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NEARNESS STRUCTURE ON TEXTURE SPACES

Şenol Dost

Abstract. Textures are point-set setting for fuzzy sets, and they provide a framework
for the complement-free mathematical concepts. This paper is the first of a series of two
papers on the theory of nearness spaces. This paper aims to give a new perspective for
nearness structure from the textural point of view. It is proved that nearness spaces are
embeddable into texture space which is connected with nearness structure.

1. Introduction

In mathematics, one of the ways to deal with problems that are topological by nature
is the conceptualization approach. Here, the aim of the approach is to find topolog-
ical concepts that can be expressed with basic topological arguments. A distinctive
example of this is the “near/far away” concept which is a natural extension of ge-
ometry and has an important place in topology and the fields related to topology.
Topology characterizes the nearness between a point and a set by using the concept
of closure concept. For a metric space (X, d), if D(A,B) = 0, then A is near to B
where D(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}, for all A,B ⊆ X. In this case, the
closure of A is cl(A) = {x ∈ X | D(A, {x}) = 0}. Proximity is achieved through the
axiomatic of the nearness between two sets. Further, the notion of nearness spaces
were introduced by Herrlich in [13] attempts to characterize of an arbitrary collection
of sets, and can be used as a unifying framework for various topological structures
such as uniformity and proximity [8, 9, 14,17].

Texture theory is point-set setting for fuzzy sets and hence, some properties of
fuzzy lattices (i.e. Hutton algebra) can be discussed based on textures [1–3, 5]. Di-
topologies on textures unify the fuzzy topologies and classical topologies and bitopolo-
gies without the set complementation [6, 7]. Further, the notions of uniformity and
metric which are related to topology in the complement free textural context was
introduced in [11, 16]. On the other hand, the notion of proximity to the point free
setting of textures was defined in [12,18].
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The aim of this first paper is to introduce nearness structure for texture spaces, and
to prove that it is a more general structure than the nearness in the sense of Herrlich.
It is believed that the adaptation of this concept will have important consequences
for concepts such as uniformity and proximity with related textural context which are
planned to be discussed in some future article.

2. Texture spaces

This section is devoted to some fundamental definitions and results of the texture
theory from [1–3,5, 6].

Definition 2.1. Let U be a set and U ⊆ P(U). Then U is called a texturing of U if
(T1) ∅ ∈ U and U ∈ U,

(T2) U is a complete and completely distributive lattice such that arbitrary meets
coincide with intersections, and finite joins with unions,

(T3) U is point-separating.
Then the pair (U,U) is called a texture space or texture.

For u ∈ U , the p-sets and the q-sets are defined by

Pu =
⋂

{A ∈ U | u ∈ A}, Qu =
∨

{A ∈ U | u /∈ A}, respectively.

Note that p-sets and q-sets form a powerful duality in the texture theory, so that
many concepts in this theory are defined based on these sets.

Complementation

A mapping σU : U → U is called a complementation on (U,U) if it satisfies the
conditions σU (σU (A)) = A for all A ∈ U and A ⊆ B =⇒ σU (B) ⊆ σU (A) for all
A,B ∈ U.

Example 2.2. (i) For any set X, (X,P(X), π), π(Y ) = X \ Y for Y ⊆ X, is the
complemented discrete texture representing the usual set structure of X. Clearly,
Px = {x}, Qx = X \ {x} for all x ∈ X.

(ii) Let L = (0, 1], L = {(0, r] | r ∈ [0, 1]} and λ((0, r]) = (0, 1 − r], r ∈ [0, 1].
Clearly (L,L, λ) is the Hutton texture of (I, ′), where I = [0, 1] with its usual order
and r′ = 1− r for r ∈ I. Here Pr = Qr = (0, r] for all r ∈ L.

(iii) For I = [0, 1] define I = {[0, t] | t ∈ [0, 1]} ∪ {[0, t) | t ∈ [0, 1]}, ι([0, t]) = [0, 1− t)
and ι([0, t)) = [0, 1 − t], t ∈ [0, 1]. (I, I, ι) is a complemented texture, which we will
refer to as the unit interval texture. Here Pt = [0, t] and Qt = [0, t) for all t ∈ I.

(iv) For textures (U,U) and (V,V), U⊗V is product texturing of U×V [5]. Note that
the product texturing U⊗V of U ×V consists of arbitrary intersections of sets of the
form (A×V )∪ (U ×B), A ∈ U and B ∈ V. Here, for (u, v) ∈ U ×V , P(u,v) = Pu×Pv

and Q(u,v) = (Qu × V ) ∪ (U ×Qv).
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Ditopology

A pair (τ, κ) of subsets of U is called a ditopology on a texture (U,U) where the open
sets family τ and the closed sets family κ satisfy

U, ∅ ∈ τ, U, ∅ ∈ κ

G1, G2 ∈ τ =⇒ G1 ∩G2 ∈ τ, K1, K2 ∈ κ =⇒ K1 ∪K2 ∈ κ

Gi ∈ τ, i ∈ I =⇒
∨
i∈I

Gi ∈ τ, Ki ∈ κ, i ∈ I =⇒
⋂
i∈I

Ki ∈ κ.

Hence a ditopology is essentially a “topology” for which there is no a priori relation
between the open and closed sets. For A ∈ U we define the closure cl(A) and the
interior int(A) of A under (τ, κ) by the equalities

cl(A) =
⋂

{K ∈ κ | A ⊆ K}, and int(A) =
∨

{G ∈ τ | G ⊆ A}.
Usually the family τ is called a topology, and the family κ is called a cotopology.

If σ is a complementation on (U,U) and κ = σ(τ), then (τ, κ) is called a comple-
mented ditopology on (U,U, σ).

Dicovers

Let (U,U) be a texture space. A difamily C = {(Aj , Bj) | j ∈ J} of elements of
U × U which satisfies

⋂
j∈J1

Bj ⊆
∨

j∈J2
Aj for all partitions (J1, J2) of J , including

the trivial partitions, is called a dicover of (U,U). An important example is the family
P = {(Pu, Qu) | U ̸⊆ Qu} which is a dicover for any texture (U,U). If C is a dicover,
then we often write LDM in place of (L,M) ∈ D. We recall the following definitions
for dicovers.
(i) C is a refinement of D if given j ∈ J we have LDM so that Aj ⊆ L and M ⊆ Bj .
In this case we write C ≺ D.

(ii) If C, D are dicovers then C∧D = {(A∩C,B ∪D) | ACB, CDD} is the greatest
lower bound (meet) of C, D with respect to refinement.

(iii) The star and co-star of C ∈ U with respect to C are respectively the sets
St(C, C) =

∨
{Aj | J ∈ j, C ̸⊆ Bj} ∈ U, and CSt(C, C) =

⋂
{Bj | j ∈ j, Aj ̸⊆ C} ∈ U.

3. Nearness in texture spaces

In this section we will introduce the notion of nearness structure in the texture space
theory. Firstly we recall that the definition of nearness space in the sense of Her-
rlich [13].

Definition 3.1. Let X be a set and η =
{
A ⊆ P(X) | A ̸= ∅, X =

⋃
A
}
.

A nearness space is a pair (X, η) if η satisfies the following axioms: (1) A ∈ η and
A ≺ B imply B ∈ η. (2) A,B ∈ η imply A ∧ B = {A ∩ B | A ∈ A, B ∈ B} ∈ η.
(3) A ∈ η imply {int(A) | A ∈ A} ∈ η where int(A) = {x ∈ X | {A,X \ {x} ∈ η}.

This definition leads to the following concepts for texture spaces.
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Definition 3.2. Let (U,U) be a texture space.
(a) Let µ be a non-empty set of non-empty dicovers of (U,U). Then µ is called
dinearnes structure if it satisfies the following conditions:

(N1) If C ≺ D and C ∈ µ, then D ∈ µ.

(N2) If C ∈ µ and D ∈ µ, then C ∧D ∈ µ, where

C ∧D = {(A ∩ C,B ∪D) | ACB,CDD}.
(N3) If C ∈ µ, then

(intµ(A), clµ(B)) | ACB} ∈ µ

where A ∈ U, intµ A =
∨

{Pu | ∀Pu ̸⊆ Qv, {(A, ∅), (∅, Pv)} ∈ µ}

clµ A =
⋂

{Qu | ∀Pv ̸⊆ Qu, {(∅, A), (Qv, ∅)} ∈ µ}

(b) A triple (U,U, µ), where µ is a dinearness structure on (U,U), is called dinearness
space.

Note that (int(A), cl(A)) will be used instead of (intµ(A), clµ(B)), unless it causes
confusion.

Lemma 3.3. Let (U,U, µ) be a dinearness space and A,B ∈ U. If A ⊆ B, then we
have: int(A) ⊆ int(B), cl(A) ⊆ cl(B).

Proof. We prove int(A) ⊆ int(B), leaving the dual proof of cl(A) ⊆ cl(B) to the
reader. We suppose int(A) ̸⊆ int(B) Then there exists r ∈ U such that

int(A) ̸⊆ Qr, Pr ̸⊆ int(B).

Since int(A) ̸⊆ Qr, there exists u ∈ U such that Pu ̸⊆ Qr and {(A, ∅), (∅, Pv)} ∈
µ for all Pu ̸⊆ Qv. Now let Pr ̸⊆ Qm for some m ∈ U . Then Pu ̸⊆ Qm and
{(A, ∅), (∅, Pm)} ∈ µ. Since A ⊆ B, {(A, ∅), (∅, Pm)} ≺ {(B, ∅), (∅, Pm)} ∈ µ and so
we have a contradiction Pr ⊆ int(B). □

Theorem 3.4. Let (U,U, µ) be a dinearness space. Then the mappings

int : U → U, A 7→ int(A) and cl : U → U, A 7→ cl(A)

are interior and closure operators, respectively.

Proof. We prove that cl is a closure operator, leaving the dual proof that int is a
interior operator to the reader.
(i) Firstly, we observe that {(∅, ∅), (Qr, ∅)} ̸∈ µ for some r ∈ U . Then cl(∅) = ∅.
(ii) Now we show that A ⊆ cl(A). Suppose A ̸⊆ cl(A). Then we can write A ̸⊆ Qr,
Pr ̸⊆ cl(A) for some r ∈ U . Since Pr ̸⊆ cl(A), Pr ̸⊆ Qu for some u ∈ U such that
{(∅, A), (Qv, ∅)} ∈ µ where Pv ̸⊆ Qu for all v ∈ U . From the definition of dicover,
A ̸⊆ Qr is obtained, which is a contradiction.

(iii) Now, we must prove that cl(A) = cl(cl(A)). From (ii), cl(A) ⊆ cl(cl(A)). Let
cl(cl(A)) ̸⊆ cl(A). Then cl(cl(A)) ̸⊆ Qr, Pr ̸⊆ cl(A) for some r ∈ U . So there exists
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u ∈ U such that Pr ̸⊆ cl(A) and (∅, A), (Qv, ∅) ∈ µ where Pv ̸⊆ Qu for all v ∈ U .
Then we can write (∅, A), (Qr, ∅) ∈ µ. Now let Pm ̸⊆ Qr, m ∈ U . Since Pm ̸⊆ Qu, we
have {(∅, A), (Qm, ∅)} ∈ µ, and from (N3) condition, {(∅, cl(A)), (int(Qm), ∅)} ∈ µ.
So, {(∅, cl(A)), (int(Qm), ∅)} ≺ {(∅, cl(A)), (Qm, ∅)} ∈ µ and we have cl(cl(A)) ⊆ Qr

which is a contradiction.

(iv) Finally we prove that cl(A∪B) = cl(A)∪cl(B). Since A ⊆ A∪B and B ⊆ A∪B,
cl(A) ∪ cl(B) ⊆ cl(A ∪ B) by Lemma 3.3. Conversely, we suppose cl(A ∪ B) ̸⊆
cl(A) ∪ cl(B). Then cl(A ∪ B) ̸⊆ Qr, Pr ̸⊆ cl(A) ∪ cl(B) for some r ∈ U . Hence,
Pr ̸⊆ cl(A) and Pr ̸⊆ cl(B). Because of Pr ̸⊆ cl(A), we have {(∅, A), (Qv, ∅)} ∈ µ such
that Pr ̸⊆ Qu for some u ∈ U where Pv ̸⊆ Qu for all v ∈ U .

Likewise, since Pr ̸⊆ cl(B), we have {(∅, B), (Qv, ∅)} ∈ µ such that Pr ̸⊆ Qu′

where Pv ̸⊆ Qu′ for all v ∈ U . Hence, Pm ̸⊆ Qu and Pm ̸⊆ Qu′ , and so C =
{(∅, A), (Qm, ∅)} ∈ µ and D = {(∅, B), (Qm, ∅)} ∈ µ. From (N2) condition,

C ∧D = {(∅, A ∪B), (∅, A), (∅, B), (Qm, ∅)} ∈ µ

and so C ∧D ≺ {(∅, A ∪B), (Qm, ∅)} ∈ µ.

Consequently, we have cl(A ∪B) ⊆ Qr which is a contradiction.
□

Theorem 3.5. Let (U,U, µ) be a dinearness space. Then the pair (τµ, κµ) is a di-
topology on (U,U) where

τµ = {G ∈ U | int(G) = G}, κµ = {F ∈ U | cl(F ) = F}.

Proof. We prove that the family κµ is a cotopology on (U,U), leaving the dual proof
that the family intµ is a topology to the reader. Clearly U ∈ κµ. Further, ∅ ∈ κµ,
since cl(∅) = ∅ by Theorem 3.4.

Let A,B ∈ κµ. Then cl(A) = A and cl(B) = B. Thus cl(A∪B) = cl(A)∪ cl(B) =
A ∪B by Teorem 3.4, and we have A ∪B ∈ κµ.

Let {Kj}j∈J ⊆ κµ. By Theorem 3.4, we can write cl(
⋂

j∈J(Kj)) ⊆
⋂

j∈J Kj .
Because of cl(Kj) = Kj for all j ∈ J , it is obtained that⋂

j∈J

Kj ⊆ Kj =⇒ cl(Kj) = Kj ⊆ cl(
⋂
j∈J

Kj) =⇒ cl(
⋂
j∈J

Kj) ⊆
⋂

Kj .

Consequently,
⋂

j∈J Kj ∈ κµ. □

Now we give the relation between the notion of nearness in the sense of Herrlich
and dinearness structure. Firstly, we recall some useful results from [10, Proposition
11.1].

Remark 3.6. Let U be a non-empty set. Then

(a) Let C = {Aj | j ∈ J} ⊆ P(U). Then C is a cover of U if and only if {(A,X \A) |
A ∈ C} is a dicover of the discrete texture space (U,P(U)).

(b) If a family D =
{
(Ai, Bi) | i ∈ I

}
is a dicover of (U,P(U)) then the families

{Ai}i∈I and {X \Bi}i∈I are covers of U .



S. Dost 31

Now let (U,U) be a texture. The family of dicovers of (U,U) will be denoted
by DC.

Theorem 3.7. Let (X, η) be a nearness space and DC be the dicover family of (U,P(U)).
That is, DC =

{
C = {(Ai, Bi) | i ∈ I} | C is a dicover of (U,U)

}
. Then the family,

µ =
{
C ∈ DC | {Ai}i∈I ∈ η ve {X \Bi}i∈I ∈ η

}
is a dinearness structure on the discrete space (X,P(X)).

Proof. We observe that µ ̸= ∅, since {(X, ∅)} ∈ µ.
(N1) Let C ∈ µ and D =

{
(Ci, Di) | i ∈ I} ∈ DC. Suppose that C ≺ D and

(A,B) ∈ C. Then there exists (C,D) ∈ D such that A ⊆ C and D ⊆ B. Here, the
families {Ci}i∈I and {X \Di}i∈I are cover of X by Remark 3.6.

So, {Ai}i∈I ∈ η and {X \Bi}i∈I ∈ η, and we have D ∈ µ.
(N2) Let C = {(Ai, Bi) | i ∈ I} ∈ µ and D = {(Ci, Di) | i ∈ I} ∈ µ. Then

A1,A2,B1,B2 ∈ η where A1 = {Ai}i∈I , B1 = {X \ Bi}i∈I , A2 = {Cj}j∈J and
B2 = {X \Dj}j∈J .

Thus, {A∩C | A ∈ A1, C ∈ A2} ∈ η and {(X \B)∩ (X \D) | B ∈ B1, D ∈ B2} =
{X \ (B ∪D) | B ∈ B1, D ∈ B2} ∈ η and so we have

C ∧D = {(A ∩ C,B ∪D) | (A,B) ∈ C, (C,D) ∈ D} ∈ µ.

Let C ∈ µ. Since A = {Ai}i∈I ∈ η and B = {X\Bi}i∈I ∈ η, {intη(A) | A ∈ A} ∈ η
and {intη(X \B) | X \B ∈ B} ∈ η. For some (A,B) ∈ C, we have

intµ A =
∨

{Pu | ∀Pu ̸⊆ Qv, {(A, ∅), (∅, Pv)} ∈ µ}

=
⋃

{{u} | ∀u = v, {(A, ∅), (∅, Pv)} ∈ µ}

= {u | {(A, ∅), (∅, {u})} ∈ µ} = {u | {A,X − {u}} ∈ η} = intη(A)

and clµ B =
⋂

{Qu | ∀Pv ̸⊆ Qu, {(∅, B), (Qv, ∅)} ∈ µ}

=
⋂

{X \ {u} | ∀u = v, {(∅, B), (Qv, ∅)} ∈ µ}

= X \
⋃

{u | {(∅, B), (Qu, ∅)} ∈ µ}

= X \ {u | {X \B,X \ {u}} ∈ η} = X \ intη(X \B) = clη(B).

Hence X \ clµ(B) = X \ clη(B) = intη(X \ B) and {intµ(Ai) | i ∈ I} ∈ η ve
{X \ clµ(Bi) | i ∈ I} ∈ η. Consequently, {(intµ(A), clµ(B)) | AB} ∈ µ. □

Now, we will give dinearness structure by using bi-R0 ditopology. Firstly, we
recall [15] that a topological space X is called a R0, or symmetric, topological space if
G ⊆ X is open set and x ∈ G, then cl {x} ⊆ G. On the other hand, a ditopology (τ, κ)
on complemented texture (U,U) is bi-R0 if G ∈ τ and G ̸⊆ Qu, then cl(Pu) ⊆ G, or
equivalently, if F ∈ κ and Pu ̸⊆ F , then F ⊆ int(Qu) [7].

Note that a topological space (X,T) is R0 if and only if the corresponding di-
topology (T,Tc) on the complemented discrete texture (X,P(X), π) which by Exam-
ple 2.2 (i) is bi-R0 [7, Example 3.3].

Let (X,T) be a R0 topological space. Then (X, η) is a nearness space [13] where
η = {A ⊆ P(X) | X =

⋃
A∈A int(A)}. Then we have the following corollary.
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Corollary 3.8. Let (X,T) be an R0 topological space and the pair (X, η) be cor-
responding nearness space. Now let (T,Tc) be the corresponding ditopology on the
discrete texture (X,P(X)). Then the family

µ =
{
C ∈ DC | {Ai}i∈I ∈ η and {X \Bi}i∈I ∈ η

}
=

{
C ∈ DC | X =

⋃
(Ai,Bi)∈C

int(Ai) and X =
⋃

(Ai,Bi)∈C

int (X \Bi)
}

=
{
C ∈ DC | X =

⋃
(Ai,Bi)∈C

int(Ai) and X =
⋃

(Ai,Bi)∈C

X \ cl(Bi)
}

=
{
C ∈ DC | X =

⋃
(Ai,Bi)∈C

int(Ai) and ∅ =
⋂

(Ai,Bi)∈C

cl(Bi)
}

is a dinearness structure on (X,P(X)) by Teorem 3.7.

An approach for complemented texture spaces will be given in the last section.

Lemma 3.9. Let (U,U, σ) be a complemented texture space and C,D ∈ DC. The
following are satisfied.
(i) The family σ(C) = {(σ(B), σ(A)) | ACB} is a dicover of (U,U).

(ii) σ(C ∧D) = σ(C) ∧ σ(D).

(iii) C ≺ D ⇐⇒ σ(C) ≺ σ(D).

Proof. (i) Let (I1, I2) be a partition of an index set I. Since C = {(Ai, Bi) |∈ I} is a di-
cover of (U,U), we can write

⋂
i∈I1

Bi ⊆
∨

i∈I2
Ai and σ(

∨
i∈I2

Ai) ⊆ σ(
⋂

i∈I1
Bi) =⇒⋂

i∈I2
σ(Ai) ⊆

∨
i∈I1

σ(Bi). Thus σ(C) = {(σ(B), σ(A)) | ACB)} is a dicover of
(U,U).

(ii) We observe that C∧D = {(A∩C,B ∪D) | (A,B) ∈ C, (C,D) ∈ D}, and then
we have

σ(C ∧D) = {(σ(B ∪D), σ(A ∩ C)) | (σ(B), σ(A)) ∈ σ(C), (σ(D), σ(C)) ∈ σ(D)}
= {(σ(B) ∩ σ(D), σ(A) ∪ σ(C)) | (σ(B), σ(A)) ∈ σ(C), (σ(D), σ(C)) ∈ σ(D)}
= σ(C) ∧ σ(D).

(iii) Let C ≺ D. Then it is obtained that

C ≺ D =⇒∀(A,B) ∈ C,∃(C,D) ∈ D such that A ⊆ C, D ⊆ B

=⇒∀(σ(B), σ(A)) ∈ σ(C),∃(σ(D), σ(C)) ∈ σ(D)

such that σ(C) ⊆ σ(A), σ(B) ⊆ σ(D)

=⇒σ(C) ≺ σ(D).

Theorem 3.10. Let (U,U, σ) be a complemented texture space and µ be a dinearness
structure on (U,U). Set

intσ(µ) A = σ(clµ σ(A)) and clσ(µ) A = σ(intµ σ(A)), ∀A ∈ U.

Then we have:
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(i) If (τµ, κµ) is the obtaining ditopology by µ, then σ(τµ) = κσ(µ).

(ii) The family σ(µ) = {σ(C) | C ∈ µ} is a dinearness structure on (U,U).

Proof. (i) We observe that

F ∈ σ(τµ) =⇒ σ(F ) ∈ τµ

=⇒ intµ(σ(F )) = σ(F ) =⇒ σ(intµ(σ(F ))) = σ(σ(F ))

=⇒ clσ(µ) F = F =⇒ F ∈ κσ(µ)

and F ∈ κσ(µ) =⇒ clσ(µ) F = F

=⇒ σ(clσ(µ) F ) = σ(F ) =⇒ intµ(σ(F ))) = σ(F )

=⇒ σ(F ) ∈ τµ =⇒ F ∈ σ(τµ).

(ii) We show that σ(µ) is a dinearness structure.
(N1) Let σ(C) ∈ σ(µ) and D ∈ DCU . Suppose σ(C) ≺ D. Then we have D ∈ σ(µ),

since C ≺ σ(D) and σ(D) ∈ µ.
(N2) It is clear from Lemma 3.9.
Let C = {(Ai, Bi) | i ∈ I} ∈ µ and σ(C) = {(σ(Bi), σ(Ai)) | i ∈ I, (Ai, Bi) ∈ C}.

Now we prove that

{(intσ(µ)(σ(Bi)), clσ(µ)(σ(Ai))) | (σ(Bi), σ(Ai)) ∈ σ(C))} ∈ σ(µ).

Since C ∈ µ, we can write

{(intµ(Ai), clµ(Bi)) | i ∈ I, (Ai, Bi) ∈ C} ∈ µ

and, thus, {(σ(clµ(Bi)), σ(intµ(Ai))) | i ∈ I, (Ai, Bi) ∈ C} ∈ σ(µ).

Finnaly, by assumption, we have

σ(clµ Bi) = intσ(µ) σ(Bi) and σ(intµ Ai) = clσ(µ) σ(Ai) ∈ σ(µ).

Definition 3.11. Let (U,U, σ) be a complemented texture space and µ be a din-
earness structure on (U,U). Then the quadruple (U,U, σ, µ) is called complemented
dinearness texture space if µ = σ(µ).

Corollary 3.12. Let (U,U, σ, µ) be a complemented dinearness texture space. Then
the pair (τµ, κµ) is a complemented ditopology which is obtained by µ.
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[16] S. Özçağ, L. M. Brown, Di-uniform texture spaces, Appl. Gen. Topol., 4(1) (2003), 157–192.

[17] Yang, Z. Yang, New proof on embedding the category of proximity spaces into the category of
nearness spaces, Fundam. Inform. 88(1-2) (2008), 207–223.

[18] G. Yıldız, R. Ertürk, Di-extremities on textures, Hacet. J. Math. Stat., 38(3) (2009), 243–257.

(received 27.03.2020; in revised form 18.01.2021; available online 26.12.2021)

Hacettepe University, Department of Secondary Science and Mathematics Education, 06800
Beytepe, Ankara, Turkey

E-mail: dost@hacettepe.edu.tr


	Introduction
	Texture spaces
	Nearness in texture spaces

