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THE ZARIOUH’S PROPERTY (gaz) THROUGH LOCALIZED SVEP

Pietro Aiena, Elvis Aponte and Jesús R. Guillén

Abstract. In this paper we study the property (gaz) for a bounded linear operator
T ∈ L(X) on a Banach space X, introduced by Zariouh in [Property (gz) for bounded linear
operators, Mat. Vesnik, 65(1)(2013), 94–103], through the methods of local spectral theory.
This property is a stronger variant of generalized a-Browder’s theorem. In particular, we
shall give several characterizations of property (gaz), by using the localized SVEP.

1. Introduction

The classical Browder’s theorem and a-Browder’s theorem for operators T ∈ L(X),
defined in Banach spaces X, admit some variants, as property (b), property (ab),
and property (gb), that have been introduced in [8, 9]. All these properties, that are
stronger versions than Browder’s theorem and a-Browder’s theorem, have been also
studied by using methods of local spectral theory in [2] or [1, Chapter 5]. In this
paper we consider a property, called property (gaz), introduced recently by Zariouh
in [13] and, among other characterizations, we show that property (gaz) holds for T
precisely when the dual T ∗ has the SVEP at the points λ that do not belong to the
upper semi B-Weyl spectrum of T , while, dually, T ∗ has property (gaz) if and only
if T has the SVEP at the points λ that do not belong to the upper semi B-Weyl
spectrum of T ∗. In the last part of the paper we show that property (gaz) may be
also characterized by means of the quasi-nilpotent part H0(λI − T ), or by means of
the analytic core K(λI − T ), as λ ranges in a certain subset ∆g

1(T ) of the spectrum.

2. Definitions and preliminary results

Let T ∈ L(X) be a bounded linear operator defined on an infinite-dimensional com-
plex Banach space X, and denote by α(T ) and β(T ), the dimension of the kernel kerT
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and the codimension of the range R(T ) := T (X), respectively. Recall that T ∈ L(X)
is said to be upper semi-Fredholm, T ∈ Φ+(X), if α(T ) <∞ and T (X) is closed, while
T ∈ L(X) is said to be lower semi-Fredholm, T ∈ Φ−(X) if β(T ) < ∞. The class of
Fredholm operators is defined by Φ(X) := Φ+(X) ∩ Φ−(X), while the class of semi-
Fredholm operators is defined by Φ±(X) := Φ+(X) ∪Φ−(X). If T ∈ Φ±(X) then its
index is defined by ind(T ) := α(T ) − β(T ). The set of Weyl operators is defined by
W (X) := {T ∈ Φ(X) : indT = 0}, the class of upper semi-Weyl operators is defined
by W+(X) := {T ∈ Φ+(X) : indT ≤ 0}, and class of lower semi-Weyl operators is
defined by W−(X) := {T ∈ Φ−(X) : indT ≥ 0}. Clearly, W (X) = W+(X)∩W−(X).
The classes of operators above defined generate the following spectra: the Weyl spec-
trum, defined by σw(T ) := {λ ∈ C : λI − T /∈W (X)} the upper semi-Weyl spectrum,
defined by σuw(T ) := {λ ∈ C : λI−T /∈W+(X)}, and the lower semi-Weyl spectrum,
defined by σuw(T ) := {λ ∈ C : λI − T /∈ W−(X)}. Let p := p(T ) and q := q(T )
denote the ascent and the descent of the operator T , respectively. It is well known
that if p(T ) and q(T ) are both finite then p(T ) = q(T ), see [1, Chapter 1]. More-
over, if 0 < p(λI − T ) = q(λI − T ) < ∞ if and only if λ is a pole of the resolvent,
see [11, Proposition 50.2].

The class of all Browder operators is defined as the set B(X) := {T ∈ Φ(X) :
p(T ), q(T ) <∞}; the class of all upper semi-Browder operators is defined B+(X) :=
{T ∈ Φ+(X) : p(T ) < ∞}, and the class of all lower semi-Browder operators is
defined B+(X) := {T ∈ Φ−(X) : q(T ) < ∞}. Obviously, B(X) ⊆ W (X) and
B+(X) ⊆W+(X) and B−(X) ⊆W−(X).

In the sequel we denote by σap(T ) the approximate point spectrum, defined as
σap(T ) := {λ ∈ C : λI − T is not bounded below}, where an operator is said to be
bounded below if it is injective and has closed range. The classical surjective spectrum
of T is denoted by σs(T ).

An operator T ∈ L(X) is said to satisfy Browder’s theorem if σw(T ) = σb(T ), or
equivalently ∆(T ) = p00(T ), where ∆(T ) := σ(T )\σw(T ) and p00(T ) = σ(T )\σb(T ).
The operator T ∈ L(X) is said to satisfy a-Brower’s theorem if σuw(T ) = σub(T ),
or equivalently ∆a(T ) = pa00(T ), where ∆a(T ) := σa(T ) \ σuw(T ) and pa00(T ) :=
σa(T ) \ σub(T ). It is known that a-Browder’s theorem entails Browder’s theorem,
see [1, Chapter 5] for details.

Semi-Fredholm operators have been generalized by Berkani [6, 7] in the following
way: for every T ∈ L(X) and a nonnegative integer n let us denote by T[n] the
restriction of T to Tn(X), viewed as a map from the space Tn(X) into itself (we set
T[0] = T ). T ∈ L(X) is said to be semi B-Fredholm, (resp. B-Fredholm, upper semi
B-Fredholm, lower semi B-Fredholm,) if for some integer n ≥ 0 the range Tn(X) is
closed and T[n] is a semi-Fredholm operator (resp. Fredholm, upper semi-Fredholm,
lower semi-Fredholm). In this case T[m] is a semi-Fredholm operator for all m ≥ n
(see [7]) with the same index of T[n]. This enables one to define the index of a semi
B-Fredholm as indT = indT[n].

A bounded operator T ∈ L(X) is said to be B-Weyl (respectively, upper semi
B-Weyl, lower semi B-Weyl) if for some integer n ≥ 0 the range Tn(X) is closed and
T[n] is Weyl (respectively, upper semi-Weyl, lower semi-Weyl). The B-Weyl spectrum
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is defined by

σbw(T ) := {λ ∈ C : λI − T is not B-Weyl},
and the upper semi B-Weyl spectrum of T is defined by

σubw(T ) := {λ ∈ C : λI − T is not upper semi B-Weyl}.
Analogously, the lower semi B-Weyl spectrum of T is defined by

σlbw(T ) := {λ ∈ C : λI − T is not lower semi B-Weyl}.
In the sequel we shall need the following punctured theorem which follows as a

particular case of a result proved in [7, Corollary 3.2] for operators having topological
uniform descent for n ≥ d.

Theorem 2.1. Suppose that T ∈ L(X) is upper semi B-Fredholm. Then there exists
an open disc D(0, ε) centered at 0 such that λI − T ∈ Φ+(X) for all λ ∈ D(0, ε) \ {0}
and ind (λI − T ) = ind(T ) for all λ ∈ D(0, ε). Moreover, if λ ∈ D(0, ε) \ {0} then
α(λI − T ) = dim (kerT ∩ T d(X)) for some d ∈ N, so that α(λI − T ) is constant as λ
ranges in D(0, ε) \ {0} and α(λI − T ) ≤ α(T ) for all λ ∈ D(0, ε).

The concept of Drazin invertibility has been introduced in a more abstract setting
than operator theory. In the case of the Banach algebra L(X), T ∈ L(X) is said to
be Drazin invertible (with a finite index) if p(T ) = q(T ) < ∞. Clearly, T ∈ L(X)
is Drazin invertible if and only if λI − T is invertible or λ is a pole of the resolvent.
Drazin invertibility for bounded operators suggests the following definition.

Definition 2.2. An operator T ∈ L(X) is said to be left Drazin invertible if p :=
p(T ) < ∞ and T p+1(X) is closed. T ∈ L(X) is said to be right Drazin invertible if
q := q(T ) <∞ and T q(X) is closed. If λI − T is left Drazin invertible and λ ∈ σa(T )
then λ is said to be a left pole. A left pole λ is said to have finite rank if α(λI−T ) <∞.
If λI − T is right Drazin invertible and λ ∈ σs(T ) then λ is said to be a right pole. A
right pole λ is said to have finite rank if β(λI − T ) <∞.

It should be noted that there is a perfect duality, i.e., T (respectively, T ∗) is
left Drazin invertible if and only if T ∗ (respectively T ) is right Drazin invertible.
Furthermore, T ∈ L(X) is Drazin invertible if and only if T is both left Drazin
invertible and right Drazin invertible.

Denote by Π(T ), Πa(T ) and Πs(T ) the set of all poles, the set of left poles of T ,
and the set of right poles respectively. Clearly, Π(T ) = σ(T )\σd(T ), Πa(T ) = σa(T )\
σld(T ) and Πs(T ) = σs(T ) \ σrd(T ). Obviously, Π(T ) ⊆ isoσ(T ), and analogously we
have Πa(T ) ⊆ isoσa(T ) for all T ∈ L(X). In fact, if λ0 ∈ Πa(T ) then λI − T is left
Drazin invertible and hence p(λ0I − T ) < ∞. Since λI − T has topological uniform
descent (see [10] for definition and details), it then follows, from [10, Corollary 4.8],
that λI − T is bounded below in a punctured disc centered at λ0. An analogous
reasoning shows that Πs(T ) ⊆ isoσs(T ) for all T ∈ L(X).

Obviously, pa00(T ) ⊆ Πa(T ) and p00(T ) ⊆ Π(T ) for every T ∈ L(X). The Drazin
spectrum is defined as

σd(T ) := {λ ∈ C : λI − T is not Drazin invertible},
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the left Drazin spectrum is defined as

σld(T ) := {λ ∈ C : λI − T is not left Drazin invertible},
while the right Drazin spectrum is defined as

σrd(T ) := {λ ∈ C : λI − T is not right Drazin invertible}.
Evidently, σd(T ) = σld(T ) ∪ σrd(T ), σubw(T ) ⊆ σld(T ) and σbw(T ) ⊆ σd(T ).

The proof of the following theorem may be found in [1, Theorem 1.143].

Theorem 2.3. For an operator T ∈ L(X) the following statements hold:
(i) If T is upper semi B-Weyl and q(T ) <∞, then T is Drazin invertible.

(ii) If T is lower semi B-Weyl and p(T ) <∞, then T is Drazin invertible.

(iii) If T is B-Weyl and either p(T ) and q(T ) are finite, then T is Drazin invertible.

Lemma 2.4. Let T ∈ L(X). Then we have σld(T ) = σd(T ) ⇔ σa(T ) = σ(T ).
Analogously, σrd(T ) = σd(T )⇔ σs(T ) = σ(T ).

Proof. Suppose that σld(T ) = σd(T ). If λ /∈ σa(T ) then λI − T is upper semi-
Browder, and hence left Drazin invertible. Since σld(T ) = σd(T ) then λI − T is
Drazin invertible, hence p(λI − T ) = q(λI − T ) <∞. This implies, by [1, Chapter 1]
that α(λI − T ) = β(λI − T ), and since α(λI − T ) = 0 we then have λ /∈ σ(T ).
Therefore, σa(T ) = σ(T ).

Conversely, assume that σa(T ) = σ(T ), and let λ /∈ σld(T ). Then λI − T is left
Drazin invertible, hence p(λI − T ) < ∞. There are two possibilities: λ /∈ σa(T ) or
λ ∈ σa(T ). If λ /∈ σa(T ) = σ(T ) then λI−T is invertible and hence Drazin invertible,
i.e., λ /∈ σd(T ). In the other case, where λ ∈ σa(T ), we have λ ∈ σa(T ) \ σld(T ), so λ
is a left pole and hence λ ∈ isoσa(T ) = isoσ(T ), i.e., λI −T is Drazin invertible, and
consequently λ /∈ σd(T ) also in this case. Therefore, σld(T ) = σd(T ).

Suppose that σrd(T ) = σd(T ). If λ /∈ σs(T ) then λI − T is lower semi-Browder,
and hence right Drazin invertible. Since σrd(T ) = σd(T ) then λI − T is Drazin
invertible, hence p(λI − T ) = q(λI − T ) < ∞. This implies, by [1, Chapter 1] that
α(λI − T ) = β(λI − T ), and since β(λI − T ) = 0 we then have λ /∈ σ(T ). Therefore,
σs(T ) = σ(T ).

Conversely, assume that σs(T ) = σ(T ), and let λ /∈ σrd(T ). Then λI − T is right
Drazin invertible, hence q(λI − T ) < ∞. There are two possibilities: λ /∈ σs(T ) or
λ ∈ σs(T ). If λ /∈ σs(T ) = σ(T ) then λI −T is invertible and hence Drazin invertible,
i.e., λ /∈ σd(T ). In the other case, where λ ∈ σs(T ), we have λ ∈ σs(T ) \ σrd(T ), so λ
is a right pole and hence λ ∈ isoσs(T ) = isoσ(T ), hence λI − T is Drazin invertible,
i.e., λ /∈ σd(T ) also in this case. Therefore, σrd(T ) = σd(T ). �

An operator T ∈ L(X) is said to have the single valued extension property at
λ0 ∈ C (abbreviated SVEP at λ0), if for every open disc U of λ0, the only analytic
function f : U → X which satisfies the equation (λI − T )f(λ) = 0 for all λ ∈ U is
the function f ≡ 0. An operator T ∈ L(X) is said to have SVEP if T has SVEP at
every point λ ∈ C. Evidently, an operator T ∈ L(X) has SVEP at every point of the
resolvent ρ(T ) := C \ σ(T ), and both T and T ∗ have SVEP at the isolated points of
the spectrum.
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Remark 2.5. Let λ0 ∈ C and suppose that T has SVEP at the points λ of a punctured
open disc D(λ0, ε) \ {λ0}. Then T has SVEP at λ0. Indeed, let f : D(λ0, ε) → X be
an analytic function such that (λI −T )f(λ) = 0 holds for every λ ∈ D(λ0, ε). Choose
µ ∈ D(λ0, ε) \ {λ0} and let D(µ, δ) be an open disc contained in D(λ0, ε) \ {λ0}. The
SVEP for T at µ entails f(λ) = 0 on D(µ, δ). Since f is continuous at λ0 we then
conclude that f(λ0) = 0. Hence f ≡ 0 on D(λ0, ε), thus T has the SVEP at λ0.

Note that p(λI−T ) <∞ =⇒ T has SVEP at λ, and dually, q(λI−T ) <∞ =⇒ T ∗

has SVEP at λ, see [1, Chapter 2]. Moreover, from the definition of localized SVEP
we easily obtain that if σa(T ) does not cluster at λ then T has SVEP at λ, and, by
duality, if σs(T ) does not cluster at λ then T ∗ has SVEP at λ.

The quasi-nilpotent part of T is defined asH0(T ) = {x ∈ X : limn→∞ ‖Tn(x)‖1/n =
0}. For a bounded operator T ∈ L(X), the analytic core K(T ) is the set of all x ∈ X
such that there exists a constant c > 0 and a sequence (xn)n=0,1,... ⊂ X, such that
x0 = x, Txn = xn−1, and ‖xn‖ ≤ cn‖x‖ for all n ∈ N. Note that T (K(T )) = K(T ),
see [1, Chapter 1].

The two subspaces H0(T ) and K(T ) are in general not closed and H0(λI − T )
closed =⇒ T has SVEP at λ, see [1, Chapter 2]. Furthermore, if λ ∈ isoσ(T ) then
the decomposition X = H0(λI −T )⊕K(λI −T ) holds. If λ is a pole of the resolvent
of T of order p then H0(λI − T ) = ker(λI − T )p and K(λI − T ) = (λI − T )p(X),
see [1, Chapter 2].

3. Zariouh property (gaz)

Define ∆g
a(T ) := σa(T ) \ σubw(T ) and ∆g

1(T ) := σ(T ) \ σubw(T ). Since σubw(T ) ⊆
σld(T ), we then have Πa(T ) ⊆ ∆g

a(T ) ⊆ ∆g
1(T ).

Definition 3.1. Let T ∈ L(X).
1) T is said to verify property (gaz) if ∆g

1(T ) = Πa(T ).

2) T is said to verify generalized a-Browder’s theorem, (gaB), if σubw(T ) = σld(T ),
or equivalently ∆g

a(T ) = Πa(T ).
Generalized a-Browder’s theorem and a-Browder’s theorem are equivalent (see [5]
or [1, Chapter 5]).

Property (gaz) may be characterized in several ways. The next theorem shows
that the operators which satisfy this property have a very nice spectral structure.

Theorem 3.2. Let T ∈ L(X). Then the following statements are equivalent:
(i) T has property (gaz);

(ii) generalized a-Browder’s theorem holds and σa(T ) = σ(T );

(iii) ∆g
1(T ) ⊆ isoσa(T );

(iv) ∆g
1(T ) ⊆ ∂σa(T ), where ∂σa(T ) is the boundary of σa(T );

(v) int ∆g
1(T ) = ∅;
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(vi) σ(T ) = σubw(T ) ∪ ∂σa(T );

(vii) σ(T ) = σubw(T ) ∪ isoσa(T ).

Proof. The proof of the equivalence (i) ⇔ (ii) may be found in [13].

(ii) ⇒ (iii) ∆g
1(T ) = Πa(T ) ⊆ isoσa(T ).

(iii) ⇒ (iv) ⇒ (v) Clear, since isoσa(T ) ⊆ ∂σa(T ).

(v) ⇒ (ii) The condition int ∆g
1(T ) = ∅ entails that σa(T ) = σ(T ). Indeed, let

λ0 /∈ σa(T ) and suppose that λ0 ∈ σ(T ). Then λ0I − T is bounded below and hence
there exists an open disc D(λ0, ε), centered at λ0, such λI − T is bounded below
for all λ ∈ D(λ0, ε). Observe that no point of D(λ0, ε) belongs to ∂σa(T ), since the
boundary of the spectrum is always contained in the approximate point spectrum,
see [1, Theorem 1.12]. Therefore, D(λ0, ε) ⊆ intσ(T ), and since every bounded below
operator is upper semi B-Weyl, we have D(λ0, ε) ⊆ int ∆g

1(T ), a contradiction. So
λ0 /∈ σ(T ) and hence σa(T ) = σ(T ).

The condition int ∆g
1(T ) = ∅ also entails that T satisfies generalized a-Browder’s

theorem. Indeed, ∆g
1(T ) = σ(T ) \ σubw(T ) = σa(T ) \ σubw(T ) = ∆g

a(T ), and the con-
dition int ∆g

a(T ) = ∅ is equivalent to saying that T satisfies generalized a-Browder’s
theorem, see [1, Theorem 5.40].

(ii) ⇔ (vi) Suppose (ii). Generalized a-Browder’s theorem is equivalent, see [1,
Theorem 5.40], to the equality σa(T ) = σubw(T ) ∪ ∂σa(T ), and since by assumption
σa(T ) = σ(T ), we then obtain that the equality (vi) holds.

Conversely, if σ(T ) = σubw(T ) ∪ ∂σa(T ) then, since σubw(T ) ⊆ σa(T ), we have
σ(T ) ⊆ σa(T ), hence σ(T ) = σa(T ). Therefore, σa(T ) = σubw(T ) ∪ ∂σa(T ), and this
is equivalent to generalized a-Browder’s theorem, again by [1, Theorem 5.40].

(ii) ⇔ (vii) The argument is similar to that of the proof of (ii) ⇔ (vi). In-
deed, generalized a-Browder’s theorem is equivalent, see [1, Chapter], to the equal-
ity σa(T ) = σubw(T ) ∪ iso σa(T ), and since by assumption σa(T ) = σ(T ), we then
have (vii). Conversely, if σ(T ) = σubw(T ) ∪ iso σa(T ) then, since σubw(T ) ⊆ σa(T ),
we have σ(T ) ⊆ σa(T ), hence σ(T ) = σa(T ). Therefore, σa(T ) = σubw(T )∪ iso σa(T ),
and this is equivalent, by [1, Chapter 5], to generalized a-Browder’s theorem. �

The equivalence (i) ⇔ (ii) in the previous theorem was first proved in [13]. Prop-
erty (gaz) is a rather strong property. The next corollary shows that this property
entails that several spectra coincide.

Theorem 3.3. Let ∈ L(X). Then we have:

(i) If T has property (gaz) then

σubw(T ) = σbw(T ) = σld(T ) = σd(T ). (1)

Consequently, Π(T ) = Πa(T ).

(ii) If T ∗ has property (gaz) then

σubw(T ∗) = σbw(T ∗) = σrd(T ) = σd(T ). (2)

Consequently, Π(T ) = Πs(T ).
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Proof. (i) By Theorem 3.2 we have σa(T ) = σ(T ) and hence, by Lemma 2.4, σld(T ) =
σd(T ). By Theorem 3.2 T also satisfies generalized a-Browder’s theorem, so σubw(T ) =
σld(T ). Moreover, since generalized a-Browder’s theorem entails generalized Brow-
der’s theorem, we have σbw(T ) = σd(T ). Therefore, the equalities (1) hold.

Since σa(T ) = σ(T ) we also have Πa(T ) = σa(T ) \σld(T ) = σ(T ) \σd(T ) = Π(T ).
(ii) By Theorem 3.2 we have σs(T ) = σa(T ∗) = σ(T ∗) = σ(T ) and hence, by

Lemma 2.4, σrd(T ) = σd(T ). By Theorem 3.2 T ∗ also satisfies generalized a-Browder’s
theorem, so σubw(T ∗) = σld(T ∗), or equivalently, σubw(T ∗) = σrd(T ). Moreover,
since generalized a-Browder’s theorem entails generalized Browder’s theorem, we have
σbw(T ∗) = σd(T ∗) = σd(T ). Therefore, the equalities (2) hold.

Since σs(T ) = σa(T ∗) = σ(T ∗) = σ(T ), we have Πs(T ) = σs(T ) \ σrd(T ) =
σ(T ) \ σd(T ) = Π(T ). �

Also the following properties, introduced in [9], may be though as stronger variants
than Browder type theorems.

Definition 3.4. Let T ∈ L(X).
(i) T is said to satisfy property (b) if σa(T ) \ σuw(T ) = p00(T ).

(ii) T is said to satisfy property (gb) if ∆g
a(T ) = Π(T ).

By Theorem 3.2, if T ∈ L(X) satisfies property (gaz), the equality σa(T ) = σ(T )
implies ∆g

1(T ) = ∆g
a(T ) ⊆ iso σa(T ), and this last inclusion is equivalent to property

(gb), see [2]. Hence

property (gaz)⇒ property (gb)⇒ generalized a-Browder’s theorem.

The following theorem establishes the exact relationship between property (gaz) and
property (gb).

Theorem 3.5. Let T ∈ L(X). Then the following statements are equivalent:
(i) T ∈ L(X) has property (gaz);

(ii) T has property (gb) and σa(T ) = σ(T );

(iii) T has property (b) and σa(T ) = σ(T );

(iv) T satisfies generalized a-Browder’s theorem and σa(T ) = σ(T );

(v) σ(T ) \ σuw(T ) = pa00(T ).

Proof. (i) ⇒ (ii) As observed before, property (gaz) entails property (gb). We show
the equality σld(T ) = σd(T ). It is sufficient to prove σd(T ) ⊆ σld(T ). Let λ /∈ σld(T ).
There are two possibilities: λ /∈ σa(T ) or λ ∈ σa(T ). Trivially, if λ /∈ σa(T ) = σ(T )
then λI − T is invertible, so λ /∈ σd(T ). If λ ∈ σa(T ) then λ ∈ σa(T ) \ σld(T ).
Since T satisfies generalized Browder’s theorem we have σlbw(T ) = σld(T ), hence
λ ∈ σa(T ) \ σubw(T ) = Π(T ), since T satisfies property (gb). Hence λ is a pole of T ,
and consequently λ /∈ σd(T ).

(ii) ⇒ (iii) ⇒ (iv) Clear.
(iv) ⇒ (v) Property (b) entails a-Browder’s theorem, i.e. σuw(T ) = σub(T ). Since

by assumption σa(T ) = σ(T ), we then have σ(T )\σuw(T ) = σa(T )\σub(T ) = pa00(T ).



P. Aiena, E, Aponte, J. R. Guillén 321

(v) ⇒ (i) Let λ0 ∈ ∆g
1(T ). Then, λ0 ∈ σ(T ) and λ0I − T is upper semi B-Weyl,

so, by Theorem 2.1, there exists an open disc D(λ0, ε) such that λI −T ∈W+(X) for
all λ ∈ D(λ0, ε) \ {λ0}, with ind (λ0I − T ) = ind (λI − T ) ≤ 0. Hence,

λ ∈ σ(T ) \ σuw(T ) = pa00(T ) = σa(T ) \ σub(T ),

so p(λI−T ) <∞, and hence T has SVEP at every λ ∈ D(λ0, ε)\{λ0}. By Remark 2.5
it then follows that T has SVEP also at λ0, so λ0I − T is left Drazin invertible,
by [1, Theorem 2.97]. We also have λ0 ∈ σa(T ). Indeed, for every λ ∈ D(λ0, ε)\{λ0},
λI−T has closed range, being λI−T ∈W+(X), hence α(λI−T ) > 0, since λ ∈ σa(T ).
From Theorem 2.1 it then follows that 0 < α(λI−T ) < α(λ0I−T ), thus λ0 ∈ σa(T ).
Therefore, λ0 ∈ Πa(T ), so ∆g

1(T ) ⊆ Πa(T ), and since the reverse inclusion is always
true we then conclude that ∆g

1(T ) = Πa(T ). �

In [13], an operator T for which the equality σ(T ) \ σuw(T ) = pa00(T ) holds is said
to have property (az). Evidently, properties (gaz) and (az) are equivalent. These two
properties are also equivalent to the properties (gah) and (ah) studied in [14].

The next theorem gives a local spectral characterization of property (gaz).

Theorem 3.6. Let T ∈ L(X). Then we have:
(i) T ∗ has SVEP at the points λ /∈ σubw(T ) if and only if property (gaz) holds for T .

(ii) T has SVEP at the points λ /∈ σubw(T ∗) if and only if property (gaz) holds for T ∗.

Proof. (i) Suppose that T ∗ has SVEP at every λ /∈ σubw(T ). The SVEP for T ∗ at the
points λ /∈ σubw(T ) entails generalized a-Browder’s theorem. Indeed, if λ /∈ σubw(T )
then the SVEP of T ∗ entails, by part (i) of Theorem 2.3, that λI − T is Drazin
invertible, in particular left Drazin invertible, so λ /∈ σld(T ). Therefore, σld(T ) ⊆
σubw(T ). The reverse inclusion is true for every operator, so σld(T ) = σubw(T ).
Hence T satisfies generalized a-Browder’s theorem.

On the other hand, if λ /∈ σld(T ) = σubw(T ), then λI −T is left Drazin invertible,
and, by [1, Theorem 2.98], the SVEP for T ∗ at λ entails that λI − T is right Drazin
invertible, thus λ /∈ σd(T ). Hence σd(T ) ⊆ σld(T ) and since the reverse inclusion is
always true, we then have σld(T ) = σd(T ), or equivalently, by Lemma 2.4, σa(T ) =
σ(T ). By Theorem 3.2 it then follows that T has property (gaz).

Conversely, assume that T has property (gaz) and let λ /∈ σubw(T ). From Corol-
lary 3.3 then λ /∈ σd(T ), so q(λλI − T ) <∞ and hence T ∗ has SVEP at λ.

(ii) We show first that the SVEP for T at the points λ /∈ σubw(T ∗) entails gen-
eralized a-Browder’s theorem for T ∗. Let λ /∈ σubw(T ∗). Then λI − T ∗ is upper
semi B-Weyl, hence is quasi-Fredholm, see [1, Chapter 1] for definition and details, or
equivalently λI − T is quasi-Fredholm, by [1, Theorem 1.104]. The SVEP of T ∗ at λ
implies that λI−T is right Drazin invertible, hence, by duality, λI−T ∗ is left Drazin
invertible, so λ /∈ σld(T ∗). Therefore, σld(T ∗) ⊆ σubw(T ∗), and since the opposite
inclusion is true, it then follows that σld(T ∗) = σubw(T ∗), i.e., T ∗ satisfies generalized
a-Browder’s theorem.

We show now that σld(T ∗) = σd(T ∗). Let λ /∈ σld(T ∗). Then λI−T ∗ is left Drazin
invertible, hence both λI − T ∗ and λI − T are quasi-Fredholm. Since σubw(T ∗) ⊆
σld(T ∗) we have λ /∈ σubw(T ∗), so T has SVEP at λ. By [1, Theorem 2.97] then
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λI − T is left right invertible, hence λI − T ∗ is right Drazin invertible. This shows
that σd(T ∗) ⊆ σld(T ∗), and hence σd(T ∗) = σld(T ∗), By Lemma 2.4 it then follows
that T ∗ satisfies property (gaz). Conversely, assume that T ∗ has property (gaz).
From part (ii) of Corollary 3.3 we have σubw(T ∗) = σd(T ∗). Hence, if λ /∈ σubw(T ∗)
then λ is a pole of T ∗, or equivalently, by [1, Theorem 4.2], λ is a pole of T . From
p(λI − T ) <∞ we then conclude that T has SVEP at λ. �

Corollary 3.7. If T ∗ has SVEP then property (gaz) holds for T , while if T has
SVEP then property (gaz) holds for T ∗.

Corollary 3.7 applies to several classes of operators; the SVEP for T is for instance
satisfied by the class H(p), where T is said to be H(p) if there exists a natural
p := p(λ) such that H0(λI − T ) = ker(λI − T )p for all λ ∈ C. Indeed, property H(p)
is satisfied by every generalized scalar operator, and in particular for p-hyponormal,
log-hyponormal or M-hyponormal operators on Hilbert spaces, see [1, Chapter 4] for
details.

The following example shows that the result observed in Theorem 3.6 is not true
whenever we replace the assumption that T ∗ (respectively, T ) has SVEP with the
assumption that T has SVEP (respectively, T ∗). Recall that T ∈ L(X) is said to be
a-polaroid if every isolated element of σa(T ) is a pole of the resolvent.

Example 3.8. Let R denote the classical right shift in the Hilbert space `2(N), defined
as R(x1, x2, . . . , ) := (0, x1, x2, . . . ) for all x = (xk)k∈N ∈ `2(N), and denote by L the
left shift in the Hilbert space `2(N), defined as L(x1, x2, . . . , ) := (x2, x3, . . . ) for
all x = (xk)k∈N ∈ `2(N). It is known that the adjoint L′ is R, and that R′ = L.
Moreover, R has SVEP, while L does not have SVEP at 0. By Corollary 3.7 every
left shift operator satisfies property (gaz), since L′ = R has SVEP. By Theorem 3.2
then property (gaz) fails for R, since σ(R) = D(0, 1), D(0, 1) the closed disc in C,
while σa(R) = ∂D(0, 1). This example also shows that property (gaz) for a bounded
operator T is not transmitted, in general, to its adjoint.

The right shift also provides an example of operator which satisfies property (gb)
but not property (gaz). Indeed, since isoσa(R) = ∅, R is a-polaroid. Since R has
SVEP then R satisfies property (gb), by [2, Corollary 3.11].

Property (gaz) may be characterized in a very simple way.

Corollary 3.9. Let T ∈ L(X). Then T has property (gaz) ⇔ σubw(T ) = σd(T ).

Proof. If T has property (gaz) then, by Theorem 3.3, σubw(T ) = σd(T ). Conversely,
suppose that σubw(T ) = σd(T ). If λ /∈ σubw(T ) then λI − T is Drazin invertible,
hence q(λI − T ) <∞ and this implies that T ∗ has SVEP at λ. By Theorem 3.6 then
T has property (gaz). �

Corollary 3.10. If T ∈ L(X) then the following statements are equivalent:
(i) T has property (gaz);

(ii) T satisfies generalized a-Browder’s theorem and σbw(T ) ∩∆g
1(T ) = ∅;

(iii) T satisfies generalized Browder’s theorem and σbw(T ) ∩∆g
1(T ) = ∅.
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Proof. (i) ⇒ (ii) If T satisfies (gaz) then, by Theorem 3.3, σubw(T ) = σbw(T ), so
σbw(T ) ∩∆g

1(T ) = ∅.
(ii)⇒ (iii) Clear, since generalized a-Browder’s theorem entails generalized Brow-

der’s theorem.
(iii) ⇒ (i) By Corollary 3.9 it suffices to prove the equality σubw(T ) = σd(T ), and

for that we have only to show the inclusion σd(T ) ⊆ σubw(T ). Let λ /∈ σubw(T ). Then
either λ /∈ σ(T ) or λ ∈ σ(T ). Trivially, λ /∈ σd(T ) in the first case. If λ ∈ σ(T ) then
λ ∈ ∆g

1(T ), hence λI−T is B-Weyl. Generalized Browder’s theorem for T yields that
λI − T is Drazin invertible, thus λ /∈ σd(T ) in the second case, too. �

Since the dual of the left shift L in `2(N) has SVEP we have that σa(L) = σ(L),
see [1, Theorem 2.68]. We can say much more.

Corollary 3.11. For the left shift L in `2(N) we have σubw(L) = σbw(L) = σld(L) =
σd(L) = σa(L) = σ(L) = D(0, 1).

Proof. The equalities σubw(L) = σbw(L) = σld(L) = σd(L), σa(L) = σ(L) = D(0, 1)
are consequences of property (gaz) for L. Clearly, if λ /∈ σd(L), then λI−L is Drazin
invertible, and hence λ ∈ isoσ(L), or λI − T is invertible. Since isoσ(L) = ∅ then
λ /∈ σ(L), so σd(L) = σ(L). �

Let ρa(T ) = C \ σa(T ) and ρ(T ) = C \ σ(T ). In [3] it has been proved that
ρuw(T ) := C \ σuw(T ) is connected if and only if ρa(T ) is connected and T satisfies
a-Browder’s theorem, or equivalently generalized a-Browder’s theorem. In [3] it has
been shown that ρw(T ) is connected if and only if ρ(T ) is connected and T satisfies
Browder’s theorem. We can improve this result.

Theorem 3.12. Let T ∈ L(X) be such that ρuw(T ) is connected. Then T satisfies
property (gaz).

Proof. Since, as noted above, T satisfies a-Browder’s theorem, it suffices, by Theo-
rem 3.2, to prove that σa(T ) = σ(T ). Since ρa(T ) is connected then ρ(T ) is connected,
i.e., there is no bounded open connected component of ρ(T ). Let Ω be unique un-
bounded open connected component of ρ(T ). Evidently, Ω ⊆ ρa(T ) ⊆ ρsf(T ) :=
C \ σsf(T ), where σsf(T ) denotes the semi-Fredholm spectrum of T , and Ω is also
unique unbounded open connected component of ρa(T ). Now, let λ /∈ σa(T ). Then
λ ∈ ρa(T ), and since ρa(T ) is connected, then λ belongs to Ω. By [4, Theorem 2.5]
we then have that T ∗ has SVEP at λ, so q(λI − T ) < ∞, by [1, Theorem 2.98], and
hence β(λI − T ) ≤ α(λI − T ) = 0, see [1, Theorem 1.22]. Thus λ /∈ σ(T ), and hence
σap(T ) = σ(T ). �

Property (gaz) may be also characterized by means of the quasi-nilpotent part as
follows.

Theorem 3.13. Let T ∈ L(X). Then the following statements are equivalent:
(i) T has property (gaz);

(ii) For every λ ∈ ∆g
1(T ) there exists a natural number ν := ν(λ) such that H0(λI −

T ) = ker(λI − T )ν and σ(T ) = σa(T ):
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(iii) H0(λI − T ) is closed for all λ ∈ ∆g
1(T ) and σ(T ) = σa(T ).

(iv) For every λ ∈ ∆g
1(T ) there exists a natural number ν := ν(λ) such that K(λI −

T ) = (λI − T )ν(X) and σ(T ) = σa(T ).

Proof. (i) ⇒ (ii) Assume property (gaz) for T . Then every λ ∈ ∆g
1(T ) is a left pole

of T , hence, see [1, Theorem 4.3], there exists a natural number ν := ν(λ) such that
H0(λI − T ) = ker(λI − T )ν . Furthermore, σ(T ) = σa(T ) by Theorem 3.2.

(ii) ⇒ (iii) Clear.
(iii) ⇒ (i) Let λ /∈ σubw(T ). Since H0(λI − T ) is closed then T has SVEP at λ,

and since λI − T has topological uniform descent, by [1, Theorem 2.97], then λI − T
is left Drazin invertible, so λ /∈ σld(T ), and consequently σld(T ) = σubw(T ). From
this we obtain that T has property (gaz).

(ii) ⇒ (iv) Since σa(T ) = σ(T ), every point λ ∈ ∆g
1(T ) is an isolated point of

σ(T ), hence X = H0(λI − T )⊕K(λI − T ) = ker(λI − T )ν ⊕K(λI − T ), from which
we obtain (λI − T )ν(X) = K(λI − T ).

(iv) ⇒ (i) If λ ∈ ∆g
a(T ) from the inclusion ∆g

a(T ) ⊆ ∆g
1(T ) we know that K(λI −

T ) = (λI − T )ν(X) for some ν ∈ N. By [2, Theorem 3.8], then T satisfies property
(gb). Since by assumption σ(T ) = σa(T ), it the follows that T satisfies (gaz), by
Theorem 3.5. �

Let M , N be two closed linear subspaces of X and define δ(M,N) :=
sup{dist (u,N) : u ∈ M, ‖u‖ = 1}, in the case M 6= {0}, otherwise set δ({0}, N) = 0
for any subspace N . According to [12, §2, Chapter IV], the gap between M and N is

defined by δ̂(M,N) := max{δ(M,N), δ(N,M)}. The function δ̂ is a metric on the set
of all linear closed subspaces of X and the convergence Mn →M is obviously defined
by δ̂(Mn,M)→ 0 as n→∞.

In the following we need the following elementary lemma.

Lemma 3.14. If T ∈ L(X) is injective and upper semi B-Fredholm then T is bounded
below.

Proof. If T is upper semi B-Fredholm then there exists n ∈ N such that Tn(X)
is closed. By assumption α(T ) < ∞, and this implies that α(Tn) < ∞, so Tn is
upper semi-Fredholm and by the classical Fredholm theory we deduce that T is upper
semi-Fredholm. Consequently, T (X) is closed and hence T is bounded below. �

Theorem 3.15. For a bounded operator T ∈ L(X) the following statements are equiv-
alent:
(i) T satisfies property (gaz);

(ii) The mapping λ 7→ ker(λI − T ) is discontinuous at every λ ∈ ∆g
1(T ) in the gap

metric.

Proof. (i) ⇒ (ii) Suppose that T satisfies (gaz). If λ0 ∈ ∆g
1(T ) = Πa(T ) then

λ0I − T is upper semi B-Weyl and λ0 ∈ σa(T ). Note that α(λ0I − T ) > 0. Indeed,
if α(λ0I − T ) = 0 then, by Lemma 3.14 we would have that λ0I − T is bounded
below, i.e., λ0 /∈ σa(T ). On the other hand, by Theorem 3.2, there exists a disc D(λ0)
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centered at λ0 such that α(λI − T ) = 0 for all D(λ0) \ {λ0}, hence the mapping
λ 7→ ker(λI − T ) is discontinuous at λ0 in the gap metric.

(ii) ⇒ (i) We show that ∆g
1(T ) ⊆ isoσa(T ), so Theorem 3.2 applies. Let λ0 ∈

∆g
1(T ) be arbitrary. Then λ0I − T is upper semi B-Weyl. By Theorem 2.1 we

know that there exists an open disc D(λ0, ε) such that, λI − T is upper Weyl for all
λ ∈ D(λ0, ε)\{λ0}, α(λI−T ) is constant as λ ranges on D(λ0, ε)\{λ0}, ind(λI−T ) =
ind(λ0I − T ) for all λ ∈ D(λ0, ε), and 0 ≤ α(λI − T ) ≤ α(λ0I − T ) for all λ ∈
D(λ0, ε). Since the mapping λ 7→ ker(λI − T ) is discontinuous at every λ ∈ ∆g

1(T )
then 0 ≤ α(λI − T ) < α(λ0I − T ) for all λ ∈ D(λ0, ε) \ {λ0}. We show that

α(λI − T ) = 0 for all λ ∈ D(λ0, ε) \ {λ0}. (3)

To see this, suppose that there exists λ1 ∈ D(λ0, ε) \ {λ0} such that α(λ1I − T ) > 0.
Clearly, λ1 ∈ ∆g

1(T ), so, arguing as for λ0, we obtain a λ2 ∈ D(λ0, ε) \ {λ0, λ1} such
that 0 < α(λ2I −T ) < α(λ1I −T ), and this is impossible since α(λI −T ) is constant
for all λ ∈ D(λ0, ε) \ {λ0}. Therefore (3) is satisfied and since λI − T is upper Weyl
for all λ ∈ D(λ0, ε) \ {λ0}, the range (λI − T )(X) is closed for all λ ∈ D(λ0, ε) \ {λ0},
thus λ0 ∈ isoσa(T ), as desired. �

Set E(T ) := {λ ∈ isoσ(T ) : 0 < α(λI − T )}, and Ea(T ) := {λ ∈ isoσa(T ) : 0 <
α(λI−T )}. Evidently, if T has property (gaz) then E(T ) = Ea(T ) and Π(T ) = Πa(T ),
since σ(T ) = σa(T ) and σld(T ) = σd(T ).

Definition 3.16. We say that T ∈ L(X) satisfies generalized Weyl’s theorem, in
symbol (gW ), if σ(T )\σbw(T ) = E(T ). T ∈ L(X) is said to satisfy the generalized a-
Weyl’s theorem, abbreviated (gaW ), if ∆g

a(T ) = σa(T )\σubw(T ) = Ea(T ). T ∈ L(X)
is said to satisfy the generalized property (gw), abbreviated (gw), if the equality
σa(T ) \ σubw(T ) = E(T ) holds.

Note that either of properties (gaW ) and (gw) entails (gW ), see [1, Chapter 6].
If T has property (gaz), the equality σa(T ) = σ(T ) entails that ∆g

a(T ) = Ea(T ) if
and only if ∆g

a(T ) = E(T ), so (gaW ) and (gw) are equivalent for T . The following
example shows that, in general, (gaW ), (gw) and (gaz) are independent.

Example 3.17. Property (gaz), (gaW ) or (gw) are independent. To see this, consider
the weighted right shift T on the Hilbert space `2(N), defined as T (x1, x2, . . . ) :=
(0, x2

2 ,
x3

3 , . . . ) for all (xn) ∈ `2(N). T is quasi-nilpotent and hence has SVEP, so its
adjoint T ′ satisfies property (gaz). On the other hand we have E(T ′) = Ea(T ′) =
{0} 6= σa(T ′) \ σubw(T ′) = ∅, so T ′ does not satisfy (gaW ) and (gw).

To show an example of operator for which (gaW ) and (gw) hold, but not (gaz),
consider a right shift R in `2(N) . As observed before, property (gaz) fails for R.
We have σubw(R) = σa(R) = ∂σ(R). The inclusion σubw(R) ⊆ σa(R) = ∂σ(R) =
∂D(0, 1) is obvious. Suppose that there exists λ /∈ σubw(R) such that λ ∈ σa(R). Since
R has SVEP at λ then, by [1, Theorem 2.97], λ ∈ isoσa(T ), and this is impossible,
since isoσa(T ) = ∅. Hence, σubw(R) = σa(R), so ∆g

a(R) = ∅. On the other hand,
Ea(R) = E(R) = ∅, so R satisfies both (gaW ) or (gw).

Theorem 3.18. Let T ∈ L(X). Then we have:
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(i) If T satisfies either (gaW ), or (gw), and σubw(T ) = σbw(T ) then T has property
(gaz).

(ii) If T satisfies property (gaz) and E(T ) = Π(T ) then T satisfies (gaW ), or equiv-
alently, T satisfies (gw).

Proof. (i) From assumption we have ∆g
1(T ) = σ(T ) \ σbw(T ). But property (gaW )

entails generalized a-Browder’s theorem, hence ∆g
1(T ) = σ(T ) \ σd(T ) = Π(T ) ⊆

Πa(T ). The converse inclusion Πa(T ) ⊆ ∆g
1(T ) is always true, so Πa(T ) = ∆g

1(T ).
(ii) If T satisfies property (gaz) and E(T ) = Π(T ) then Ea(T ) = E(T ), and, by

Theorem 3.3, we have σubw(T ) = σbw(T ). Hence Π(T ) = Πa(T ) = ∆g
1(T ) = ∆g

a(T ).
Evidently, property (gaW ) and (gw) are equivalent, since Ea(T ) = E(T ). �
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