MATEMATIČKI VESNIK МАТЕМАТИЧКИ ВЕСНИК 73, 1 (2021), [1–](#page-0-0)[13](#page-12-0) March 2021

research paper оригинални научни рад

A NEW CLASS OF FINSLER METRICS

Tahere Rajabi and Nasrin Sadeghzadeh

Abstract. In this paper, we construct a new class of Finsler metrics which are not always (α, β) -metrics. We obtain the spray coefficients and Cartan connection of these metrics. We have also found a necessary and sufficient condition for them to be projective. Finally, under some suitable conditions, we obtain many new Douglas metrics from the given one.

1. Introduction

 (α, β) -metrics form a rich class of Finsler metrics. They are computable and the patterns offer references for more study in Finsler spaces. Then, introducing new Finsler metrics which are not (α, β) -metrics helps us to evaluate the patterns. There are some classes of Finsler metrics which are not always (α, β) -metrics such as generalized (α, β) -metrics [\[15\]](#page-12-1) or spherically symmetric Finsler metrics [\[17\]](#page-12-2).

Here we are going to consider the Finsler metrics given by

$$
\bar{F} = F\phi(s),\tag{1}
$$

where F is a Finsler metric, $s = \frac{\beta}{F}$, $\beta = b_i y^i$, $\|\beta\|_F < b_0$ and $\phi(s)$ is a positive C^{∞} function on $(-b_0, b_0)$. We call them (F, β) -metrics. These metrics are not always (α, β) -metrics even if F is an (α, β) -metric.

Let $F = \alpha + \gamma$ be a Randers metric, where α is a Riemannian metric and γ is a 1-form on M. Put

$$
\bar{F} = \frac{(F+\beta)^2}{F} = \frac{(\alpha + \gamma + \beta)^2}{\alpha + \beta} = \alpha \frac{(1+s+\bar{s})^2}{1+s},
$$

where $s = \frac{\beta}{\alpha}$ and $\bar{s} = \frac{\gamma}{\alpha} \neq s$. Here $\bar{F} = \alpha \Psi(s, \bar{s})$ is a Finsler metric but not (α, β) metric. Whereas, for any 1-form β on M, $\overline{F} = F + \beta = \alpha + \beta + \gamma$ is a Randers metric.

²⁰²⁰ Mathematics Subject Classification: 53B40, 53C60

Keywords and phrases: Finsler geometry; (F, β) -metric; h-vector; projective change; Douglas space.

Let F be a projectively flat Finsler metric such as the generalized Berwald's metric

,

$$
F = \frac{((1 + \langle a, x \rangle)(\sqrt{(1 - |x|^2)|y|^2 + \langle x, y \rangle^2} + \langle x, y \rangle) + (1 - |x|^2)\langle a, y \rangle)^2}{(1 - |x|^2)^2 \sqrt{(1 - |x|^2)|y|^2 + \langle x, y \rangle^2}}
$$

where $a \in \mathbb{R}^n$ is a constant vector. It is locally projectively flat with constant flag curvature $K = 0$ [\[11\]](#page-12-3). For any closed 1-form β such that $\beta = \frac{\langle a, y \rangle}{1 + \langle a, y \rangle}$ $\frac{\langle a,y\rangle}{1+\langle a,x\rangle}$, metric $\bar{F} = F + \beta$ is also a projectively flat Finsler metric and β is closed form (see Theorem [1.1\)](#page-1-0).

One could consider the above metrics as a change of a given Finsler metric. Various Finsler changes have been extensively studied and they have numerous applications.

In 1971, Matsumoto introduced the transformation of Finsler metric $\bar{F}(x, y) =$ $F(x,y) + \beta(x,y)$, where $\beta(x,y) = b_i(x)y^i$ is a 1-form [\[9\]](#page-12-4). In 1984, Shibata [\[12\]](#page-12-5) introduced the transformation of Finsler metric $\bar{F}(x, y) = f(F, \beta)$, where $\beta(y) =$ $b_i(x)y^i$, $b_i(x)$ are components of a covariant vector in (M^n, F) and f is positively homogenous function of degree 1 in F and β . This change of metric is called a β –change.

In 1980, while studying the conformal transformation of Finsler spaces, H. Izumi [\[8\]](#page-12-6) introduced the concept of an h-vector b_i . The h-vector b_i , as well as the function of coordinates x^i itself, are also dependent on y^i . The h-vector b_i is v-covariant constant with respect to the Cartan connection and satisfies $FC_{ij}^{h}b_h = \rho h_{ij}$, where ρ is a nonzero scalar function, C_{ij}^h are components of Cartan tensor and h_{ij} are components of angular metric tensor. We will prove the following theorem.

THEOREM 1.1. An (F, β) -metric $\bar{F} = F\phi(s)$, where $s = \frac{\beta}{F}$, $\beta(x, y) = b_i(x, y)y^i$ with h-vector b_i , is projectively flat if and only if

$$
2(\phi - s\phi' + \rho\phi')h_{ir}G^r + 2F\phi's_{i0} + \phi''\frac{\Theta}{\lambda}m_i = 0,
$$
\n(2)

where $r_{ij} := \frac{1}{2} (b_{i|j} + b_{j|i}), s_{ij} := \frac{1}{2} (b_{i|j} - b_{j|i}), s_{i0} = s_{ij} y^j, \Theta = (\phi - s\phi' + \rho\phi')r_{00} - 2F\phi's_{0}$ $\lambda = \phi - s\phi' + \rho\phi' + (b^2 - s^2)\phi''$, $h_{ij} = g_{ij} - \ell_i\ell_j$ and $m_i = b_i - s\ell_i$.

One could easily show that the above theorem is satisfied for every (F, β) -metric with $\beta(y) = b_i(x)y^i$ just by putting $\rho = 0$, with β not being necessarily an h-vector.

In this paper, we study the (F, β) -metric with F being an m-root Finsler metric. Let (M, F) be a Finsler manifold of dimension n, TM its tangent bundle and (x^i, y^i) the coordinates in a local chart on TM. Let F be a scalar function on TM defined by
 $F_n = \sqrt[m]{4}$ where A_n is given by A_n and (x) , $\frac{d}{dx}$ and $\frac{d}{dx}$ with given it is given that $F = \sqrt[m]{A}$, where A is given by $A := a_{i_1...i_m}(x)y^{i_1}y^{i_2} \dots y^{i_m}$ with $a_{i_1...i_m}$ symmetric in all its indices. Then F is called an m -root Finsler metric.

Theorem [1.1](#page-1-0) includes all known results about projective changes of Finsler metrics [\[10,](#page-12-7) [13,](#page-12-8) [14\]](#page-12-9). For instance, we get the following two corollaries which were stated as theorems in the respected papers.

COROLLARY1.2 ([\[2,](#page-11-0)10]). Let $F = \sqrt[m]{A}$ $(m > 3)$ be an m-th root Finsler metric on an open subset $U \subset \mathbb{R}^n$, where A is irreducible. Then Randers change $\bar{F} = F + \beta$ with $\beta = b_i(x)y^i$ is locally projectively flat if and only if it is locally Minkowski.

COROLLARY1.3 ([\[13\]](#page-12-8)). Let $F = \sqrt[m]{A}$ $(m > 3)$ be an m-th root Finsler metric on an open subset $U \subset \mathbb{R}^n$, where A is irreducible. Then Matsumoto change $\bar{F} = \frac{F^2}{F}$ $\frac{F}{F-\beta}$ with $\beta = b_i(x)y^i$ is locally projectively flat if and only if $\frac{\partial A}{\partial x^i} = 0$ and $b_i = constant$.

Finally, one could easily conclude that the following also holds.

COROLLARY 1.4. Let $F = \sqrt[m]{A}$ $(m > 3)$ be an m-th root Finsler metric on an open subset $U \subset \mathbb{R}^n$, where A is irreducible. Then (F, β) -metric $\overline{F} = F\phi(\frac{\beta}{F})$ with $\beta =$ $b_i(x)y^i$ is locally projectively flat if and only if

$$
-m(m-1)\lambda(\phi - s\phi')y_iA_0A^{1-\frac{4}{m}} + m\lambda(\phi - s\phi')(A_{0i} - A_{x^i})A^{1-\frac{2}{m}}
$$

+2\phi'(\lambda s_{i0} - \phi''s_0m_i)A^{\frac{1}{m}} + \phi''(\phi - s\phi')r_{00}m_i = 0,

where $\lambda = \phi - s\phi' + (b^2 - s^2)\phi''$, r_{00} , s_{i0} and s_0 are represented as [\(20\)](#page-5-0), A_{0i} , A_{x^i} and A_0 are defined in [\(46\)](#page-10-0).

A Finsler metric is called Douglas metric if the Douglas tensor $D = 0$. The Douglas curvature was introduced by J. Douglas in 1927 [\[4\]](#page-12-10). In the same paper it was proven that Douglas and Weyl tensors are invariant under projective changes. Roughly speaking, a Douglas metric is a Finsler metric having the same geodesics as a Riemannian metric. Hence, in this paper we are going to obtain the conditions under which the change $\bar{F} = F\phi(s)$ of Douglas space becomes a Douglas space. Then we will prove the following.

THEOREM 1.5. Let (M, F) be a Douglas space. An (F, β) -metric $\overline{F} = F \phi(\frac{\beta}{F})$ with h -vector b_i is Douglas if and only if

$$
H^{ij} := \frac{F\phi'}{\phi - s\phi' + \rho\phi'}(s_0^i y^j - s_0^j y^i) + \frac{\phi''\left[(\phi - s\phi' + \rho\phi')r_{00} - 2F\phi's_0 \right]}{2(\phi - s\phi' + \rho\phi')\lambda}(b^i y^j - b^j y^i),\tag{3}
$$

where r_{ij} , s_0^i and s_0 are represented as [\(20\)](#page-5-0), are homogeneous polynomial in y^i of degree 3.

By the above theorem one could obtain many Douglas metrics from a given one. For example, the following corollary introduces some new Douglas metrics from a given m-root Finsler metric of Douglas type.

COROLLARY 1.6. *(i)* Let $F = \sqrt[m]{A}$ $(m > 3)$ be an m-root Finsler metric of Douglas type. Then Randers change $\bar{F} = F + \beta$ with $\beta = b_i(x)y^i$ is of Douglas type if and only if $s_{ij} = 0$.

(ii) Let $F = \sqrt[m]{A}$ $(m > 3)$ be an m-root Finsler metric of Douglas type. Then Matsumoto change $\bar{F} = \frac{F^2}{F -}$ $\frac{F^2}{F-\beta}$ with $\beta = b_i(x)y^i$ is of Douglas type if and only if $b_{i|j} = 0.$

2. Preliminaries

Let M be a smooth manifold and $TM := \bigcup_{x \in M} T_xM$ be the tangent bundle of M, where T_xM is the tangent space at $x \in M$. A Finsler metric on M is a function

 $F: TM \longrightarrow [0, +\infty)$ with the following properties

(i) F is C^{∞} on $TM\setminus\{0\}$;

(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ;

(iii) for each $x \in M$, the following quadratic form g_y on T_xM is positive definite, $g_y(u, v) := \frac{1}{2} \frac{\partial^2}{\partial s \partial t} \left[F^2(y + su + tv) \right] |_{t, s = 0}, u, v \in T_x M.$ Let $x \in M$ and $F_x := F|_{T_xM}$. To measure the non-Euclidean feature of F_x , define

 $\mathbf{C}_y : T_xM \otimes T_xM \otimes T_xM \to \mathbb{R}$ by $\mathbf{C}_y(u, v, w) := \frac{1}{2} \frac{d}{dt} [\mathbf{g}_{y+tw}(u, v)]|_{t=0}, u, v, w \in T_xM$. The family $C := {C_y}_{y \in TM_0}$ is called the Cartan torsion. It is well known that $C = 0$ if and only if F is Riemannian.

Given a Finsler manifold (M, F) , then a global vector field G is induced by F on TM_0 , which in a standard coordinate (x^i, y^i) for TM_0 is given by $G = y^i \frac{\partial}{\partial x^i}$ $2G^{i}(x, y) \frac{\partial}{\partial y^{i}}$, where $G^{i}(x, y)$ are local functions on TM_0 given by $G^{i} = \frac{1}{4}g^{il} \left\{ \frac{\partial g_{jl}}{\partial x^{k}} + \frac{\partial g_{jl}}{\partial x^{l}} \right\}$ $\frac{\partial g_{lk}}{\partial x^j} - \frac{\partial g_{jk}}{\partial x^l}$ $\frac{\partial g_{jk}}{\partial x^l}$ $\Big\} y^j y^k$. G is called the associated spray to (M, F) . The projection of an integral curve of the spray G is called a geodesic in M .

The Cartan connection in M is given as $C\Gamma = (\Gamma^i_{jk}, N^i_j, C^i_{jk})$, where

$$
\Gamma^i_{jk} = \frac{1}{2} g^{il} \left\{ \frac{\delta g_{jl}}{\delta x^k} + \frac{\delta g_{lk}}{\delta x^j} - \frac{\delta g_{jk}}{\delta x^l} \right\}, \frac{\delta}{\delta x^i} := \frac{\partial}{\partial x^i} - N^m_i \frac{\partial}{\partial y^m}, \ N^i_j = \dot{\partial}_j G^i, \ N^i_j y^j = 2G^i.
$$

Note that ∂_i and $\dot{\partial}_i$ denote the derivations with respect to x^i and y^i respectively. For the Cartan connection, we define $X^i_{j|k} := \frac{\delta X^i_j}{\delta x^k} + X^r_j \Gamma^i_{rk} - X^i_r \Gamma^r_{jk}, X^i_{j;k} := \dot{\partial}_k X^i_j +$ $X_j^r C_{rk}^i - X_r^i C_{jk}^r$, where "|" and ";" denote the horizontal and vertical covariant derivative of X_j^i . Also, the axioms $g_{ij|k} = 0$ and $g_{ij;k} = 0$ hold.

The h-vector b_i is v-covariant constant with respect to the Cartan connection and satisfies $FC_{ij}^{h}b_{h} = \rho h_{ij}$, where ρ is a non-zero scalar function, $C_{ij}^{h} = g^{mh}C_{ijm}$ and h_{ij} are components of angular metric tensor. Thus if b_i is an h-vector then (i) $b_{i;j} = 0$, (ii) $FC_{ij}^{h}b_{h} = \rho h_{ij}$. Put $c^{h} = g^{ij}C_{ij}^{h}$. Hence we obtain

$$
\rho = \frac{F}{n-1} c^h b_h,\tag{4}
$$

$$
\dot{\partial}_j b_i = \frac{\rho}{F} h_{ij}.\tag{5}
$$

Since $\rho \neq 0$ and $h_{ij} \neq 0$, the h-vector b_i depends not only on positional coordinates but also on directional arguments. Izumi [\[8\]](#page-12-6) showed that ρ is independent of directional arguments and that if b_i is an h-vector then $^*b_i := b_i - \rho \ell_i$ and $b := ||\beta||_F$ are independent of y.

3. (F, β) -metrics

Throughout the paper we shall use the notations $\ell_i := \dot{\partial}_i F$, $\ell_{ij} := \dot{\partial}_i \dot{\partial}_j F$, $\ell_{ijk} :=$ $\dot{\partial}_i \dot{\partial}_j \dot{\partial}_k F$. Let b_i be an h-vector in the Finsler space (M, F) . Since $h_{ij}y^j = 0$, we have $\dot{\partial}_i \beta = b_i$. Contracting with y^j will be denoted by the subscript 0. For example, we

write $b_{i|0}$ for $b_{i|j}y^j$.

Using [\(5\)](#page-3-0) and the fact that $\ell_{i|j} = \ell_{i|k} = 0$ we have the following relations

$$
\partial_j b_i = b_{i|j} + \rho N_j^r \ell_{ir} + b_r \Gamma_{ij}^r,\tag{6}
$$

$$
\partial_j \ell_i = N_j^r \ell_{ir} + \ell_r \Gamma_{ij}^r,\tag{7}
$$

$$
\partial_k \ell_{ij} = N_k^r \ell_{ijr} + \ell_{rj} \Gamma_{ik}^r + \ell_{ir} \Gamma_{jk}^r. \tag{8}
$$

For $s = \beta/F$, by [\(6\)](#page-4-0) and the fact that $\partial_k F = \ell_r N_k^r$ we have

$$
\dot{\partial}_i s = \frac{1}{F} m_i, \quad \partial_i s = \frac{1}{F} \big(b_{0|i} + m_r N_i^r \big), \tag{9}
$$

where $m_i := b_i - s\ell_i$. Using [\(6\)](#page-4-0) and [\(7\)](#page-4-1) we get

$$
\dot{\partial}_k m_i = (\rho - s) \ell_{ik} - \frac{1}{F} m_k \ell_i, \n\partial_k m_i = b_{i|k} + (\rho - s) \ell_{ir} N_k^r - \frac{1}{F} m_r N_k^r \ell_i + m_r \Gamma_{ik}^r - \frac{1}{F} b_{0|k} \ell_i.
$$
\n(10)

Differentiating equation [\(1\)](#page-0-1) with respect to y^i , y^j , y^k and using the first equations in [\(9\)](#page-4-2) and [\(10\)](#page-4-3) imply that

$$
\bar{\ell}_i = \phi \ell_i + \phi' m_i,\tag{11}
$$

$$
\bar{\ell}_{ij} = \left(\phi - s\phi' + \rho\phi'\right)\ell_{ij} + \frac{\phi''}{F}m_im_j,
$$
\n(12)

$$
\bar{\ell}_{ijk} = [\phi - s\phi' + \rho\phi']\ell_{ijk} + \frac{\phi''}{F}(\rho - s)[m_k\ell_{ij} + m_j\ell_{ik} + m_i\ell_{jk}] + \frac{\phi'''}{F^2}m_im_jm_k \n- \frac{\phi''}{F^2}[m_im_j\ell_k + m_im_k\ell_j + m_jm_k\ell_i].
$$
\n(13)

DEFINITION 3.1. A Finsler metric \overline{F} is called (F, β) -metric if it has the following form $\bar{F} = F\phi(s)$, $s := \frac{\beta}{F}$, where F is a Finsler metric and $\beta = b_i y^i$ is a 1-form on an *n*-dimensional manifold M, $\phi(s)$ is a positive C^{∞} function on $(-b_0, b_0)$ and $\|\beta\|_F < b_0.$

 (F, β) -metric \overline{F} is called (F, β) -metric with h-vector if $b_i := b_i(x, y)$ be an h-vector on (M, F) .

LEMMA 3.2. For any Finsler metric F and 1-form $\beta = b_i y^i$ with h-vector b_i on manifold M with $\|\beta\|_F < b_0$, $\bar{F} = F\phi(s)$ is a Finsler metric if and only if the positive C^{∞} function $\phi = \phi(s)$ satisfies

$$
\phi(s) - s\phi'(s) + \rho\phi'(s) > 0, \quad \phi(s) - s\phi'(s) + \rho\phi'(s) + (b^2 - s^2)\phi''(s) > 0,\tag{14}
$$

when $n \ge 3$ or $\phi(s) - s\phi'(s) + \rho\phi'(s) + (b^2 - s^2)\phi''(s) > 0$, when $n = 2$, where $s = \frac{\beta}{F}$ and b are arbitrary numbers with $|s| \leq b < b_0$ and ρ is given by [\(4\)](#page-3-1).

Proof. The case $n = 2$ is similar to $n \geq 3$, so we only prove the proposition for $n \geq 3$. It is easy to verify that \bar{F} is a function with regularity and positive homogeneity. In the following we will verify strong convexity. Direct computations yield the fundamental tensor $\bar{g}_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j \bar{F}^2$ as follows

$$
\bar{g}_{ij} = \eta g_{ij} + \eta_0 b_i b_j + \eta_1 (\ell_i b_j + \ell_j b_i) + \eta_2 \ell_i \ell_j, \tag{15}
$$

where $\eta := \phi(\phi - s\phi' + \rho\phi'), \eta_0 := \phi\phi'' + \phi'\phi', \eta_1 := \phi\phi' - s\eta_0, \eta_2 := -s\eta_1 - \rho\phi\phi'.$ Using [\[11,](#page-12-3) Lemma 1.1.1], we obtain

 $\det(\bar{g}_{ij}) = \phi^{n+1}(\phi - s\phi' + \rho\phi')^{n-2}(\phi - s\phi' + \rho\phi' + (b^2 - s^2)\phi'') \det(g_{ij}).$ (16) Assume that [\(14\)](#page-4-4) is satisfied. Using (14) and [\(16\)](#page-5-1), we get $\det(\bar{g}_{ij}) > 0$. The rest of the proof is similar to the proof for (α, β) -metrics from [\[11\]](#page-12-3).

By putting $\rho = 0$, one could easily show that Lemma [3.2](#page-4-5) is satisfied for (F, β) metrics.

COROLLARY 3.3. Let M be an n-dimensional manifold. For any Finsler metric F and 1-form $\beta = b_i y^i$ with $\|\beta\|_F < b_0$, $\overline{F} = F\phi(s)$ is a Finsler metric if and only if the positive C^{∞} function $\phi = \phi(s)$ satisfies $\phi(s) - s\phi'(s) > 0$, $\phi(s) - s\phi'(s) + (b^2$ $s^{2})\phi''(s) > 0$, when $n \geq 3$, or $\phi(s) - s\phi'(s) + (b^{2} - s^{2})\phi''(s) > 0$, when $n = 2$, where $s = \frac{\beta}{F}$ and b are arbitrary numbers with $|s| \le b < b_0$.

The formula for (\bar{g}^{ij}) can be obtained from [\[11,](#page-12-3) Lemma 1.1.1],

$$
\bar{g}^{ij} = \frac{1}{\bar{\rho}} \Big[g^{ij} - \frac{\bar{\delta}}{1 + b^2 \bar{\delta}} b^i b^j - \frac{\bar{\mu}}{1 + \bar{\mu} \bar{Y}^2} (\ell^i + \bar{\lambda} b^i) (\ell^j + \bar{\lambda} b^j) \Big],\tag{17}
$$

where $(g^{ij}) = (g_{ij})^{-1}, b^2 = b_i b^i = g^{ij} b_i b_j$ and $\bar{\delta} := \frac{1}{\eta} (\eta_0 - \frac{\eta_1^2}{\eta_2}), \bar{\mu} := \frac{\eta_2}{\eta}, \bar{\lambda} := \frac{\bar{\epsilon} - \bar{\delta} s}{1 + b^2 \bar{\delta}},$ $\bar{\epsilon} := \frac{\eta_1}{\eta_2}, \ \bar{Y}^2 := 1 + (\bar{\epsilon} + \bar{\lambda})s + \bar{\epsilon}\bar{\lambda}b^2.$ Differentiating [\(15\)](#page-4-6) with respect to y^k , the Cartan tensor \overline{C}_{ijk} is given by

$$
\bar{C}_{ijk} = \eta C_{ijk} + \frac{\eta'}{2F} h_{ijk} + \frac{\eta'_0}{2F} m_i m_j m_k,
$$
\n(18)

where $h_{ijk} := m_i h_{jk} + m_j h_{ik} + m_k h_{ij}$. By [\(17\)](#page-5-2) and [\(18\)](#page-5-3) we can obtain

$$
\bar{C}_{jk}^{i} = C_{jk}^{i} + \frac{\eta'}{2\eta F} h_{jk}^{i} + \frac{\eta'_{0}}{2\eta F} m^{i} m_{j} m_{k} - \frac{1}{2\eta F} \left\{ \left[2\rho \eta + \eta' (b^{2} - s^{2}) \right] h_{jk} + \left[2\eta' + \eta'_{0} (b^{2} - s^{2}) \right] m_{j} m_{k} \right\} \times \left\{ \left[\frac{\bar{\delta}}{1 + \bar{\delta} b^{2}} + \frac{\bar{\mu} \bar{\lambda}^{2}}{1 + \bar{\mu} \bar{Y}^{2}} \right] b^{i} + \frac{\bar{\mu} \bar{\lambda}^{2}}{1 + \bar{\mu} \bar{Y}^{2}} \ell^{i} \right\}.
$$
\n(19)

For 1-form $\beta = b_i(x, y)y^i$ where b_i is an h-vector, we have

$$
r_{ij} := \frac{1}{2} (b_{i|j} + b_{j|i}), \qquad s_{ij} := \frac{1}{2} (b_{i|j} - b_{j|i}). \tag{20}
$$

where " \vert " denotes the horizontal covariant derivative with respect to the Cartan connection of F. Moreover, we define $r_{i0} := r_{ij}y^j$, $r_j := b^ir_{ij}$, $r_0 := r_jy^j$, $r_{00} =$ $r_{ij}y^iy^j, s_{i0} := s_{ij}y^j, s_j := b^is_{ij}, s_0 := s_jy^j, s_0^i = g^{ij}s_{j0}.$ Then $\partial_ks_{ij} = \frac{1}{2}(\rho_j\ell_{ik} - \frac{1}{2}(\rho_j\ell_{ik} - \frac{1}{2})$ $\rho_i \ell_{jk}$, $\dot{\partial}_k s_{i0} = \frac{1}{2} \rho_0 \ell_{ik} + s_{ik}$, where $\rho_i = \partial_i \rho$ and $\rho_0 = \rho_k y^k$.

4. Spray coefficients of (F, β) -metrics

In this section we are going to calculate the spray coefficients of (F, β) -metrics. First assume that β is a 1-form with h-vector.

Differentiating [\(11\)](#page-4-7) with respect to x^{j} and using [\(7\)](#page-4-1) and the second equations

in [\(9\)](#page-4-2) and [\(10\)](#page-4-3) yield

$$
\partial_j \bar{\ell}_i = \phi \Big[\ell_{ir} N_j^r + \ell_r \Gamma_{ij}^r \Big] + \frac{\phi''}{F} \Big[b_{0|j} + m_r N_j^r \Big] m_i + \phi' \Big[b_{i|j} + (\rho - s) \ell_{ir} N_j^r + m_r \Gamma_{ij}^r \Big]. \tag{21}
$$

Next, we deal with $\bar{\ell}_{i|j} = 0$, that is $\partial_j \bar{\ell}_i = \bar{\ell}_{ir} \bar{N}_j^r + \bar{\ell}_r \bar{\Gamma}_{ij}^r$. Let us define

 $D^i_{jk} := \bar{\Gamma}^i_{jk} - \Gamma^i_{jk}, \quad D^i_j := D^i_{jk} y^k = \bar{N}^i_j - N^i_j, \quad D^i := D^i_j y^j = 2 \bar{G}^i - 2 G^i$ (22) Then $\partial_j \bar{\ell}_i = \bar{\ell}_{ir} (D_j^r + N_j^r) + \bar{\ell}_r (D_{ij}^r + \Gamma_{ij}^r)$.

Putting [\(11\)](#page-4-7) and [\(12\)](#page-4-8) in the above equation yields

$$
\partial_j \bar{\ell}_i = \bar{\ell}_{ir} D_j^r + \bar{\ell}_r D_{ij}^r + \left[(\phi - s\phi' + \rho\phi')\ell_{ir} + \frac{\phi''}{F} m_i m_r \right] N_j^r + \left[\phi\ell_r + \phi' m_r \right] \Gamma_{ij}^r. (23)
$$

By comparing [\(21\)](#page-6-0) and [\(23\)](#page-6-1), we get the following $\phi' b_{i|j} = \bar{\ell}_{ir} D_j^r + \bar{\ell}_r D_{ij}^r - \frac{\phi''}{F} m_i b_{0|j}$. Thus by [\(20\)](#page-5-0) we have

$$
2\phi' r_{ij} = \bar{\ell}_{ir} D_j^r + \bar{\ell}_{jr} D_i^r + 2\bar{\ell}_r D_{ij}^r - \frac{\phi''}{F} \left[m_i b_{0|j} + m_j b_{0|i} \right],\tag{24}
$$

$$
2\phi's_{ij} = \bar{\ell}_{ir}D_j^r - \bar{\ell}_{jr}D_i^r - \frac{\phi''}{F}[m_ib_{0|j} - m_jb_{0|i}].
$$
 (25)

Contracting [\(24\)](#page-6-2) and [\(25\)](#page-6-3) by y^j implies that

$$
2\phi' r_{i0} = \bar{\ell}_{ir} D^r + 2\bar{\ell}_r D^r_i - \frac{\phi''}{F} r_{00} m_i,
$$
\n(26)

$$
2\phi' s_{i0} = \bar{\ell}_{ir} D^r - \frac{\phi''}{F} r_{00} m_i.
$$
 (27)

Subtracting [\(27\)](#page-6-4) from [\(26\)](#page-6-5) yields

$$
\phi'(r_{i0} - s_{i0}) = \bar{\ell}_r D_i^r. \tag{28}
$$

Contracting [\(28\)](#page-6-6) by y^i leads to

$$
\phi' r_{00} = \bar{\ell}_r D^r. \tag{29}
$$

To obtain the spray coefficients of \bar{F} , first we must prove the following lemma.

Lemma 4.1. The system of algebraic equations (i) $\bar{\ell}_{ir}A^r = B_i$, (ii) $\bar{\ell}_rA^r = B$,

has a unique solution A^r for given B and B_i such that $B_i y^i = 0$. The solution is given by

$$
A^{i} = \frac{F}{\phi - s\phi' + \rho\phi'}B^{i} + \frac{1}{\phi}\left(B - \frac{F}{\lambda}\phi'B_{r}b^{r}\right)\ell^{i} - \frac{F\phi''(B_{r}b^{r})}{\lambda(\phi - s\phi' + \rho\phi')}m^{i},
$$

\n
$$
B^{i} = a^{il}B_{i} \text{ and } m^{i} = a^{il}m_{i}
$$

where B ${}^{il}B_l$ and $m^i = g^{il}m_l$.

Proof. Contracting [\(12\)](#page-4-8) by b^i implies that

$$
\bar{\ell}_{ir}b^i = \frac{\lambda}{F}m_r,\tag{30}
$$

where $\lambda := \phi - s\phi' + \rho\phi' + (b^2 - s^2)\phi''$.

Then contracting equation [\(i\)](#page-6-7) by b^i and using [\(30\)](#page-6-8), we get the following

$$
\frac{\lambda}{F}m_r A^r = B_r b^r.
$$
\n(31)

Substituting [\(11\)](#page-4-7) in equation [\(ii\)](#page-6-9) yields $\phi \ell_r A^r + \phi' m_r A^r = B$. Putting [\(31\)](#page-6-10) in this equation we get

$$
\ell_r A^r = \frac{1}{\phi} \left(B - \frac{F}{\lambda} \phi' B_r b^r \right). \tag{32}
$$

Substituting [\(12\)](#page-4-8) in equation [\(i\)](#page-6-7) and using the fact that $\ell_{ir} = \frac{1}{F} (g_{ir} - \ell_i \ell_r)$, we get

$$
g_{ir}A^r = \frac{F}{\phi - s\phi' + \rho\phi'}B_i + (\ell_r A^r)\ell_i - \frac{\phi''}{\phi - s\phi' + \rho\phi'}(m_r A^r)m_i.
$$

Contracting this equation by g^{ij} and using [\(31\)](#page-6-10) and [\(32\)](#page-7-0) complete the proof. \Box

Now, we are able to obtain the spray coefficients of $\bar{F}.$

By contracting [\(27\)](#page-6-4) by b^i and using the above relations, we get $\frac{\lambda}{F} m_r D^r = 2\phi's_0 +$ $\phi^{\prime\prime}$ $\frac{\phi''}{F}$ $r_{00}(b^2-s^2)$. The equations [\(27\)](#page-6-4) and [\(29\)](#page-6-11) constitute a system of algebraic equations in $\ell_r D^r$ and $m_r D^r$ whose solution from Lemma [4.1](#page-6-12) is given by

$$
D^i = \frac{F}{\phi - s\phi' + \rho\phi'}B^i + \frac{1}{\phi}\big(B - \frac{F}{\lambda}\phi'B_r b^r\big)\ell^i - \frac{F\phi''}{\lambda(\phi - s\phi' + \rho\phi')}B_r b^r m^i,
$$

where $B^i = 2\phi's_0^i + \frac{\phi''}{F}$ $\frac{\phi^{\prime\prime}}{F}r_{00}m^{i},\ B\ =\ \phi^{\prime}r_{00},\ B_{r}b^{r}\ =\ 2\phi^{\prime}s_{0}\ +\ \frac{\phi^{\prime\prime}}{F}$ $\frac{\phi''}{F}(b^2-s^2)r_{00}$. Since $D^{i} = 2\overline{G}^{i} - 2G^{i}$, we get the following theorem.

THEOREM 4.2. Let \overline{F} be an (F, β) -metric with h-vector b_i . Then the spray coefficients of \bar{F} are given by

$$
2\bar{G}^i = 2G^i + \frac{2F\phi'}{\phi - s\phi' + \rho\phi'}s_0^i + \frac{\left[\phi'(\phi - s\phi' + \rho\phi') - s\phi\phi''\right]\left[(\phi - s\phi' + \rho\phi')r_{00} - 2F\phi's_0\right]}{\phi(\phi - s\phi' + \rho\phi')\lambda} \ell^i + \frac{\phi''\left[(\phi - s\phi' + \rho\phi')r_{00} - 2F\phi's_0\right]}{(\phi - s\phi' + \rho\phi')\lambda}b^i.
$$
\n(33)

COROLLARY 4.3. Let \overline{F} be an (F, β) -metric. Then the spray coefficients of \overline{F} are given by

$$
2\bar{G}^{i} = 2G^{i} + \frac{2F\phi'}{\phi - s\phi'}s_{0}^{i} + \frac{\left[\phi'(\phi - s\phi') - s\phi\phi''\right]\left[(\phi - s\phi')r_{00} - 2F\phi's_{0}\right]}{\phi(\phi - s\phi')(\phi - s\phi' + (b^{2} - s^{2})\phi'')} \phi'' + \frac{\phi''\left[(\phi - s\phi')r_{00} - 2F\phi's_{0}\right]}{(\phi - s\phi')(\phi - s\phi' + (b^{2} - s^{2})\phi'')}b^{i}.
$$
\n(34)

5. Cartan connection of (F, β) -metrics

Here the Cartan connection coefficients of (F, β) -metrics are calculated. Differentiat-ing [\(12\)](#page-4-8) with respect to x^k and using [\(9\)](#page-4-2) and [\(10\)](#page-4-3), we get

$$
\partial_k \bar{\ell}_{ij} = \left[\phi - s\phi' + \rho\phi'\right] \partial_k \ell_{ij} + \frac{\phi''}{F} (\rho - s) \left[b_{0|k} + m_r N_k^r\right] \ell_{ij} + \phi' \rho_k \ell_{ij} + \frac{\phi'''}{F^2} \left[b_{0|k} + m_r N_k^r\right] m_i m_j - \frac{\phi''}{F^2} m_i m_j \partial_k F + \frac{\phi''}{F} m_j \left[b_{i|k} + (\rho - s) \ell_{ir} N_k^r - \frac{1}{F} m_r N_k^r \ell_i + m_r \Gamma_{ik}^r - \frac{1}{F} b_{0|k} \ell_i\right]
$$

$$
+\frac{\phi''}{F}m_i\big[b_{j|k}+(\rho-s)\ell_{rj}N_j^r-\frac{1}{F}m_rN_k^r\ell_j+m_r\Gamma_{jk}^r-\frac{1}{F}b_{0|k}\ell_j\big].
$$
\n(35)

With the help of $\bar{\ell}_{ij|k} = 0$, that is $\partial_k \bar{\ell}_{ij} = \bar{\ell}_{ijr} \bar{N}_k^r + \bar{\ell}_{rj} \bar{\Gamma}_{ik}^r + \bar{\ell}_{ir} \bar{\Gamma}_{jk}^r$, and by [\(22\)](#page-6-13) we have $\partial_k \bar{\ell}_{ij} = \bar{\ell}_{ijr}(D_k^r + N_k^r) + \bar{\ell}_{rj}(D_{ik}^r + \Gamma_{ik}^r) + \bar{\ell}_{ir}(D_{jk}^r + \Gamma_{jk}^r)$. Putting the values of $\bar{\ell}_{ir}$, $\bar{\ell}_{rj}$ and $\bar{\ell}_{ijr}$ from [\(12\)](#page-4-8) and [\(13\)](#page-4-9) in the above equation yields

$$
\partial_k \bar{\ell}_{ij} = \bar{\ell}_{ijr} D_k^r + \bar{\ell}_{rj} D_{ik}^r + \bar{\ell}_{ir} D_{jk}^r + \left\{ \left[\phi - s\phi' + \rho\phi' \right] \ell_{ijr} + \frac{\phi''}{F} (\rho - s) \left[m_r \ell_{ij} + m_j \ell_{ir} + m_i \ell_{jr} \right] \right. \\ \left. + \frac{\phi'''}{F^2} m_i m_j m_r - \frac{\phi''}{F^2} \left[m_i m_j \ell_r + m_i m_r \ell_j + m_j m_r \ell_i \right] \right\} N_k^r \\ \left. + \Gamma_{ik}^r \left\{ \left[\phi - s\phi' + \rho\phi' \right] \ell_{rj} + \frac{\phi''}{F} m_r m_j \right\} + \Gamma_{jk}^r \left\{ \left[(\phi - s\phi' + \rho\phi' \right] \ell_{ir} + \frac{\phi''}{F} m_i m_r \right\} . \tag{36}
$$

By comparing [\(35\)](#page-8-0) and [\(36\)](#page-8-1) and using [\(8\)](#page-4-10) and the fact that $\partial_k F = \ell_r N_k^r$ we get the following

$$
\bar{\ell}_{ijr}D_k^r + \bar{\ell}_{rj}D_{ik}^r + \bar{\ell}_{ir}D_{jk}^r = \phi' \rho_k \ell_{ij} + \frac{\phi''}{F}(\rho - s)b_{0|k}\ell_{ij} + \frac{\phi''}{F} \Big[m_j b_{i|k} + m_i b_{j|k}\Big] \n- \frac{\phi''}{F^2} b_{0|k} \Big[m_i \ell_j + m_j \ell_i\Big] + \frac{\phi'''}{F^2} b_{0|k} m_i m_j.
$$
\n(37)

Contracting [\(37\)](#page-8-2) by y^k yields

$$
\bar{\ell}_{ijr}D^r + \bar{\ell}_{rj}D_i^r + \bar{\ell}_{ir}D_j^r = \phi' \rho_0 \ell_{ij} + \frac{\phi''}{F} (\rho - s) r_{00} \ell_{ij} + \frac{\phi''}{F} \left[m_j b_{i|0} + m_i b_{j|0} \right] \n- \frac{\phi''}{F^2} r_{00} \left[m_i \ell_j + m_j \ell_i \right] + \frac{\phi'''}{F^2} r_{00} m_i m_j.
$$
\n(38)

Substituting [\(25\)](#page-6-3) in equation [\(38\)](#page-8-3) implies that

$$
\bar{\ell}_{ir}D_j^r = Q_{ij},\tag{39}
$$

where

$$
Q_{ij} := -\frac{1}{2} \bar{\ell}_{ijr} D^r + \phi' s_{ij} + \frac{1}{2} \rho_0 \phi' \ell_{ij} + \frac{\phi''}{F} (m_i r_{j0} + m_j s_{i0}) + \frac{\phi''}{2F} (\rho - s) r_{00} \ell_{ij}
$$

$$
- \frac{\phi''}{2F^2} r_{00} (m_i \ell_j + m_j \ell_i) + \frac{\phi'''}{2F^2} r_{00} m_i m_j.
$$

From [\(27\)](#page-6-4), we see $Q_{ij}y^i = 0$. On the other hand, the equation [\(28\)](#page-6-6) may be written as $\bar{\ell}_r D_j^r = Q_j,$ (40)

where $Q_j := \phi'(r_{j0} - s_{j0})$. The equations [\(40\)](#page-8-4) and [\(39\)](#page-8-5) constitute the system of algebraic equations whose solution from Lemma [4.1](#page-6-12) is given by

$$
D_j^i = \frac{F}{\phi - s\phi' + \rho\phi'}Q_j^i + \frac{1}{\phi}\left(Q_j - \frac{F}{\lambda}\phi'Q_{rj}b^r\right)\ell^i - \frac{F\phi''}{\lambda(\phi - s\phi' + \rho\phi')}Q_{rj}b^rm^i,
$$

here $Q_j^i = g^{ir} Q_{rj}$. Then by [\(22\)](#page-6-13) we have

$$
\bar{N}_j^i = N_j^i + \frac{F}{\phi - s\phi' + \rho\phi'} Q_j^i + \frac{1}{\phi} \left(Q_j - \frac{F}{\lambda} \phi' Q_{rj} b^r \right) \ell^i - \frac{F\phi''}{\lambda(\phi - s\phi' + \rho\phi')} Q_{rj} b^r m^i.
$$
 (41)

Finally, applying Christoffel process with respect to indices i, j, k in equation [\(37\)](#page-8-2) we obtain

$$
\bar{\ell}_{rj}D_{ik}^r = M_{jik},\tag{42}
$$

where

$$
M_{jik} := -\frac{1}{2} \left[\bar{\ell}_{ijr} D_k^r + \bar{\ell}_{jkr} D_i^r - \bar{\ell}_{kir} D_j^r \right] + \frac{1}{2} \phi' \left[\rho_k \ell_{ij} + \rho_i \ell_{jk} - \rho_j \ell_{ik} \right] + \frac{\phi''}{F} \left[m_j r_{ik} + m_i s_{jk} + m_k s_{ji} \right] + \frac{\phi''}{2F} (\rho - s) \left[b_{0|k} \ell_{ij} + b_{0|i} \ell_{jk} - b_{0|j} \ell_{ik} \right] + \frac{\phi'''}{2F^2} \left[b_{0|k} m_i m_j + b_{0|i} m_k m_j - b_{0|j} m_i m_k \right] - \frac{\phi''}{2F^2} \left[b_{0|k} (m_i \ell_j + m_j \ell_i) + b_{0|i} (m_j \ell_k + m_k \ell_j) - b_{0|j} (m_i \ell_k + m_k \ell_i) \right].
$$

Moreover, by [\(38\)](#page-8-3) we get $M_{jik}y^j = 0$. Besides, the equation [\(24\)](#page-6-2) may be written as $\bar{\ell}_r D_{ik}^r = M_{ik},$ $i_k^r = M_{ik},$ (43)

where $M_{ik} := \phi' r_{ik} - \frac{1}{2} \bar{\ell}_{ir} D^r_k - \frac{1}{2} \bar{\ell}_{rk} D^r_i + \frac{\phi''}{2F}$ $\frac{\phi''}{2F}[m_i b_{0|k} + m_k b_{0|i}]$. Applying Lemma [4.1](#page-6-12) to equations [\(42\)](#page-9-0) and [\(43\)](#page-9-1) implies that

$$
D_{jk}^{i} = \frac{F}{\phi - s\phi' + \rho\phi'} M_{jk}^{i} + \frac{1}{\phi} \left(M_{jk} - \frac{F}{\lambda} \phi' M_{rjk} b^{r} \right) \ell^{i} - \frac{F\phi''}{\lambda(\phi - s\phi' + \rho\phi')} M_{rjk} b^{r} m^{i},
$$

where $M_{jk}^i = g^{ir} Q_{rjk}$. Then by [\(22\)](#page-6-13) we get

$$
\bar{\Gamma}^i_{jk} = \Gamma^i_{jk} + \frac{F}{\phi - s\phi' + \rho\phi'} M^i_{jk} + \frac{1}{\phi} \left(M_{jk} - \frac{F}{\lambda} \phi' M_{rjk} b^r \right) \ell^i - \frac{F\phi''}{\lambda(\phi - s\phi' + \rho\phi')} M_{rjk} b^r m^i.
$$
\n(44)

THEOREM 5.1. Let $C\bar{\Gamma} = (\bar{\Gamma}_{jk}^i, \bar{N}_j^i, \bar{C}_{jk}^i)$ be the Cartan connection for the Finsler space (M, \overline{F}) where \overline{F} is an (F, β) -metric with h-vector b_i . Then the Cartan connection is completely determined by the equations [\(19\)](#page-5-4), [\(41\)](#page-8-6) and [\(44\)](#page-9-2).

6. Proof of Theorem [1.1](#page-1-0)

Proof. Suppose that F and \overline{F} be projectively related i.e. $\overline{G}^i - G^i = Py^i$, where \overline{G}^i and G^i are the geodesic spray coefficients of \overline{F} and F , respectively and $P = P(x, y)$ is a scalar function on the slit tangent bundle TM_0 . By [\(22\)](#page-6-13) we have $D^i = 2Py^i$. Putting it in [\(33\)](#page-7-1) we get

$$
2Py^{i} = \frac{2F\phi'}{\phi - s\phi' + \rho\phi'}s_{0}^{i} + \frac{\left[\phi'(\phi - s\phi' + \rho\phi') - s\phi\phi''\right]\left[(\phi - s\phi' + \rho\phi')r_{00} - 2F\phi's_{0}\right]}{\phi(\phi - s\phi' + \rho\phi')\lambda}t^{i} + \frac{\phi''\left[(\phi - s\phi' + \rho\phi')r_{00} - 2F\phi's_{0}\right]}{(\phi - s\phi' + \rho\phi')\lambda}b^{i}.
$$
\n(45)

Contracting [\(45\)](#page-9-3) by $y_i := g_{ij}y^j$ and using the facts that $s_0^i y_i = 0$ and $\ell^i y_i = F$, we obtain $P = \frac{\phi'[(\phi - s\phi' + \rho\phi')r_{00} - 2F\phi's_0]}{2F\lambda\phi}$. Now let \bar{F} be projectively flat; then one has $2\overline{G}^i = 2G^i + D^i = 2\overline{P}y^i$. Using the same calculations as above, by [\(33\)](#page-7-1) one gets

$$
h_{ij}G^{j} + \frac{F\phi'}{\phi - s\phi' + \rho\phi'}s_{i0} + \frac{\phi''[(\phi - s\phi' + \rho\phi')r_{00} - 2F\phi's_{0}]}{2(\phi - s\phi' + \rho\phi')\lambda}m_{i} = 0.
$$

Conversely, putting [\(2\)](#page-1-1) in [\(33\)](#page-7-1) yields that

$$
\bar{G}^i = G^i + \left(\frac{F\phi'}{\phi - s\phi' + \rho\phi'}s_{r0} + \frac{\phi''\left[(\phi - s\phi' + \rho\phi')r_{00} - 2F\phi's_{0}\right]}{2(\phi - s\phi' + \rho\phi')\lambda}m_{r}\right)g^{ri}
$$

$$
+ \frac{\phi'\left[(\phi - s\phi' + \rho\phi')r_{00} - 2F\phi's_{0}\right]}{2\phi\lambda}e^i
$$

$$
= G^i - h_{rj}g^{ri}G^j + \frac{\phi'\left[(\phi - s\phi' + \rho\phi')r_{00} - 2F\phi's_{0}\right]}{2\phi\lambda}e^i
$$

$$
= \left(\ell_jG^j + \frac{\phi'\left[(\phi - s\phi' + \rho\phi')r_{00} - 2F\phi's_{0}\right]}{2\phi\lambda}\right)\ell^i = \bar{P}y^i.
$$

This completes the proof. \Box

6.1 Proof of Corollary [1.2](#page-1-2)

Note that for m-root Finsler metrics we have [\[16\]](#page-12-11):

$$
A_i = \frac{\partial A}{\partial y^i}, \quad A_{ij} = \frac{\partial^2 A}{\partial y^i \partial y^j}, \quad A_{x^i} = \frac{\partial A}{\partial x^i}, \quad A_0 = A_{x^i} y^i, \quad A_{0l} = A_{x^r y^l} y^r, \tag{46}
$$

and $2G^i = A^{ir}(A_{0r} - A_{x^r})$. Also, it is not hard to get $A_i = mA^{1-\frac{2}{m}}y_i$, and $A_i^r =$ $(mA^{1-\frac{2}{m}}y^r)_i = mA^{1-\frac{2}{m}}\left(\delta_i^r + (m-2)\ell_i\ell^r\right)$. Then after some calculations we have

$$
2h_{ij}G^j = mA^{1-\frac{2}{m}}\Big(A_{0i} - A_{x^i} - (m-1)A_0A^{-\frac{1}{m}}\ell_i\Big). \tag{47}
$$

Putting the above equations in [\(2\)](#page-1-1) yields that

$$
-m(m-1)A_0y_iA^{1-\frac{4}{m}} + m(A_{0i} - A_{x^i})A^{1-\frac{2}{m}} + 2s_{i0}A^{\frac{1}{m}} = 0.
$$

By the following lemma, the above equation yields $A_{x_i} = 0$ and $s_{ij} = 0$ for $m \neq 5$. For $m = 5$ we get the same conclusion just by separating rational and irrational parts of equation.

LEMMA 6.1. Let $F = \sqrt[m]{A}$ $(m > 2, m \neq 5)$, be an m-th root Finsler metric on an open subset $U \subset \mathbb{R}^n$. Suppose that the equation $\Psi A^{1-\frac{4}{m}} + \Omega A^{1-\frac{2}{m}} + \Theta A^{\frac{1}{m}} = 0$ holds, where Ψ , Ω and Θ are homogeneous polynomials in y. Then $\Psi = \Omega = \Theta = 0$.

Corollaries [1.3](#page-2-0) and [1.4](#page-2-1) are proven in a similar manner.

7. (F, β) -metrics of Douglas type

In [\[4\]](#page-12-10), Douglas introduced the local functions D_{jkl}^{i} on TM_0 defined by

$$
D^i_{j\;kl}:=\frac{\partial^3}{\partial y^j\partial y^k\partial y^l}\Big(G^i-\frac{1}{n+1}\frac{\partial G^m}{\partial y^m}y^i\Big).
$$

It is easy to verify that $D := D^i_{j \; kl} dx^j \otimes \frac{\partial}{\partial x^i} \otimes dx^k \otimes dx^l$ is a well-defined tensor on TM_0 . D is called the Douglas tensor. The Finsler space (M, F) is called a Douglas space if and only if $G^i y^j - G^j y^i$ is a homogeneous polynomial of degree three in y^i [\[1\]](#page-11-1).

7.1 Proof of Theorem [1.5](#page-2-2)

By (33) we get
$$
\bar{G}^i y^j - \bar{G}^j y^i = G^i y^j - G^j y^i + H^{ij}
$$
, where
\n
$$
H^{ij} := \frac{F\phi'}{\phi - s\phi' + \rho\phi'} (s_0^i y^j - s_0^j y^i) + \frac{\phi''[(\phi - s\phi' + \rho\phi')r_{00} - 2F\phi's_0]}{2(\phi - s\phi' + \rho\phi')\lambda} (b^i y^j - b^j y^i).
$$

With the help of the above definition, if F and \overline{F} are Douglas metrics then H^{ij} must be a homogeneous polynomial of degree three in y^i .

By this theorem one could obtain many new Douglas metrics from a given one.

7.2 Proof of Corollary [1.6](#page-0-2)

[\(i\)](#page-2-3) Putting $F = \sqrt[m]{A}$ and $\phi(s) = 1 + s$ in [\(3\)](#page-2-4) yields $2H^{ij} - (s_0^i y^j - s_0^j y^i) \sqrt[m]{A} = 0$. Then by separating rational and irrational parts of the above equation one gets $s_0^i y^j = s_0^j y^i$ and thus $s_{ij} = 0$.
(ii) Here $F = m/2$

(ii) Here
$$
F = \sqrt[m]{A}
$$
 and $\phi(s) = \frac{1}{1-s}$; then one has $\phi'(s) = \frac{1}{(1-s)^2}$, $\phi''(s) = \frac{2}{(1-s)^3}$,
\n $\phi(s) - s\phi'(s) = \frac{1-2s}{(1-s)^2}$, $\lambda = \frac{1+2b^2-3s}{(1-s)^3}$. Putting them in (3) yields
\n $(1-2s)(1+2b^2-3s)H^{ij} - (1+2b^2-3s)\sqrt[m]{A(s_0^i y^j - s_0^j y^i)}$
\n $- ((1-2s)r_{00} - 2s_0 \sqrt[m]{A})) (b^i y^j - b^j y^i) = 0.$

Multiplying above equation by $A^{\frac{2}{m}}$ yields

$$
3^{2}H^{ij} + \beta \left[2r_{00}(b^{i}y^{j} - b^{j}y^{i}) - (4b^{2} + 5)H^{ij}\right]A^{\frac{1}{m}} + \left[(1 + 2b^{2})H^{ij} + 3\beta(s_{0}^{i}y^{j} - s_{0}^{j}y^{i}) - r_{00}(b^{i}y^{j} - b^{j}y^{i})\right]A^{\frac{2}{m}} + \left[2s_{0}(b^{i}y^{j} - b^{j}y^{i}) - (1 + 2b^{2})(s_{0}^{i}y^{j} - s_{0}^{j}y^{i})\right]A^{\frac{3}{m}} = 0.
$$

Similar to Lemma [6.1](#page-10-1) ($m > 3$), one could easily get $H_{ij} = 0$, $r_{00} = 0$ and $s_{ij} = 0$, which yields $b_{i|j} = 0$.

REFERENCES

6/₆

- [1] S. Bacso, M. Matsumoto, On the Finsler spaces of Douglas type. A generalization of the notion of Berwald space, Publ. Math. Debrecen, 51 (1997), 385-406.
- [2] G. Chen, L. Liu, On Randers changes of m-th root Finsler metrics $L = \sqrt[m]{A}$ without irreducibility of A, Ann. Pol. Math., 119 (2017), 239–253.

- [3] S. S. Chern, Z. Shen, Riemann-Finsler Geometry, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
- [4] J.Douglas, *The general geometry of paths*, Ann. Math., **29** (1927-1928), 143-168.
- [5] M.K. Gupta, A.K. Gupta, h-exponential change of Finsler metric, arXiv: 1603.0543v1 [math.DG].
- [6] M.K. Gupta, P.N. Pandey, Finsler space subjected to a Kropina change with an h-vector, Facta Univ., Ser. Math. Inf., 30(4) (2015) 513–525.
- [7] M. Hashiguchi, On conformal transformations of Finsler metrics, J. Math. Kyoto Univ., 16(1) (1976), 25–50.
- [8] H. Izumi, Conformal transformations of Finsler spaces, Tensor, N. S., 31 (1977), 33–41.
- [9] M. Matsumoto, On transformations of locally Minkowskian space, Tensor, N. S., 22 (1971), 103–111.
- [10] M. Shahbazi Nia, A. Tayebi, E. Peyghan, On Randers changes of m-th root metrics, Int. Electron. J. Geom., 8(1) (2015) 14–20.
- [11] Z. Shen, G. C. Yildirim, On a class of projectively flat metrics with constant flag curvature, Canadian J. Math., 60(2) (2008), 443–456.
- [12] C. Shibata, On invariant tensors of β-changes of Finsler metrics, J. Math. Kyoto Univ., 24(1) (1984), 163–188.
- [13] A. Tayebi, M. Shahbazi Nia, Matsumoto Change of m-th root Finsler metrics, Publ. Inst. Math., Nouv. Sér., 101(115) (2017), 183--190.
- [14] A. Tayebi, T. Tabatabaeifar, E. Peyghan, On Kropina Change for m-th root Finsler metrics, Ukr. Math. J., 66(1) (2014), 160–164.
- [15] C. Yu, H. Zhu, On a new class of Finsler metrics, Differ. Geom. Appl., 29 (2011), 244--254.
- [16] Y. Yu, Y. You, On Einstein m-th root metrics, Diff. Geom. Appl., 28 (2010), 290–294.
- [17] L. Zhou, Spherically symmetric Finsler metrics in \mathbb{R}^n , Publ. Math. Debrecen, 4870 (2012), 1–11.

(received 12.02.2019; in revised form 11.09.2019; available online 19.06.2020)

Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran E-mail: t.rajabi.j@gmail.com

Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran E-mail: nsadeghzadeh@qom.ac.ir