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A NEW CLASS OF FINSLER METRICS

Tahere Rajabi and Nasrin Sadeghzadeh

Abstract. In this paper, we construct a new class of Finsler metrics which are not always
(α, β)-metrics. We obtain the spray coefficients and Cartan connection of these metrics. We
have also found a necessary and sufficient condition for them to be projective. Finally, under
some suitable conditions, we obtain many new Douglas metrics from the given one.

1. Introduction

(α, β)-metrics form a rich class of Finsler metrics. They are computable and the pat-
terns offer references for more study in Finsler spaces. Then, introducing new Finsler
metrics which are not (α, β)-metrics helps us to evaluate the patterns. There are
some classes of Finsler metrics which are not always (α, β)-metrics such as general-
ized (α, β)-metrics [15] or spherically symmetric Finsler metrics [17].

Here we are going to consider the Finsler metrics given by

F̄ = Fφ(s), (1)

where F is a Finsler metric, s = β
F , β = biy

i, ‖β‖F < b0 and φ(s) is a positive C∞

function on (−b0, b0). We call them (F, β)-metrics. These metrics are not always
(α, β)-metrics even if F is an (α, β)-metric.

Let F = α + γ be a Randers metric, where α is a Riemannian metric and γ is a
1-form on M . Put

F̄ =
(F + β)2

F
=

(α+ γ + β)2

α+ β
= α

(1 + s+ s̄)2

1 + s
,

where s = β
α and s̄ = γ

α 6= s. Here F̄ = αΨ(s, s̄) is a Finsler metric but not (α, β)-
metric. Whereas, for any 1-form β on M , F̄ = F + β = α + β + γ is a Randers
metric.
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Let F be a projectively flat Finsler metric such as the generalized Berwald’s metric

F =

(
(1 + 〈a, x〉)(

√
(1− |x|2)|y|2 + 〈x, y〉2 + 〈x, y〉) + (1− |x|2)〈a, y〉

)2
(1− |x|2)2

√
(1− |x|2)|y|2 + 〈x, y〉2

,

where a ∈ Rn is a constant vector. It is locally projectively flat with constant flag

curvature K = 0 [11]. For any closed 1-form β such that β = 〈a,y〉
1+〈a,x〉 , metric F̄ = F+β

is also a projectively flat Finsler metric and β is closed form (see Theorem 1.1).

One could consider the above metrics as a change of a given Finsler metric. Various
Finsler changes have been extensively studied and they have numerous applications.

In 1971, Matsumoto introduced the transformation of Finsler metric F̄ (x, y) =
F (x, y) + β(x, y), where β(x, y) = bi(x)yi is a 1-form [9]. In 1984, Shibata [12]
introduced the transformation of Finsler metric F̄ (x, y) = f(F, β), where β(y) =
bi(x)yi, bi(x) are components of a covariant vector in (Mn, F ) and f is positively
homogenous function of degree 1 in F and β. This change of metric is called a
β−change.

In 1980, while studying the conformal transformation of Finsler spaces, H. Izumi [8]
introduced the concept of an h-vector bi. The h-vector bi, as well as the function of
coordinates xi itself, are also dependent on yi. The h-vector bi is v-covariant constant
with respect to the Cartan connection and satisfies FChijbh = ρhij , where ρ is a non-

zero scalar function, Chij are components of Cartan tensor and hij are components of
angular metric tensor. We will prove the following theorem.

Theorem 1.1. An (F, β)-metric F̄ = Fφ(s), where s = β
F , β(x, y) = bi(x, y)yi with

h-vector bi, is projectively flat if and only if

2(φ− sφ′ + ρφ′)hirG
r + 2Fφ′si0 + φ′′

Θ

λ
mi = 0, (2)

where rij := 1
2

(
bi|j+bj|i

)
, sij := 1

2

(
bi|j−bj|i

)
, si0 = sijy

j, Θ= (φ−sφ′+ρφ′)r00−2Fφ′s0,
λ= φ−sφ′+ρφ′+(b2−s2)φ′′, hij= gij−`i`j and mi= bi−s`i.

One could easily show that the above theorem is satisfied for every (F, β)-metric
with β(y) = bi(x)yi just by putting ρ = 0, with β not being necessarily an h-vector.

In this paper, we study the (F, β)-metric with F being an m-root Finsler metric.
Let (M,F ) be a Finsler manifold of dimension n, TM its tangent bundle and (xi, yi)
the coordinates in a local chart on TM . Let F be a scalar function on TM defined by
F = m

√
A, where A is given by A := ai1...im(x)yi1yi2 . . . yim with ai1...im symmetric in

all its indices. Then F is called an m-root Finsler metric.

Theorem 1.1 includes all known results about projective changes of Finsler met-
rics [10, 13, 14]. For instance, we get the following two corollaries which were stated
as theorems in the respected papers.

Corollary 1.2 ([2, 10]). Let F = m
√
A (m > 3) be an m-th root Finsler metric on

an open subset U ⊂ Rn, where A is irreducible. Then Randers change F̄ = F + β
with β = bi(x)yi is locally projectively flat if and only if it is locally Minkowski.
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Corollary 1.3 ([13]). Let F = m
√
A (m > 3) be an m-th root Finsler metric on an

open subset U ⊂ Rn, where A is irreducible. Then Matsumoto change F̄ = F 2

F−β with

β = bi(x)yi is locally projectively flat if and only if ∂A
∂xl = 0 and bi = constant.

Finally, one could easily conclude that the following also holds.

Corollary 1.4. Let F = m
√
A (m > 3) be an m-th root Finsler metric on an open

subset U ⊂ Rn, where A is irreducible. Then (F, β)-metric F̄ = Fφ( βF ) with β =
bi(x)yi is locally projectively flat if and only if

−m(m− 1)λ(φ− sφ′)yiA0A
1− 4

m +mλ(φ− sφ′)(A0i −Axi)A1− 2
m

+ 2φ′(λsi0 − φ′′s0mi)A
1
m + φ′′(φ− sφ′)r00mi = 0,

where λ = φ − sφ′ + (b2 − s2)φ′′ , r00, si0 and s0 are represented as (20), A0i, Axi

and A0 are defined in (46).

A Finsler metric is called Douglas metric if the Douglas tensor D = 0. The
Douglas curvature was introduced by J. Douglas in 1927 [4]. In the same paper it
was proven that Douglas and Weyl tensors are invariant under projective changes.
Roughly speaking, a Douglas metric is a Finsler metric having the same geodesics
as a Riemannian metric. Hence, in this paper we are going to obtain the conditions
under which the change F̄ = Fφ(s) of Douglas space becomes a Douglas space. Then
we will prove the following.

Theorem 1.5. Let (M,F ) be a Douglas space. An (F, β)-metric F̄ = Fφ( βF ) with
h-vector bi is Douglas if and only if

Hij :=
Fφ′

φ−sφ′+ρφ′
(si0y

j−sj0yi)+
φ′′
[
(φ−sφ′+ρφ′)r00−2Fφ′s0

]
2(φ−sφ′+ρφ′)λ

(biyj−bjyi), (3)

where rij, s
i
0 and s0 are represented as (20), are homogeneous polynomial in yi of

degree 3.

By the above theorem one could obtain many Douglas metrics from a given one.
For example, the following corollary introduces some new Douglas metrics from a
given m-root Finsler metric of Douglas type.

Corollary 1.6. (i) Let F = m
√
A (m > 3) be an m-root Finsler metric of Douglas

type. Then Randers change F̄ = F + β with β = bi(x)yi is of Douglas type if and
only if sij = 0.

(ii) Let F = m
√
A (m > 3) be an m-root Finsler metric of Douglas type. Then

Matsumoto change F̄ = F 2

F−β with β = bi(x)yi is of Douglas type if and only if
bi|j = 0.

2. Preliminaries

Let M be a smooth manifold and TM :=
⋃
x∈M TxM be the tangent bundle of M ,

where TxM is the tangent space at x ∈ M . A Finsler metric on M is a function
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F : TM −→ [0,+∞) with the following properties
(i) F is C∞ on TM\{0};

(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ;

(iii) for each x ∈ M , the following quadratic form gy on TxM is positive definite,

gy(u, v) := 1
2
∂2

∂s∂t

[
F 2(y + su+ tv)

]
|t,s=0, u, v ∈ TxM .

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, define
Cy : TxM⊗TxM⊗TxM → R by Cy(u, v, w) := 1

2
d
dt

[
gy+tw(u, v)

]
|t=0, u, v, w ∈ TxM .

The family C := {Cy}y∈TM0
is called the Cartan torsion. It is well known that

C = 0 if and only if F is Riemannian.
Given a Finsler manifold (M,F ), then a global vector field G is induced by F

on TM0, which in a standard coordinate (xi, yi) for TM0 is given by G = yi ∂
∂xi −

2Gi(x, y) ∂
∂yi , where Gi(x, y) are local functions on TM0 given by Gi = 1

4g
il
{
∂gjl
∂xk +

∂glk
∂xj − ∂gjk

∂xl

}
yjyk. G is called the associated spray to (M,F ). The projection of an

integral curve of the spray G is called a geodesic in M .
The Cartan connection in M is given as CΓ = (Γijk, N

i
j , C

i
jk), where

Γijk =
1

2
gil
{δgjl
δxk

+
δglk
δxj
− δgjk

δxl

}
,

δ

δxi
:=

∂

∂xi
−Nm

i

∂

∂ym
, N i

j = ∂̇jG
i, N i

jy
j = 2Gi.

Note that ∂i and ∂̇i denote the derivations with respect to xi and yi respectively.

For the Cartan connection, we define Xi
j|k :=

δXi
j

δxk +Xr
j Γirk −Xi

rΓ
r
jk, Xi

j;k := ∂̇kX
i
j +

Xr
jC

i
rk−Xi

rC
r
jk, where “|′′ and “;′′ denote the horizontal and vertical covariant deriva-

tive of Xi
j . Also, the axioms gij|k = 0 and gij;k = 0 hold.

The h-vector bi is v-covariant constant with respect to the Cartan connection and
satisfies FChijbh = ρhij , where ρ is a non-zero scalar function, Chij = gmhCijm and hij
are components of angular metric tensor. Thus if bi is an h-vector then (i) bi;j = 0,
(ii) FChijbh = ρhij . Put ch = gijChij . Hence we obtain

ρ =
F

n− 1
chbh, (4)

∂̇jbi =
ρ

F
hij . (5)

Since ρ 6= 0 and hij 6= 0, the h-vector bi depends not only on positional coordinates but
also on directional arguments. Izumi [8] showed that ρ is independent of directional
arguments and that if bi is an h-vector then ∗bi := bi − ρ`i and b := ‖β‖F are
independent of y.

3. (F, β)-metrics

Throughout the paper we shall use the notations `i := ∂̇iF , `ij := ∂̇i∂̇jF , `ijk :=

∂̇i∂̇j ∂̇kF . Let bi be an h-vector in the Finsler space (M,F ). Since hijy
j = 0, we have

∂̇iβ = bi. Contracting with yj will be denoted by the subscript 0. For example, we
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write bi|0 for bi|jy
j .

Using (5) and the fact that `i|j = `ij|k = 0 we have the following relations

∂jbi = bi|j + ρNr
j `ir + brΓ

r
ij , (6)

∂j`i = Nr
j `ir + `rΓ

r
ij , (7)

∂k`ij = Nr
k `ijr + `rjΓ

r
ik + `irΓ

r
jk. (8)

For s = β/F , by (6) and the fact that ∂kF = `rN
r
k we have

∂̇is =
1

F
mi, ∂is =

1

F

(
b0|i +mrN

r
i

)
, (9)

where mi := bi − s`i. Using (6) and (7) we get

∂̇kmi = (ρ− s)`ik −
1

F
mk`i,

∂kmi = bi|k + (ρ− s)`irNr
k −

1

F
mrN

r
k `i +mrΓ

r
ik −

1

F
b0|k`i.

(10)

Differentiating equation (1) with respect to yi, yj , yk and using the first equations
in (9) and (10) imply that

¯̀
i =φ`i + φ′mi, (11)

¯̀
ij =

(
φ− sφ′ + ρφ′

)
`ij +

φ′′

F
mimj , (12)

¯̀
ijk =

[
φ− sφ′ + ρφ′

]
`ijk +

φ′′

F
(ρ− s)

[
mk`ij +mj`ik +mi`jk

]
+
φ′′′

F 2
mimjmk

− φ′′

F 2

[
mimj`k +mimk`j +mjmk`i

]
. (13)

Definition 3.1. A Finsler metric F̄ is called (F, β)-metric if it has the following
form F̄ = Fφ(s), s := β

F , where F is a Finsler metric and β = biy
i is a 1-form

on an n-dimensional manifold M , φ(s) is a positive C∞ function on (−b0, b0) and
‖β‖F < b0.

(F, β)-metric F̄ is called (F, β)-metric with h-vector if bi := bi(x, y) be an h-vector
on (M,F ).

Lemma 3.2. For any Finsler metric F and 1-form β = biy
i with h-vector bi on

manifold M with ‖β‖F < b0, F̄ = Fφ(s) is a Finsler metric if and only if the positive
C∞ function φ = φ(s) satisfies

φ(s)− sφ′(s) + ρφ′(s) > 0, φ(s)− sφ′(s) + ρφ′(s) + (b2 − s2)φ′′(s) > 0, (14)

when n ≥ 3 or φ(s)− sφ′(s) + ρφ′(s) + (b2 − s2)φ′′(s) > 0, when n = 2, where s = β
F

and b are arbitrary numbers with |s| ≤ b < b0 and ρ is given by (4).

Proof. The case n = 2 is similar to n ≥ 3, so we only prove the proposition for n ≥ 3.
It is easy to verify that F̄ is a function with regularity and positive homogeneity. In the
following we will verify strong convexity. Direct computations yield the fundamental
tensor ḡij = 1

2 ∂̇i∂̇jF̄
2 as follows

ḡij = ηgij + η0bibj + η1(`ibj + `jbi) + η2`i`j , (15)
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where η := φ(φ − sφ′ + ρφ′), η0 := φφ′′ + φ′φ′, η1 := φφ′ − sη0, η2 := −sη1 − ρφφ′.
Using [11, Lemma 1.1.1], we obtain

det(ḡij) = φn+1(φ− sφ′ + ρφ′)n−2
(
φ− sφ′ + ρφ′ + (b2 − s2)φ′′

)
det(gij). (16)

Assume that (14) is satisfied. Using (14) and (16), we get det(ḡij) > 0. The rest of
the proof is similar to the proof for (α, β)-metrics from [11]. �

By putting ρ = 0, one could easily show that Lemma 3.2 is satisfied for (F, β)-
metrics.

Corollary 3.3. Let M be an n-dimensional manifold. For any Finsler metric F
and 1-form β = biy

i with ‖β‖F < b0, F̄ = Fφ(s) is a Finsler metric if and only if
the positive C∞ function φ = φ(s) satisfies φ(s) − sφ′(s) > 0, φ(s) − sφ′(s) + (b2 −
s2)φ′′(s) > 0, when n ≥ 3, or φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, when n = 2, where
s = β

F and b are arbitrary numbers with |s| ≤ b < b0.

The formula for (ḡij) can be obtained from [11, Lemma 1.1.1],

ḡij =
1

ρ̄

[
gij − δ̄

1 + b2δ̄
bibj − µ̄

1 + µ̄Ȳ 2
(`i + λ̄bi)(`j + λ̄bj)

]
, (17)

where (gij) = (gij)
−1, b2 = bib

i = gijbibj and δ̄ := 1
η

(
η0 − η21

η2

)
, µ̄ := η2

η , λ̄ := ε̄−δ̄s
1+b2δ̄

,

ε̄ := η1
η2

, Ȳ 2 := 1 + (ε̄+ λ̄)s+ ε̄λ̄b2. Differentiating (15) with respect to yk, the Cartan

tensor C̄ijk is given by

C̄ijk = ηCijk +
η′

2F
hijk +

η′0
2F

mimjmk, (18)

where hijk := mihjk +mjhik +mkhij . By (17) and (18) we can obtain

C̄ijk =Cijk+
η′

2ηF
hijk+

η′0
2ηF

mimjmk−
1

2ηF

{[
2ρη+η′(b2−s2)

]
hjk

+
[
2η′+η′0(b2−s2)

]
mjmk

}
×
{[ δ̄

1+δ̄b2
+

µ̄λ̄2

1+µ̄Ȳ 2

]
bi+

µ̄λ̄2

1+µ̄Ȳ 2
`i
}
. (19)

For 1-form β = bi(x, y)yi where bi is an h-vector, we have

rij :=
1

2

(
bi|j + bj|i

)
, sij :=

1

2

(
bi|j − bj|i

)
. (20)

where “|′′ denotes the horizontal covariant derivative with respect to the Cartan
connection of F . Moreover, we define ri0 := rijy

j , rj := birij , r0 := rjy
j , r00 =

rijy
iyj , si0 := sijy

j , sj := bisij , s0 := sjy
j , si0 = gijsj0. Then ∂̇ksij = 1

2

(
ρj`ik −

ρi`jk
)
, ∂̇ksi0 = 1

2ρ0`ik + sik, where ρi = ∂iρ and ρ0 = ρky
k.

4. Spray coefficients of (F, β)-metrics

In this section we are going to calculate the spray coefficients of (F, β)-metrics. First
assume that β is a 1-form with h-vector.

Differentiating (11) with respect to xj and using (7) and the second equations
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in (9) and (10) yield

∂j ¯̀
i = φ

[
`irN

r
j +`rΓ

r
ij

]
+
φ′′

F

[
b0|j+mrN

r
j

]
mi+φ

′
[
bi|j+(ρ−s)`irNr

j +mrΓ
r
ij

]
. (21)

Next, we deal with ¯̀
i|j = 0, that is ∂j ¯̀

i = ¯̀
irN̄

r
j + ¯̀

rΓ̄
r
ij . Let us define

Di
jk := Γ̄ijk − Γijk, Di

j := Di
jky

k = N̄ i
j −N i

j , Di := Di
jy
j = 2Ḡi − 2Gi. (22)

Then ∂j ¯̀
i = ¯̀

ir(D
r
j +Nr

j ) + ¯̀
r(D

r
ij + Γrij).

Putting (11) and (12) in the above equation yields

∂j ¯̀
i = ¯̀

irD
r
j + ¯̀

rD
r
ij +

[
(φ− sφ′ + ρφ′)`ir +

φ′′

F
mimr

]
Nr
j +

[
φ`r + φ′mr

]
Γrij . (23)

By comparing (21) and (23), we get the following φ′bi|j = ¯̀
irD

r
j + ¯̀

rD
r
ij −

φ′′

F mib0|j .
Thus by (20) we have

2φ′rij = ¯̀
irD

r
j + ¯̀

jrD
r
i + 2¯̀

rD
r
ij −

φ′′

F

[
mib0|j +mjb0|i

]
, (24)

2φ′sij = ¯̀
irD

r
j − ¯̀

jrD
r
i −

φ′′

F

[
mib0|j −mjb0|i

]
. (25)

Contracting (24) and (25) by yj implies that

2φ′ri0 = ¯̀
irD

r + 2¯̀
rD

r
i −

φ′′

F
r00mi, (26)

2φ′si0 = ¯̀
irD

r − φ′′

F
r00mi. (27)

Subtracting (27) from (26) yields

φ′(ri0 − si0) = ¯̀
rD

r
i . (28)

Contracting (28) by yi leads to

φ′r00 = ¯̀
rD

r. (29)

To obtain the spray coefficients of F̄ , first we must prove the following lemma.

Lemma 4.1. The system of algebraic equations
(i) ¯̀

irA
r = Bi, (ii) ¯̀

rA
r = B,

has a unique solution Ar for given B and Bi such that Biy
i = 0. The solution is

given by

Ai =
F

φ− sφ′ + ρφ′
Bi +

1

φ

(
B − F

λ
φ′Brb

r
)
`i − Fφ′′(Brb

r)

λ(φ− sφ′ + ρφ′)
mi,

where Bi = gilBl and mi = gilml.

Proof. Contracting (12) by bi implies that

¯̀
irb

i =
λ

F
mr, (30)

where λ := φ− sφ′ + ρφ′ + (b2 − s2)φ′′.
Then contracting equation (i) by bi and using (30), we get the following

λ

F
mrA

r = Brb
r. (31)
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Substituting (11) in equation (ii) yields φ`rA
r + φ′mrA

r = B. Putting (31) in this
equation we get

`rA
r =

1

φ

(
B − F

λ
φ′Brb

r
)
. (32)

Substituting (12) in equation (i) and using the fact that `ir = 1
F

(
gir − `i`r

)
, we get

girA
r =

F

φ− sφ′ + ρφ′
Bi + (`rA

r)`i −
φ′′

φ− sφ′ + ρφ′
(mrA

r)mi.

Contracting this equation by gij and using (31) and (32) complete the proof. �

Now, we are able to obtain the spray coefficients of F̄ .

By contracting (27) by bi and using the above relations, we get λ
FmrD

r = 2φ′s0 +
φ′′

F r00(b2−s2). The equations (27) and (29) constitute a system of algebraic equations
in `rD

r and mrD
r whose solution from Lemma 4.1 is given by

Di =
F

φ− sφ′ + ρφ′
Bi +

1

φ

(
B − F

λ
φ′Brb

r
)
`i − Fφ′′

λ(φ− sφ′ + ρφ′)
Brb

rmi,

where Bi = 2φ′si0 + φ′′

F r00m
i, B = φ′r00, Brb

r = 2φ′s0 + φ′′

F (b2 − s2)r00. Since
Di = 2Ḡi − 2Gi, we get the following theorem.

Theorem 4.2. Let F̄ be an (F, β)-metric with h-vector bi. Then the spray coefficients
of F̄ are given by

2Ḡi = 2Gi+
2Fφ′

φ−sφ′+ρφ′
si0+

[
φ′(φ−sφ′+ρφ′)−sφφ′′

][
(φ−sφ′+ρφ′)r00−2Fφ′s0

]
φ(φ−sφ′+ρφ′)λ

`i

+
φ′′
[
(φ−sφ′+ρφ′)r00−2Fφ′s0

]
(φ−sφ′+ρφ′)λ

bi. (33)

Corollary 4.3. Let F̄ be an (F, β)-metric. Then the spray coefficients of F̄ are
given by

2Ḡi = 2Gi +
2Fφ′

φ− sφ′
si0 +

[
φ′(φ− sφ′)− sφφ′′

][
(φ− sφ′)r00 − 2Fφ′s0

]
φ(φ− sφ′)(φ− sφ′ + (b2 − s2)φ′′)

`i

+
φ′′
[
(φ− sφ′)r00 − 2Fφ′s0

]
(φ− sφ′)(φ− sφ′ + (b2 − s2)φ′′)

bi. (34)

5. Cartan connection of (F, β)-metrics

Here the Cartan connection coefficients of (F, β)-metrics are calculated. Differentiat-
ing (12) with respect to xk and using (9) and (10), we get

∂k ¯̀
ij =

[
φ−sφ′+ρφ′

]
∂k`ij+

φ′′

F
(ρ−s)

[
b0|k+mrN

r
k

]
`ij+φ

′ρk`ij+
φ′′′

F 2

[
b0|k+mrN

r
k

]
mimj

− φ
′′

F 2
mimj∂kF+

φ′′

F
mj

[
bi|k+(ρ−s)`irNr

k−
1

F
mrN

r
k `i+mrΓ

r
ik−

1

F
b0|k`i

]
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+
φ′′

F
mi

[
bj|k+(ρ−s)`rjNr

j−
1

F
mrN

r
k `j+mrΓ

r
jk−

1

F
b0|k`j

]
. (35)

With the help of ¯̀
ij|k = 0, that is ∂k ¯̀

ij = ¯̀
ijrN̄

r
k + ¯̀

rjΓ̄
r
ik + ¯̀

irΓ̄
r
jk, and by (22) we

have ∂k ¯̀
ij = ¯̀

ijr(D
r
k +Nr

k ) + ¯̀
rj(D

r
ik + Γrik) + ¯̀

ir(D
r
jk + Γrjk). Putting the values of

¯̀
ir, ¯̀

rj and ¯̀
ijr from (12) and (13) in the above equation yields

∂k ¯̀
ij =¯̀

ijrD
r
k+¯̀

rjD
r
ik+¯̀

irD
r
jk+

{[
φ−sφ′+ρφ′

]
`ijr+

φ′′

F
(ρ−s)

[
mr`ij+mj`ir+mi`jr

]
+
φ′′′

F 2
mimjmr−

φ′′

F 2

[
mimj`r+mimr`j+mjmr`i

]}
Nr
k

+Γrik

{[
φ−sφ′+ρφ′

]
`rj+

φ′′

F
mrmj

}
+Γrjk

{[
(φ−sφ′+ρφ′

]
`ir+

φ′′

F
mimr

}
. (36)

By comparing (35) and (36) and using (8) and the fact that ∂kF = `rN
r
k we get the

following

¯̀
ijrD

r
k + ¯̀

rjD
r
ik + ¯̀

irD
r
jk =φ′ρk`ij +

φ′′

F
(ρ− s)b0|k`ij +

φ′′

F

[
mjbi|k +mibj|k

]
− φ′′

F 2
b0|k
[
mi`j +mj`i

]
+
φ′′′

F 2
b0|kmimj . (37)

Contracting (37) by yk yields

¯̀
ijrD

r + ¯̀
rjD

r
i + ¯̀

irD
r
j =φ′ρ0`ij +

φ′′

F
(ρ− s)r00`ij +

φ′′

F

[
mjbi|0 +mibj|0

]
− φ′′

F 2
r00

[
mi`j +mj`i

]
+
φ′′′

F 2
r00mimj . (38)

Substituting (25) in equation (38) implies that
¯̀
irD

r
j = Qij , (39)

where

Qij :=− 1

2
¯̀
ijrD

r + φ′sij +
1

2
ρ0φ
′`ij +

φ′′

F

(
mirj0 +mjsi0

)
+
φ′′

2F
(ρ− s)r00`ij

− φ′′

2F 2
r00(mi`j +mj`i) +

φ′′′

2F 2
r00mimj .

From (27), we see Qijy
i = 0. On the other hand, the equation (28) may be written as

¯̀
rD

r
j = Qj , (40)

where Qj := φ′(rj0 − sj0). The equations (40) and (39) constitute the system of
algebraic equations whose solution from Lemma 4.1 is given by

Di
j =

F

φ− sφ′ + ρφ′
Qij +

1

φ

(
Qj −

F

λ
φ′Qrjb

r
)
`i − Fφ′′

λ(φ− sφ′ + ρφ′)
Qrjb

rmi,

here Qij = girQrj . Then by (22) we have

N̄ i
j = N i

j+
F

φ−sφ′+ρφ′
Qij+

1

φ

(
Qj−

F

λ
φ′Qrjb

r
)
`i− Fφ′′

λ(φ−sφ′+ρφ′)
Qrjb

rmi. (41)
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Finally, applying Christoffel process with respect to indices i, j, k in equation (37) we
obtain

¯̀
rjD

r
ik = Mjik, (42)

where

Mjik :=− 1

2

[
¯̀
ijrD

r
k + ¯̀

jkrD
r
i − ¯̀

kirD
r
j

]
+

1

2
φ′
[
ρk`ij + ρi`jk − ρj`ik

]
+
φ′′

F

[
mjrik +misjk +mksji

]
+
φ′′

2F
(ρ− s)

[
b0|k`ij + b0|i`jk − b0|j`ik

]
+

φ′′′

2F 2

[
b0|kmimj + b0|imkmj − b0|jmimk

]
− φ′′

2F 2

[
b0|k(mi`j +mj`i) + b0|i(mj`k +mk`j)− b0|j(mi`k +mk`i)

]
.

Moreover, by (38) we get Mjiky
j = 0. Besides, the equation (24) may be written as

¯̀
rD

r
ik = Mik, (43)

where Mik := φ′rik − 1
2

¯̀
irD

r
k − 1

2
¯̀
rkD

r
i + φ′′

2F

[
mib0|k +mkb0|i

]
. Applying Lemma 4.1

to equations (42) and (43) implies that

Di
jk =

F

φ− sφ′ + ρφ′
M i
jk +

1

φ

(
Mjk −

F

λ
φ′Mrjkb

r
)
`i − Fφ′′

λ(φ− sφ′ + ρφ′)
Mrjkb

rmi,

where M i
jk = girQrjk. Then by (22) we get

Γ̄ijk = Γijk+
F

φ−sφ′+ρφ′
M i
jk+

1

φ

(
Mjk−

F

λ
φ′Mrjkb

r
)
`i− Fφ′′

λ(φ−sφ′+ρφ′)
Mrjkb

rmi.

(44)

Theorem 5.1. Let CΓ̄ = (Γ̄ijk, N̄
i
j , C̄

i
jk) be the Cartan connection for the Finsler space

(M, F̄ ) where F̄ is an (F, β)-metric with h-vector bi. Then the Cartan connection is
completely determined by the equations (19), (41) and (44).

6. Proof of Theorem 1.1

Proof. Suppose that F and F̄ be projectively related i.e. Ḡi − Gi = Pyi, where Ḡi

and Gi are the geodesic spray coefficients of F̄ and F , respectively and P = P (x, y)
is a scalar function on the slit tangent bundle TM0. By (22) we have Di = 2Pyi.
Putting it in (33) we get

2Pyi =
2Fφ′

φ− sφ′ + ρφ′
si0 +

[
φ′(φ− sφ′ + ρφ′)− sφφ′′

][
(φ− sφ′ + ρφ′)r00 − 2Fφ′s0

]
φ(φ− sφ′ + ρφ′)λ

`i

+
φ′′
[
(φ− sφ′ + ρφ′)r00 − 2Fφ′s0

]
(φ− sφ′ + ρφ′)λ

bi. (45)
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Contracting (45) by yi := gijy
j and using the facts that si0yi = 0 and `iyi = F , we

obtain P =
φ′
[
(φ−sφ′+ρφ′)r00−2Fφ′s0

]
2Fλφ . Now let F̄ be projectively flat; then one has

2Ḡi = 2Gi +Di = 2P̄ yi. Using the same calculations as above, by (33) one gets

hijG
j +

Fφ′

φ− sφ′ + ρφ′
si0 +

φ′′
[
(φ− sφ′ + ρφ′)r00 − 2Fφ′s0

]
2(φ− sφ′ + ρφ′)λ

mi = 0.

Conversely, putting (2) in (33) yields that

Ḡi =Gi +
( Fφ′

φ− sφ′ + ρφ′
sr0 +

φ′′
[
(φ− sφ′ + ρφ′)r00 − 2Fφ′s0

]
2(φ− sφ′ + ρφ′)λ

mr

)
gri

+
φ′
[
(φ− sφ′ + ρφ′)r00 − 2Fφ′s0

]
2φλ

`i

=Gi − hrjgriGj +
φ′
[
(φ− sφ′ + ρφ′)r00 − 2Fφ′s0

]
2φλ

`i

=
(
`jG

j +
φ′
[
(φ− sφ′ + ρφ′)r00 − 2Fφ′s0

]
2φλ

)
`i = P̄ yi.

This completes the proof. �

6.1 Proof of Corollary 1.2

Note that for m-root Finsler metrics we have [16]:

Ai =
∂A

∂yi
, Aij =

∂2A

∂yi∂yj
, Axi =

∂A

∂xi
, A0 = Axiyi, A0l = Axryly

r, (46)

and 2Gi = Air(A0r − Axr ). Also, it is not hard to get Ai = mA1− 2
m yi, and Ari =

(mA1− 2
m yr).i = mA1− 2

m

(
δri + (m− 2)`i`

r
)

. Then after some calculations we have

2hijG
j = mA1− 2

m

(
A0i −Axi − (m− 1)A0A

− 1
m `i

)
. (47)

Putting the above equations in (2) yields that

−m(m− 1)A0yiA
1− 4

m +m(A0i −Axi)A1− 2
m + 2si0A

1
m = 0.

By the following lemma, the above equation yields Axi = 0 and sij = 0 for m 6= 5.
For m = 5 we get the same conclusion just by separating rational and irrational parts
of equation.

Lemma 6.1. Let F = m
√
A (m > 2, m 6= 5), be an m-th root Finsler metric on an

open subset U ⊂ Rn. Suppose that the equation ΨA1− 4
m + ΩA1− 2

m + ΘA
1
m = 0 holds,

where Ψ, Ω and Θ are homogeneous polynomials in y. Then Ψ = Ω = Θ = 0.

Corollaries 1.3 and 1.4 are proven in a similar manner.



12 A new class of Finsler metrics

7. (F, β)-metrics of Douglas type

In [4], Douglas introduced the local functions Di
j kl on TM0 defined by

Di
j kl :=

∂3

∂yj∂yk∂yl

(
Gi − 1

n+ 1

∂Gm

∂ym
yi
)
.

It is easy to verify that D := Di
j kldx

j ⊗ ∂
∂xi ⊗ dxk ⊗ dxl is a well-defined tensor on

TM0. D is called the Douglas tensor. The Finsler space (M,F ) is called a Douglas
space if and only if Giyj−Gjyi is a homogeneous polynomial of degree three in yi [1].

7.1 Proof of Theorem 1.5

By (33) we get Ḡiyj − Ḡjyi = Giyj −Gjyi +Hij , where

Hij :=
Fφ′

φ− sφ′ + ρφ′
(si0y

j − sj0yi) +
φ′′
[
(φ− sφ′ + ρφ′)r00 − 2Fφ′s0

]
2(φ− sφ′ + ρφ′)λ

(biyj − bjyi).

With the help of the above definition, if F and F̄ are Douglas metrics then Hij must
be a homogeneous polynomial of degree three in yi.

By this theorem one could obtain many new Douglas metrics from a given one.

7.2 Proof of Corollary 1.6

(i) Putting F = m
√
A and φ(s) = 1+s in (3) yields 2Hij−(si0y

j−sj0yi)
m
√
A = 0. Then

by separating rational and irrational parts of the above equation one gets si0y
j = sj0y

i

and thus sij = 0.

(ii) Here F = m
√
A and φ(s) = 1

1−s ; then one has φ′(s) = 1
(1−s)2 , φ′′(s) = 2

(1−s)3 ,

φ(s)− sφ′(s) = 1−2s
(1−s)2 , λ = 1+2b2−3s

(1−s)3 . Putting them in (3) yields

(1− 2s)(1 + 2b2 − 3s)Hij − (1 + 2b2 − 3s)
m
√
A(si0y

j − sj0yi)

−
(

(1− 2s)r00 − 2s0
m
√
A)
)

(biyj − bjyi) = 0.

Multiplying above equation by A
2
m yields

6β2Hij + β
[
2r00(biyj − bjyi)− (4b2 + 5)Hij

]
A

1
m

+
[
(1 + 2b2)Hij + 3β(si0y

j − sj0yi)− r00(biyj − bjyi)
]
A

2
m

+
[
2s0(biyj − bjyi)− (1 + 2b2)(si0y

j − sj0yi)
]
A

3
m = 0.

Similar to Lemma 6.1 (m > 3), one could easily get Hij = 0, r00 = 0 and sij = 0,
which yields bi|j = 0.
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