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ITERATIVE METHOD FOR FINDING ZEROS OF MONOTONE
MAPPINGS AND FIXED POINT OF CERTAIN NONLINEAR

MAPPING

J. N. Ezeora, C. Izuchukwu and R.C. Ogbonna

Abstract. In this article, an inertial Mann-type iterative algorithm is constructed using
the so-called viscosity method of A. Moudafi, Viscosity approximation methods for fixed-point
problems, J. Math. Anal. Appl. 241(1) (2000), 46–55. A strong convergence theorem of
mean ergodic-type is proved using the sequence of the iterative algorithm for finding zeros of
monotone mappings and the fixed point of a strict pseudo nonspreading mapping in a real
Hilbert space. Finally, we apply our result to solve some minimization problem.

1. Introduction

Throughout this paper, we assume that H is a real Hilbert space and C is a nonempty
subset of H. We denote by xn ⇀ x and xn → x weak and strong convergence of a
sequence {xn} to x, respectively, and by F (T ) the set of fixed points of a mapping T .
Let T : C → C be a mapping. The mapping T is said to be
– nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥, ∀ x, y ∈ C;

– firmly nonexpansive if ∥Tx− Ty∥2 ≤ ⟨x− y, Tx− Ty⟩, ∀ x, y ∈ C (see [5]);

– quasi-nonexpansive if F (T ) is nonempty and ∥Tx−p∥ ≤ ∥x−p∥, ∀ x ∈ C, p ∈ F (T );

– nonspreading if 2∥Tx−Ty∥2 ≤ ∥Tx−y∥2+∥Ty−x∥2, ∀ x, y ∈ C; it can be shown
(see e.g. [7]) that T is nonspreading if and only ∥Tx−Ty∥2 ≤ ∥x−y∥2+2⟨x−Tx, y−
Ty⟩, ∀ x, y ∈ C;

– k-strictly pseudo-nonspreading (see e.g. [16]), if there exists a constant k ∈ [0, 1)
such that ∥Tx−Ty∥2 ≤ ∥x−y∥2+k∥x−Tx−(y−Ty)∥2+2⟨x−Tx, y−Ty⟩, ∀ x, y ∈ C.
It is shown in [16] that the class of k-strictly pseudo-nonspreading mappings is wider
than the class of nonspreading mappings.
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Let C be a nonempty closed convex subset of H. A set-valued mapping A :
D(A) ⊂ H → H is said to be monotone if for any x, y ∈ D(A) and x∗ ∈ Ax, y∗ ∈ Ay,
the following holds: ⟨x− y, x∗ − y∗⟩ ≥ 0.

A monotone operator A on H is said to be maximal if A has no monotone exten-
sion, that is, its graph is not properly contained in the graph of any other monotone
operator on H. For a maximal monotone operator A on H and r > 0, the single-
valued operator Jr = (I+rA)−1 : 2H → D(A) is called the resolvent of A. It is known
(see for instance [17]) that Jr is firmly nonexpansive, hence it is nonexpansive. For a
constant α > 0, a mapping A : C → H is said to be α-inverse strongly monotone if
for all x, y ∈ C, ⟨x− y,Ax−Ay⟩ ≥ α∥Ax−Ay∥2.

For solving the problem of approximating fixed points of nonexpansive mappings,
Mann [15] introduced in 1953 the following iteration process: xn+1 = αnxn + (1 −
αn)Txn, where the initial guess x1 ∈ C is arbitrary and {αn} is a real sequence in
(0, 1). It is known that under appropriate conditions, the sequence {xn} converges
weakly to a fixed point of T . In fact, even in real Hilbert space, Mann iteration may
fail to converge strongly (see for instance [4]).

Finding a point x∗ ∈ F (T ) ∩ (A+B)−1 where T is some nonlinear operator, and
A,B are monotone operators, is of interest in applications and have been studied
extensively by many authors (see for instance, [9, 13, 17] and the references therein).
Recently, in the case where T : C → C is a nonexpansive mapping, A : C → H is
an α-inverse strongly monotone mapping, and B ⊂ H × H is a maximal monotone
operator, Takahashi et al. [17] proved a strong convergence theorem for finding a point
of F (T ) ∩ (A+B)−1, where (A+B)−1 is the set of zero points of (A+B).

The class of k-strictly pseudo nonspreading mappings was first introduced by
Osilike and Isiogugu [16], as an important generalization of the class of nonspreading
mappings. This class of mappings has been studied by many authors (see eg, [3, 16]
and the references therein).

A question of interest in the study of zeroes of nonlinear maps, variational inequal-
ities and related optimization problems is how to increase the convergence speed of
iterative methods. Lots of efforts have been made in constructing iterative methods
that improve and speed up the convergence of the resultant sequences. In this regard,
incorporating the inertial extrapolation term in algorithms (resulting into inertial
extrapolation methods) is of contemporary interest.

In 2019, Cholamjiak et al. [2] using the viscosity method of Moudafi [14], con-
structed and studied an inertial Mann-type algorithm for solving inclusion problem
and fixed-point problem involving nonexpansive mapping in a real Hilbert space. Fur-
thermore, they gave a numerical example to show the convergence behaviour of their
algorithm. Precisely, they proved the following theorem.

Theorem 1.1 ([2]). Let C be a nonempty closed convex subset of a real Hilbert space
H, A : C → H be an α-inverse strongly monotone mapping, and B : D(B) ⊆ C → 2H

be a maximal monotone mapping. Let JB
λ = (I + λB)−1 be the resolvent of B for

any λ > 0, T : C → C be a nonexpansive mapping. Suppose that Ω := F (T ) ∩ (A +
B)−1(0) ̸= ∅ and let f : C → C be a contraction mapping. For arbitrary x0, x1 ∈ C,
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let {xn} ⊂ C be a sequence generated by{
yn = xn + θn(xn − xn−1), n ≥ 1

xn+1 = βnxn + (1− βn)S
(
αnf(xn) + (1− αn)J

B
λn

(yn − λnAyn)
)
,

(1)

where {αn} ⊂ (0, 1), {βn} ⊂ (0, 1), {λn} ⊂ (0, 2α), {θn} ⊂ [0, θ], θ ∈ [0, 1) satisfy the
conditions:
(C1) limαn = 0,

∑∞
n=1 αn = ∞; (C2) lim inf βn(1− βn) > 0;

(C3) 0 < lim inf λn ≤ lim supλn < 2α; (C4) lim θn
αn

∥xn − xn−1∥ = 0.
Then {xn} converges strongly to an element of Ω.

Motivated by the aforementioned results, it is our aim in this article to construct an
inertial-Mann-type algorithm using the viscosity method and prove mean convergence
theorem of Baillon-type for solving inclusion and fixed-point problems involving k-
strictly pseudo nonspreading mapping T in a real Hilbert space. Furthermore, in
the case when the mapping T is nonexpansive, we adopt the example of Cholamjiak
et al. [2] and compare their algorithm with ours for efficiency in terms of computer
time. Our results improve and generalize those of Takahashi et al. [17], Liu et al. [11],
Osilike et al. [16] and a host of other recent important results.

2. Preliminaries

In the sequel, we shall make use of the following definition and lemmas.

Definition 2.1. Let X be a normed linear space and K a nonempty subset of X. A
mapping T : K → K is said to be demiclosed at y ∈ K if for any sequence {xn} ⊂ K
which converges weakly to x ∈ K, strong convergence of the sequence {Txn} to y in
K implies that Tx = y.

Lemma 2.2. Let H be a real Hilbert space. Then for all x, y ∈ H the following holds
∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩.

Lemma 2.3 ( [5]). Assume that T is a nonexpansive self-mapping of closed convex
subset C of a real Hilbert space H. If T has a fixed point, then (I − T ) is demiclosed
at zero.

Lemma 2.4 ( [16]). Let H be a real Hilbert space, C be a nonempty closed convex
subset of H and T : C → C be a k-strictly pseudo-nonspreading mapping.
(i) If F (T ) ̸= ∅, then F (T ) is closed and convex; (ii) I − T is demiclosed at zero.

Lemma 2.5 ([1]). Let C be a nonempty closed convex subset of H and T : C → C be
a k- strictly pseudo-nonspreading mapping with F (T ) ̸= ∅. Let Tβ = βI + (1 − β)T ,
β ∈ [k, 1). Then the following conclusions hold:
(i) F (T ) = F (Tβ);

(ii) I − Tβ is demiclosed at zero;
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(iii) ∥Tβx− Tβy∥2 ≤ ∥x− y∥2 + 2
(1−β) ⟨x− Tβx, y − Tβy⟩;

(iv) Tβ is a quasi-nonexpansive mapping.

Lemma 2.6 ([13]). Let A : C → H be an α-inverse strongly monotone mapping, and
let B be a maximal monotone operator on H with D(B) ⊂ C. Then for any σ > 0,
the following holds; (A+B)−1(0) = F (JB

σ (I − σA)).

Lemma 2.7 ([17])). Let B be a maximal monotone operator on H. Then, for any
s, t ∈ R with s, t > 0 and for any x ∈ H, the following hold:

(i) ∥JB
s x− JB

t x∥ ≤ |s−t|
s ∥x− JB

s x∥. (ii) F (JB
s ) = B−1(0).

Lemma 2.8 ([10]). Let A : C → H be an α-inverse strongly monotone mapping. Then
for any σ ∈ (0, 2α], (I − σA) is nonexpansive.

Lemma 2.9 ([12]). Let {an} and {cn} be sequences of nonnegative real numbers such
that an+1 ≤ (1 − δn)an + bn + cn, ∀ n ≥ 1, where {δn} is a sequence in (0, 1) and
{bn} is a real sequence. Assume

∑∞
n=1 cn < ∞. Then the following results hold:

(i) If bn ≤ δnM for some M ≥ 0, then {an} is a bounded sequence.

(ii) If
∑∞

n=1 δn = ∞ and lim supn→∞
bn
δn

≤ 0, then limn→∞ an = 0.

3. Main result

We now prove the main result of this manuscript.

Theorem 3.1. Let C be a nonempty closed convex subset of H, A : C → H be
an α-inverse strongly monotone mapping and B : D(B) ⊆ C → 2H be a maximal
monotone mapping. Let JB

λ = (I + λB)−1 be the resolvent of B for any λ > 0,
T : C → C be a k-strictly pseudo nonspreading mapping with k ∈ (0, 1). Suppose that
Γ := F (T )∩ (A+B)−1(0) ̸= ∅ and let f : C → C be a contraction map. For arbitrary
x0, x1 ∈ C, let {xn} ⊂ C be a sequence generated by

wn = xn + θn(xn − xn−1), n ≥ 1

zn = JB
σn

(I − σnA)wn

yn = 1
n

∑n−1
i=0 T i

βzn

xn+1 = αnf(xn) + (1− αn)yn

(2)

where Tβ := βI + (1− β)T, β ∈ [k, 1) and the following conditions are satisfied:
(I) {αn} is a sequence in (0, 1);

(II) αn → 0 as n → ∞,
∑

αn = ∞, {θn} ⊂ [0, θ] with θ ∈ [0, 1).

(III) limn→∞
θn
αn

∥xn − xn−1∥ = 0.

(IV) {σn} is a sequence in (0,∞) and there exist a, b ∈ R with 0 < a ≤ σn ≤ b < 2α,
∀ n ∈ N.
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Then the sequence {xn} constructed by algorithm (2) converges strongly to x∗ =
PΓf(x

∗), where PΓ is the metric projection of H onto Γ.

The following remarks explain the advantages of our proposed algorithm (2).

Remark 3.2. 1. It is shown in Chang et al. [1], that the map Tβ is quasi nonexpan-
sive. It is well known that every nonexpansive map with a nonempty fixed point set is
a quasi nonexpansive map. Consequently, our result, Theorem 3.1 is a generalization
of the main result of Cholamjiak [2]. Furthermore, we need less control sequences to
prove our result than in the case of result [2].

2. In the case when the map T is nonspreading and the sequence θn = 0, ∀ n ≥ 1.
Algorithm 2 reduces to the Algorithm considered by Kurokawa and Takahashi [8].

3. When A = B = I, and θn = 0, ∀ n ≥ 1, we recover the result of Osilike and
Isiogugu [16].

4. Our result is more general than that of Takahashi et al. [17] in the sense that our
result holds for a more general class of quasi-nonexpansive maps. Also, our algorithm
contains the inertial term which is known to speed up the rate of convergence of
iterative algorithms.

Proof. We divide the proof into several steps.
Step 1. {xn} is bounded.

Observe that by Lemma 2.8, (I−σnA) is nonexpansive. Also it is known that JB
σn

,
∀ n≥1 is a nonexpansive map. For arbitrary w∈Γ, we have the following estimate:

∥zn − w∥ ⩽ ∥JB
σn

(1− σnA)wn − JB
σn

(I − σnA)w∥ ⩽ ∥wn − w∥
= ∥xn + θn(xn − xn−1)− w∥ ⩽ ∥xn − w∥+ θn∥xn − xn−1∥. (3)

Using Lemma 2.5, we obtain

∥Tβzn−w∥2 =∥Tβzn−Tβw∥2 ⩽ ∥zn−w∥2+ 2

1−β
⟨zn−Tβzn, w−Tβw⟩ = ∥zn−w∥2.

This implies that ∥Tβzn − w∥ ⩽ ∥zn − w∥. Assume that ∥T r
βzn − w∥ ⩽ ∥zn − w∥ for

some r ⩾ 1. Then

∥T r+1
β zn − w∥2 = ∥Tβ(T

r
βzn)− Tβw∥2

⩽∥T r
βzn − w∥2 + 2

1− β
⟨T r

βzn − T r+1
β zn, w − Tβw⟩ = ∥T r

βzn − w∥2 ⩽ ∥zn − w∥2.

Thus ∥T r+1
β zn − w∥ ⩽ ∥zn − w∥ and so, by induction, we have that ∥Tβ

izn − w∥ ⩽
∥zn − w∥, ∀i, n ∈ N . Hence,

∥yn−w∥ =∥ 1
n

n−1∑
i=0

Tβ
izn−w∥ ⩽

1

n

n−1∑
i=0

∥Tβ
izn−w∥ ⩽

1

n

n−1∑
i=0

∥zn−w∥ = ∥zn−w∥ (4)

Applying (3) in (4) gives ∥yn − w∥ ⩽ ∥xn − w∥+ θn∥xn − xn−1∥. From (2), we get

∥xn+1 − w∥ = ∥αnf(xn)+(1− αn)yn − w∥=∥αn(f(xn)− w)+(1− αn)(yn − w)∥
⩽αn∥f(xn)− f(w)∥+ αn∥f(w)− w∥+ (1− αn)∥yn − w∥
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⩽αn∥f(xn)− f(w)∥+ αn∥f(w)− w∥+ (1− αn)[∥xn − w∥+ θn∥xn − xn−1∥]
=αn∥f(xn)− f(w)∥+αn∥f(w)− w∥+(1− αn)∥xn − w∥+(1− αn)θn∥xn − xn−1∥
≤αnβ∥xn − w∥+ αn∥f(w)− w∥+ (1− αn)∥xn − w∥+ (1− αn)θn∥xn − xn−1∥

=(1− αn(1− β))∥xn − w∥+αn(1− β)
[∥f(w)− w∥

(1− β)
+
(1− αn)θn
αn(1− β)

∥xn − xn−1∥
]
. (5)

Applying Lemma 2.9 (i) and condition (III) above in (5), we have that {∥xn − w∥}
is bounded and so {xn} is bounded. Hence {yn}, {wn}, {zn}, {f(xn)} and {Tβ

nzn}
are all bounded. Since {∥xn − w∥} is bounded, there exists a subsequence {xnj

} of
{xn} such that limj→∞ ∥xnj

−w∥ exists. Again, since {xnj
} is bounded, there exists

a subsequence {xnji
}, say, of {xnj

} which we still call {xnj
} such that xnj

⇀ v ∈ C
as j → ∞.

We prove that v ∈ Γ. We first prove that v ∈ F (T ). Since ∥xn+1 − yn∥ =
αn∥f(xn)−yn∥, replacing n by nj , we have ∥xnj+1−ynj∥ = αnj∥f(xnj )−ynj∥. This
together with condition (II) and the fact that {yn} is bounded, yield ∥xnj+1−ynj∥ → 0
as j → ∞. Thus, ynj

⇀ v as j → ∞. Since T is strictly pseudo nonspreading, then
for all ξ ∈ C and for any k = 0, 1, 2, · · · , n− 1, we have, using Lemma 2.5 (iii),

∥T k+1
β zn − Tβξ∥2 =∥Tβ

(
T k
β zn

)
− Tβξ∥2

≤∥T k
β zn − ξ∥2 + 2

(1− β)

〈
T k
β zn − T k+1

β zn, ξ − Tβξ
〉

=∥T k
β zn − Tβξ + Tβξ − ξ∥2 + 2

(1− β)

〈
T k
β zn − T k+1

β zn, ξ − Tβξ
〉

=∥T k
β zn − Tβξ∥2 + ∥Tβξ − ξ∥2 + 2

〈
T k
β zn − Tβξ, Tβξ − ξ

〉
+

2

(1− β)

〈
T k
β zn − T k+1

β zn, ξ − Tβξ
〉
. (6)

Hence,

∥T k+1
β zn − Tβξ∥2 − ∥T k

β zn − Tβξ∥2 ≤

∥Tβξ − ξ∥2 + 2
〈
T k
β zn − Tβξ, Tβξ − ξ

〉
+

2

(1− β)

〈
T k
β zn − T k+1

β zn, ξ − Tβξ
〉
. (7)

Summing (7) from k = 0 to n− 1 and dividing by n, we have

1

n

(
∥Tn

β zn − Tβξ∥2 − ∥yn − Tβξ∥2
)
≤

∥Tβξ − ξ∥2 + 2
〈
yn − Tβξ, Tβξ − ξ

〉
+

2

n(1− β)

〈
yn − Tn

β zn, ξ − Tβξ
〉
. (8)

Replacing n with nj in (8), we obtain

1

nj

(
∥Tnj

β znj
− Tβξ∥2 − ∥ynj

− Tβξ∥2
)
≤

∥Tβξ − ξ∥2 + 2
〈
ynj − Tβξ, Tβξ − ξ

〉
+

2

nj(1− β)

〈
ynj − T

nj

β znj , ξ − Tβξ
〉
. (9)

Letting j → ∞ in (9) and given the fact that {zn} and {Tn
β zn} are bounded, we
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obtain 0 ≤ ∥Tβξ − ξ∥2 + 2
〈
v − Tβξ, Tβξ − ξ

〉
. In particular, for ξ = v we have

0 ≤ ∥Tβv − v∥2 + 2
〈
v − Tβv, Tβv − v

〉
= ∥Tβv − v∥2 − 2∥Tβv − v∥2.

This implies that v = Tβv. That is, v ∈ F (Tβ) and by Lemma 2.5 (i), we have
v ∈ F (T ).

Step 2. We prove that ∥Awnj −Aw∥ → 0 as j → ∞.
From (2) and using the fact that A is α-inverse strongly monotone and convexity of
∥ · ∥2, we have

∥xn+1−w∥2 = ∥αnf(xn)+(1−αn)(yn−w)∥2

⩽ αn∥f(xn)−w∥2+(1−αn)∥yn−w∥2 ⩽ αn∥f(xn)−w∥2+(1−αn)∥zn−w∥2

⩽ αn∥f(xn)−w∥2+(1−αn)∥JB
σn

(1−σnA)wn−JB
σn

(1−σnA)w∥2

⩽ αn∥f(xn)−w∥2+(1−αn)∥wn−w−(σnAwn−σnAw)∥2

⩽ αn∥f(xn)−w∥2+∥wn−w−σn(Awn−Aw)∥2

⩽ αn∥f(xn)−w∥2+∥wn−w∥2−2σn⟨wn−w,Awn−Aw⟩+σn
2∥Awn−Aw∥2

⩽ αn∥f(xn)−w∥2+∥wn−w∥2−2ασn∥Awn−Aw∥2+σn
2∥Awn−Aw∥2

⩽ αn∥f(xn)−w∥2+∥xn−w∥2+θn∥xn−xn−1∥2−2ασn∥Awn−Aw∥2+σn
2∥Awn−Aw∥2.

(2ασn−σn
2)∥Awn−Aw∥2 ⩽ αn∥f(xn)−w∥2+∥xn−w∥2+θn∥xn−xn−1∥2−∥xn+1−w∥2.

Passing to subsequence, we have (2ασnj
−σnj

2)∥Awnj
−Aw∥2 ⩽ αnj

∥f(xnj
)−w∥2+

∥xnj −w∥2 + θnj∥xnj − xnj−1∥2 − ∥xnj+1 −w∥2. Applying conditions (II) and (IV),
and the fact that limj→∞ ∥xnj −w∥ exists, we obtain: ∥Awnj −Aw∥ → 0 as j → ∞.

Step 3. We prove that ∥znj − wnj∥ → 0 as j → ∞.

Since JB
λ is firmly nonexpansive, we obtain

∥zn − w∥2 =∥JB
σn

(1− σnA)wn − JB
σn

(1− σnA)w∥2

⩽⟨zn − w, (I − σnA)wn − (I − σnA)w⟩

=
1

2
{∥zn − w∥2 + ∥(I − σnA)wn − (I − σnA)w∥2

− ∥zn − w − [(I − σnA)wn − (I − σnA)w]∥2}

⩽
1

2
{∥zn − w∥2 + ∥wn − w∥2 − ∥zn − w − (I − σnA)wn + (I − σnA)w∥2}

=
1

2
{∥zn − w∥2 + ∥wn − w∥2 − ∥zn − wn∥2

− 2σn⟨zn − wn, Awn −Aw⟩ − σn
2∥Awn −Aw∥2}

This implies that
1

2
∥zn−w∥2 ⩽

1

2
{∥wn−w∥2−∥zn−wn∥2−2σn⟨zn−wn, Awn−Aw⟩−σn

2∥Awn−Aw∥2}.

So, ∥zn−w∥2 ⩽ ∥wn−w∥2−∥zn−wn∥2−2σn⟨zn−wn, Awn−Aw⟩−σn
2∥Awn−Aw∥.

From (2),

∥xn+1 − w∥2 ⩽αn∥f(xn)− w∥2 + (1− αn)∥yn − w∥2
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⩽αn∥f(xn)− w∥2 + (1− αn)∥zn − w∥2

⩽αn∥f(xn)− w∥2 + (1− αn)[∥wn − w∥2 − ∥zn − wn∥2

− 2σn⟨zn − wn, Awn −Aw⟩ − σn
2∥Awn −Aw∥2]

∥zn − wn∥2 ⩽αn∥f(xn)− w∥2 + ∥wn − w∥2 − ∥xn+1 − w∥2

− 2σn⟨zn − wn, Awn −Aw⟩ − σn
2∥Awn −Aw∥2]

⩽αn∥f(xn)− w∥2 + ∥wn − w∥2 − ∥xn+1 − w∥2 − σn
2∥Awn −Aw∥2

⩽αn∥f(xn)− w∥2 + ∥xn − w∥2 + θn∥xn − xn−1∥2

− ∥xn+1 − w∥2 − σn
2∥Awn −Aw∥2 (10)

Passing to subsequence, applying condition (1) and (2) together with the fact that
limj→∞ ∥xnj −w∥ exists and conclusion of Step 2. in (10), we obtain ∥znj −wnj∥ → 0
as j → ∞. Observe that ∥wnj − xnj∥ = θnj∥xnj − xnj−1∥ → 0 as j → ∞.

Step 4. We show that v ∈ (A+B)−1(0).

By condition (IV), there exists a subsequence {σnj
} of {σn} such that σnj

→ σ ∈
[a, b]. Applying Lemma 2.7, we have

∥JB
σ (I − σA)wn − zn∥ ⩽ ∥JB

σ (I − σA)wn − JB
σ (I − σnA)wn∥+ ∥JB

σ (I − σnA)wn − zn∥
⩽ ∥(I − σA)wn − (I − σnA)wn∥+ ∥JB

σ (I − σnA)wn − JB
σn

(I − σnA)wn∥

⩽ |σn − σ|∥Awn∥+
|σn − σ|

σ
∥JB

σ (I − σnA)wn − (I − σnA)wn∥

⩽ |σn − σ|∥Awn∥+
|σn − σ|

σ
K (11)

for some K > 0 such that K := supn ∥JB
σ (I − σnA)wn − (I − σnA)wn∥. Replacing n

with nj in (11) and using boundedness of {Awn}, we get as j → ∞ that

∥JB
σ (I − σA)wnj

− znj
∥ → 0 (12)

But ∥JB
σ (I − σA)wn − wn∥ ⩽ ∥JB

σ (I − σA)wn − zn + zn − wn∥
⩽ ∥JB

σ (I − σA)wn − zn∥+ ∥zn − wn∥ (13)

Replacing n with nj in (13), using Step 3. and conclusion (12) we get ∥JB
σ (I −

σA)wnj
− wnj

∥ → 0 as j → ∞.

Thus from Lemma 2.3, we have that v ∈ F
(
JB
σ (I − σA)

)
. Since by Lemma 2.6,

F
(
JB
σ (I − σA)

)
= (A+B)−1(0), it implies that v ∈ (A+B)−1(0).

Step 5. We show that xn → PΓf(v) as n → ∞.

Without loss of generality, there exists a subsequence {xnji
+1} of {xnj+1} which

we shall call {xnji
+1} such that

lim
n→∞

sup⟨u− PΓf(v), xn+1 − PΓf(v)⟩ = lim
n→∞

⟨f(v)− PΓf(v), xnj+1 − PΓf(v)⟩.

Since P is the metric projection of H onto Γ and xnj+1 → v ∈ Γ, we have

lim
j→∞

⟨f(v)− PΓf(v), xnj+1 − PΓf(v)⟩ = ⟨f(v)− PΓf(v), v − PΓf(v)⟩ ⩽ 0.
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Hence, limn→∞ sup⟨f(v)− PΓf(v), xn+1 − PΓf(v)⟩ ⩽ 0. Using Lemma 2.2, we have

∥xn+1−PΓf(v)∥2 = ∥αn(f(v))−PΓf(v)+(1−αn)(yn−PΓf(v))∥2

⩽ (1−αn)
2∥yn−PΓf(v)∥2+2αn⟨f(v)−PΓf(v), xn+1−PΓf(v)⟩

⩽ (1−αn)
2[∥xn−PΓf(v)∥2+θn∥xn−xn−1∥2]+2αn⟨f(v)−PΓf(v), xn+1−PΓf(v)⟩

⩽ (1−αn)
2∥xn−PΓf(v)∥2+(1−αn)

2θn∥xn−xn−1∥2+2αn⟨f(v)−PΓf(v), xn+1−PΓf(v)⟩
⩽ (1−αn)∥xn−PΓf(v)∥2+θn∥xn−xn−1∥2+2αn⟨f(v)−PΓf(v), xn+1−PΓf(v)⟩.
Hence, we obtain from Lemma 2.9 (ii), that xn → PΓf(v) as n → ∞.

This completes the proof. □

For T a nonexpansive mapping with nonempty fixed point set, we have the fol-
lowing result.

Corollary 3.3. Let C be a nonempty closed convex subset of H, A : C → H be an
α-inverse strongly monotone mapping, and B : D(B) ⊆ C → 2H a maximal monotone
mapping. Let JB

λ = (I + λB)−1 be the resolvent of B for any λ > 0, T : C → C
be a nonexpansiove mapping. Suppose that Ω := F (T ) ∩ (A + B)−1(0) ̸= ∅, and let
f : C → C be a contraction mapping. For arbitrary x0, x1,∈ C, and let {xn} ⊂ C be
a sequence generated by

wn = xn + θn(xn − xn−1), n ≥ 1

zn = JB
λ (I − σnA)wn

yn = 1
n

∑n−1
i=1 T izn

xn+1 = αnf(xn) + (1− αn)yn

(14)

where the following conditions are satisfied:

(I) {αn} is a sequence in (0, 1),

(II) αn → 0, n → ∞,
∑

αn = ∞ {θn} ⊂ [0, θ], θ ∈ [0, 1),

(III) limn→∞
θn
αn

∥xn − xn−1∥ = 0,

(IV) {σn} is a sequence in (0,∞) and there exist a, b ∈ R with 0 < a ≤ σn ≤ b < 2α,
∀ n ∈ N.
Then the sequence {xn} constructed by algorithm (2) converges strongly to x∗ =
PΓf(x

∗), where P is the metric projection of H onto Γ.

4. Numerical example

Example 4.1. Solve the following minimization problem.

min
x∈R3

∥x∥22 + (3, 5,−1)x+ 9 + ∥x∥1, x = (y1, y2, y3) ∈ R3

and the fixed point problem of the function T : R3 → R3 defined by T (x) = (−2 −
y1,−4 − y2,−y3). Now for each x ∈ R3, we set F (x) = ∥x∥22 + (3, 5,−1)x + 9 and
G(x) = ∥x∥1.
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It is easy to check that F is convex and differentiable on R3 with 2-Lipstchiz
continuous gradient. Also, G is convex and lower semi-continuos but not differentiable
on R3. For r > 0 by using the soft thresholding operator (see [6]) and the proximity
operator, we obtain that(
I + rB

)−1
(x) =

(
max{|y1|−r, 0} sign(y1), max{|y2|−r, 0} sign(y2),

max{|y3|−r, 0} sign(y3)
)
.

(I−rA)(x) =(I−r∇F )(x)

=

(
max

{
|x1−3|−r

2
, 0

}
sign(x1−3),max

{
|x2−5|−r

2
, 0

}
sign(x2−5),

max

{
|x3 + 1|−r

2
, 0

}
sign(x3 + 1)

)
,

where sign(·) is the signum function of α ∈ R.
Put A = ∇f and B = ∂G in both algorithm (1) and algorithm (14) with αn =
1

100n+1 , βn = 3n
100n+40 , λn = 0.0001, θ = 0.5, ϵn = 1

(n+1)3 , θn = θ̄n, stopping criterion

is En = ∥xn − Jλn
(I −∇F )xn∥+ ∥xn − Sxn∥ < 10−3,

θ̄n =

{
min{ ϵn

∥xn−xn−1∥ , θ}, if xn ̸= xn−1

θ, otherwise
.

In order to compare the iterative algorithm (1) with the algorithm (14) (in terms
of convergence and the CPU time) we consider different choices of x0 and x1 for the
two algorithms.

Case 1. x0=(1, 2,−1), x1=(1, 5, 1); Case 2. x0=(0,−2, 2), x1=(2, 0,−3);

Case 3. x0=(−5, 4, 6), x1=(3,−5,−9); Case 4. x0=(1, 2, 3), x1=(8, 7, 3).

Table 1: Numerical results in comparison with Algorithm (1) and Algorithm (14)

Algorithm (14) Algorithm (1)

Case 1.
CPU time (sec)
No. of Iteration

0.015
6

0.071
11

Case 3.
CPU time (sec)
No. of Iteration

0.016
6

0.080
10

Case 3.
CPU time (sec)
No. of Iteration

0.002
5

0.022
9

Case 4.
CPU time (sec)
No. of Iteration

0.009
5

0.052
11
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Figure 1: En vs Iteration numbers (n): Top Left: Case 1.; Top Right: Case 2.; Bottom
Left: Case 3.; Bottom Right: Case 4..
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