab \in Ann_{\Gamma}(S)$, see [4]. It is clear that every gr-S- 2^A -second submodule is a gr-C- 2^A -secondary submodule of \Im , but the converse is generally not true. This is illustrated by the following examples. EXAMPLE 2.8. Let $\Omega = \mathbb{Z}_2$ and $\Gamma = \mathbb{Z}$ be a Ω -graded ring with $\Gamma_0 = \mathbb{Z}$ and $\Gamma_1 = \{0\}$. Let $\Im = \mathbb{Z}_{p^{\infty}} = \{\frac{a}{p^n} + \mathbb{Z} : a, n \in \mathbb{Z}, n \geq 0\}$ be a graded Γ -module with $\Im_0 = \mathbb{Z}_{p^{\infty}}$ and $\Im_1 = \{0_{\mathbb{Z}_{p^{\infty}}}\} = \{\mathbb{Z}\}$, where p is a fixed prime number. Consider the graded submodule $N = \langle \frac{1}{p^3} + \mathbb{Z} \rangle$ of \Im . Then N is $gr\text{-}C\text{-}2^A$ -secondary submodule which is not a $gr\text{-}S\text{-}2^A$ -second submodule. THEOREM 2.9. Let \Im be a gr-comultiplication Γ -module, and the natural map ψ of $GSpec^s(S)$ is surjective, if S is a gr-C- 2^A -secondary submodule of \Im , then GSec(S) is a gr-S- 2^A -second submodule of \Im . Proof. Let S be a gr-C- 2^A -secondary submodule of \mathfrak{S} . By Corollary 2.5, $Gr(Ann_{\Gamma}(S))$ is gr- 2^A ideal of Γ . By [16, Lemma 4.7], $Gr(Ann_{\Gamma}(S)) = Ann_{\Gamma}(GSec(S))$. Therefore, $Ann_{\Gamma}(GSec(S))$ is gr- 2^A ideal of Γ . Using [16, Proposition 3.7], GSec(S) is gr-S- 2^A -second Γ -submodule of \mathfrak{S} . Let Γ be a Ω -graded ring, a graded Γ -module \Im is a gr-sum-irreducible if $\Im \neq 0$ and the sum of any two proper graded submodule of \Im is always a proper graded submodule (see [6]). THEOREM 2.10. Let S be a gr-C-2^A-secondary submodule of \Im . Then $r S = r^2 S, \forall r \in h(\Gamma) \backslash Gr(Ann_{\Gamma}(S))$. The converse hold, if S is a gr-sum-irreducible submodule of \Im . Proof. Let $r \in h(\Gamma) \backslash Gr(Ann_{\Gamma}(S))$. Then $r^2 \in h(\Gamma) \backslash Gr(Ann_{\Gamma}(S))$. Thus by Theorem 2.3, we have $r = r^2 S$. Conversely, let S be a gr-sum-irreducible submodule of \Im and $rs \subseteq L$, for some $r, s \in h(\Gamma)$ and $L \subseteq_{\Omega} \Im$. Suppose that $rs \notin Gr(Ann_{\Gamma}(S))$. We show that $rS \subseteq L$ or $sS \subseteq L$. Since $rs \notin Gr(Ann_{\Gamma}(S))$, we have $r, s \notin Gr(Ann_{\Gamma}(S))$. Thus $rS = r^2 S$ by assumption. Let $x \in S$, then $rx \in rS = r^2 S$. So $\exists y \in S$ such that $rx = r^2 y$. This implies that $x - ry \in (0 :_S r) \subseteq (L :_S r)$. Thus $x = x - ry + ry \in (L :_S r) + (L :_S s)$. Hence $S \subseteq (L :_S r) + (L :_S s)$. Clearly, $(L :_S r) + (L :_S s) \subseteq S$, as S is in A graded Γ -module \Im is called gr-multiplication, if for every graded submodule S of \Im , there exists a graded ideal K of Γ such that $S = K\Im$ (see [14]). THEOREM 2.11. Let $S \leq_{\Omega} \Im$. Then we have the following. - (a) If S is a gr-C-2^A-secondary submodule of \Im , then IC is a gr-C-2^A-secondary submodule of \Im , for all graded ideal I of Γ , with $I \nsubseteq Ann_{\Gamma}(S)$. - (b) If \Im is a gr-multiplication gr-C-2^A-secondary module, then every non-zero graded submodule of \Im is a gr-C-2^A-secondary submodule of \Im . *Proof.* (a) Let I be a graded ideal of Γ , with $I \nsubseteq Ann_{\Gamma}(S)$. Then IC is a non-zero graded submodule of \Im . Let $r,s \in h(\Gamma)$, L is graded submodule of \Im , and $rsIC \subseteq L$, then $rsS \subseteq (L:_{\Im}I)$, thus $rIC \subseteq L$ or $sIC \subseteq L$ or $rs \in Gr(Ann_{\Gamma}(S)) \subseteq Gr(Ann_{\Gamma}(IC))$, as desired. | 11.0.01 (1 0)), an | o deciliod. | | |---------------------|-------------------|--| | (b) This follow | vs from part (a). | | Theorem 2.12. Let Γ be Ω -graded ring and \Im , \Im' be two graded Γ -module. Let $\psi: \Im \to \Im'$ be a graded monomorphism. - (a) If S is a gr-C-2^A-secondary submodule of \Im , then $\psi(S)$ is a gr-C-2^A-secondary submodule of \Im' . - (b) If S' is a gr-C-2^A-secondary submodule of $\psi(\Im)$, then $\psi^{-1}(S')$ is a gr-C-2^A-secondary submodule of \Im . - Proof. (a) As $S \neq 0$, and ψ is a graded monomorphism, we have $\psi(S) \neq 0$, let $r, s \in h(\Gamma)$, $L' \leq_{\Omega} \Im'$, and $rs \psi(S) \subseteq L'$. Then $rs S \subseteq \psi^{-1}(L')$. Since S is $gr\text{-}C\text{-}2^A\text{-}$ secondary submodule of \Im , $r S \subseteq \psi^{-1}(L')$ or $s S \subseteq \psi^{-1}(L')$ or $rs \in Gr(Ann_{\Gamma}(S))$. Therefore, $r \psi(S) \subseteq \psi(\psi^{-1}(L')) = \psi(\Im) \cap L' \subseteq L'$ or $s \psi(S) \subseteq \psi(\psi^{-1}(L')) = \psi(\Im) \cap L' \subseteq L'$ or $rs \in Gr(Ann_{\Gamma}(\psi(S)))$, as desired. - (b) If $\psi^{-1}(S') = 0$, then $\psi(\Im) \cap S' = \psi \psi^{-1}(S') = \psi(0) = 0$. So S' = 0, which is a contradiction. Therefore $\psi^{-1}(S') \neq 0$. Let $r, s \in h(\Gamma)$, $L \leq_{\Omega} \Im$, and $rs \psi^{-1}(S') \subseteq L$. Then $rs S' = rs(\psi(\Im) \cap S') = rs \psi \psi^{-1}(S') \subseteq \psi(L)$. As S' is $gr\text{-}C\text{-}2^A$ -secondary submodule of $\psi(\Im)$, $rS' \subseteq \psi(L)$ or $sS' \subseteq \psi(L)$ or $rs \in Gr(Ann_{\Gamma}(S'))$. Thus $r \psi^{-1}(S') \subseteq \psi^{-1}\psi(L) = L$ or $s \psi^{-1}(S') \subseteq \psi^{-1}\psi(L) = L$ or $rs \in Gr(Ann_{\Gamma}(\psi^{-1}(S')))$, as needed. ## References - K. Al-Zoubi, R. Abu-Dawwas, S. Çeken, On graded 2-absorbing and graded weakly 2-absorbing ideals, Hacet. J. Math. Stat., 48(3) (2019), 724-731. - [2] K. Al-Zoubi, N. sharafat, On graded 2-absorbing primary and graded weakly 2-absorbing primary ideals, J. Korean Math. Soc., 54(2) (2017), 675-684. - [3] K. Al-Zoubi, R. Abu-Dawwas, On graded 2-absorbing and weakly graded 2-absorbing submodules, J. Math. Sci. Adv. Appl., 28 (2014), 45–60. - [4] K. Al-Zoubi, M. Al-Azaizeh, On graded 2-absorbing second submodules of graded modules over graded commutative rings, Kragujevac J. Math., 48(1) (2024), 55–66. - [5] H. Ansari-Toroghy, F. Farshadifar, Graded comultiplication modules, Chiang Mai J. Sci., 38(3) (2011), 311–320. - [6] S. E. Atani, R.E. Atani, Graded multiplication modules and the graded ideal $\theta_g(M)$, Turkish J. Math., **35(1)** (2011), 1–9. - [7] E. Y. Celikel, On graded 2-absorbing primary submodules, Int. J. Pure Appl. Math., 109(4) (2016), 869–879. - [8] P. Deligne, Quantum Fields and Strings: A course for Mathematicians, AMS IAS, 1999. - [9] R. Hazrat, Graded Rings and Graded Grothendieck Groups, Cambridge University Press, Cambridge, 2016. - [10] I. Kolar, P. W. Michor, J. Slovak, Natural Operations in Differential Geometry, Springer Science and Business Media, 2013. - [11] C. Nastasescu, F. Van Oystaeyen, Graded and filtered rings and modules, Lecture notes in mathematics 758, Berlin-New York: Springer-Verlag, 1982. - [12] C. Nastasescu, F. Van Oystaeyen, Graded Ring Theory, Mathematical Library 28, North Holand, Amsterdam, 1982. - [13] C. Nastasescu, F. Van Oystaeyen, Methods of Graded Rings, LNM 1836. Berlin-Heidelberg: Springer-Verlag, 2004. - [14] K. H. Oral, U. Tekir, A. G. Agargun, On graded prime and primary submodules, Turk. J. Math., 35 (2011), 159–167. - [15] M. Refai, K. Al-Zoubi, On graded primary ideals, Turk. J. Math., 28(3) (2004), 217–229. - [16] M. Refai, R. Abu-Dawwas, On generalizations of graded second submodules, Proyecciones (Antofagasta), 39(6), 1537–1554. - [17] A. Rogers, Supermanifolds: Theory and Applications, World Sci. Publ., 2007. - [18] F. Soheilnia, A. Y. Darani, On graded 2-absorbing and graded weakly 2-absorbing primary ideals, Kyungpook Math. J., 57(4) (2017), 559–580. - [19] F. Van Oystaeyen, Generalized Rees rings and arithmetical graded rings, J. Algebra, 82(1) (1983), 185–193. (received 22.03.2023; in revised form 03.05.2024; available online 09.09.2024) Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan E-mail: tdalwardat21@sci.just.edu.jo ORCID iD: https://orcid.org/0000-0003-1641-5182 Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan E-mail: kfzoubi@just.edu.jo ORCID iD: https://orcid.org/0000-0001-6082-4480 Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan ORCID iD: https://orcid.org/0000-0003-2738-2072