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GENERALIZED CONTRACTIONS AND FIXED POINT THEOREMS
OVER BIPOLAR CONEtvs b-METRIC SPACES WITH AN

APPLICATION TO HOMOTOPY THEORY

Kushal Roy and Mantu Saha

Abstract. In this paper, we introduce the concept of bipolar conetvs b-metric space and
prove some generalized fixed point theorems on it. These theorems extend and generalize
some recent results obtained by other authors for mappings on a bipolar metric space. Also,
a brief study on topological properties of this newly introduced space has been made and in
support of our theorems, we give some examples. Moreover, our fixed point result is applied
to homotopy theory on such spaces.

1. Introduction

In 2007, Huang and Zhang [5] introduced the concept of normal cone metric spaces
and proved some fixed point theorems on it. Consequently many mathematicians have
proved several fixed point theorems on such spaces. In continuation of this thread,
Azam et al. [2] had been able to prove some fixed point theorems in a topological
vector space-valued cone metric space equipped with a non-normal cone. Following
this concept Kadelburg et al. [7] proved some common fixed point theorems on such
spaces and had shown some basic differences between normal cone metric spaces and
non-normal topological vector space-valued cone metric spaces.

In the year 2003, Akram et al. [1] introduced a new class of generalized contractions
commonly known as A−contractions, which contains a class of contractive mappings
namely Kannan’s contractive mappings [8], Reich’s contractive mappings [14] etc. By
considering such type of mappings a good number of mathematicians have proved
several fixed point theorems on a variety of topological spaces (see [15]).

In 2016, Mutlu and Gürdal [10, 11] have initiated the concept of bipolar metric
spaces and proved some contractive fixed point theorems and coupled fixed point
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theorems. Recently Kishore et al. [9] and Rao et al. [12,13] have proved several fixed
point and common fixed point theorems in this setting.

The aim of this paper is to establish some generalized fixed point theorems in the
setting of bipolar conetvs b-metric spaces with supporting examples. Also here we
obtain a homotopy result as an application of our established theorem.

2. Preliminaries

Let E be a Hausdorff topological vector space (in short tvs) with null vector θ. A
proper nonempty and closed subset P of E is called a cone if P +P ⊂ P , λP ⊂ P for
λ ≥ 0 and P ∩ (−P ) = θ. The cone P is called solid if P has a nonempty interior.

Each cone P induces a partial order � on E by x � y if and only if y − x ∈ P .
x ≺ y will stand for x � y and x 6= y, while x � y will stand for y − x ∈ intP . The
pair (E,P ) is an ordered topological vector space.

The definition of normal cones in ordered topological vector spaces can be found,
e.g. in [7]. For a pair of elements x, y ∈ E, such that x � y, the order interval is
given by [x, y] = {z ∈ E : x � z � y}. A subset F of E is said to be order-convex if
[x, y] ⊂ F , whenever x, y ∈ F and x � y. An ordered topological vector space (E,P ) is
order-convex if it has a base of neighborhoods of θ consisting of order-convex subsets.
In this case the underlying cone P is called normal. For a normed space, this condition
means that the unit ball is order-convex, which is actually equivalent to the condition
that there is a number K > 0 such that θ � x � y implies ‖x‖ ≤ K‖y‖ for all x, y ∈ E.
The least positive number satisfying above is said to be the normal constant. Another
equivalent condition is that inf{‖x+ y‖ : x, y ∈ P and ‖x‖ = ‖y‖ = 1} > 0. For more
information one can see [4].

Example 2.1 ([2, 4]). Let E=C1
R[0, 1] with ‖x‖=‖x‖∞+‖x′‖∞ and let P={x ∈ E :

x(t) ≥ 0 on [0, 1]}. This cone is solid but is not normal. Consider for example, xn(t) =
(1−sinnt)

(n+2) and yn(t) = (1+sinnt)
(n+2) . Since ‖xn‖ = ‖yn‖ = 1 and ‖xn + yn‖ = 2

(n+2) → 0,

it follows that P is a nonnormal cone.
Now consider the space E = C1

R[0, 1] endowed with the strongest locally convex
topology t∗. Then P is also t∗-solid, but not t∗-normal. Indeed, if it were normal then
the space (E, t∗) would be normed, which is impossible since an infinite-dimensional
space with the strongest locally convex topology cannot be metrizable.

Definition 2.2 ([7]). Let X be a nonempty set and (E,P ) be an ordered tvs. A
function d : X2 → E is called a tvs-cone metric and (X, d) is called a tvs-cone metric
space if the following conditions hold:
(C1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(C2) d(x, y) = d(y, x) for all x, y ∈ X;

(C3) d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X.

Definition 2.3 ([7]). Let {xn} ⊂ X and x ∈ X. Then
(i) {xn} is said to be tvs-cone convergent to x if for every c ∈ E with θ � c there



K. Roy, M. Saha 283

exists a natural number n0 such that d(xn, x) � c for all n > n0; we denote it by
limn→∞ xn = x or xn → x as n→∞.

(ii) {xn} is said to be a tvs-cone Cauchy sequence if for every c ∈ E with θ � c there
exists a natural number n0 such that d(xm, xn)� c for all m,n > n0.

(iii) (X, d) is called tvs-cone complete if every tvs-cone Cauchy sequence is tvs-cone
convergent in X.

Now we recall some basic properties of a real tvs E with a solid cone P and a
tvs-cone metric space (X, d) over it.

Lemma 2.4 ([7]). (a) Let θ � xn → θ in (E,P ), and let θ � c. Then there exists n0
such that xn � c for each n > n0.

(b) It can happen that θ � xn � c for each n > n0, but xn 9 θ in (E,P ).

(c) It can happen that xn → x, yn → y as n → ∞ in the tvs-cone metric d, but
that d(xn, yn) 9 d(x, y) in (E,P ). In particular, it can happen that xn → x in d but
d(xn, x) 9 θ (which is impossible if the cone is normal).

(d) θ � u� c for each c ∈ intP implies that u = θ.

(e) xn → x ∧ yn → y (in the tvs-cone metric spaces) implies that x = y.

(f) Each tvs-cone metric space is Hausdorff in the sense that for arbitrary distinct
points x and y there exist their disjoint neighbourhoods in the topology τc having the
local base formed by the sets of the form Kc(x) = {z ∈ X : d(x, z)� c}, c ∈ intP .

Lemma 2.5 ([7]). (a) If u � v and v � w, then u� w.

(b) If u� v and v � w, then u� w.

(c) If u� v and v � w, then u� w.

(d) Let x ∈ X, {xn} and {bn} be two sequences in X and E, respectively, θ � c, and
θ � d(xn, x) � bn for all n ∈ N. If bn → θ, then there exists a natural number n0
such that d(xn, x)� c for all n ≥ n0.

A generalization of metric spaces, namely b-metric spaces was developed by I.A.
Bakhtin [3] following which, Hussain et al. have defined cone b-metric spaces in the
following way.

Definition 2.6 ([6]). Let A be a nonempty set and E be a real Banach space with
cone P . A vector-valued function d : A × A → P is said to be a cone b-metric on A
with the constant k ≥ 1 if the following conditions are satisfied:
(M1) d(x, y) = θ if and only if x = y; (M2) d(x, y) = d(y, x) for all x, y ∈ A;

(M3) d(x, z) � k(d(x, y) + d(y, z)) for all x, y, z ∈ A.
The pair (A, d) is called the cone b-metric space.

Definition 2.7 ([10]). Let C and D be two nonempty sets. Suppose that a function
d : C ×D → R+ satisfies the following conditions:
(B1) d(x, y) = 0 if and only if x = y; (B2) d(x, y) = d(y, x) for all x, y ∈ C ∩D;
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(B3) d(x1, y2) ≤ d(x1, y1) + d(x2, y1) + d(x2, y2) for all (x1, y1), (x2, y2) ∈ C ×D.
Then the function d is said to be a bipolar metric on (C,D) and the triplet (C,D, d)
is called a bipolar-metric space.

Example 2.8 ( [10]). Let X be the class of all singleton subsets of R and Y be
the class of all nonempty compact subsets of R. We define d : X × Y → R+ as
d(x,A) = |x− inf(A)|+ |x− sup(A)|. Then (X,Y, d) is a bipolar metric space.

3. Introduction to bipolar conetvs b-metric space

In what follows we always assume that E is a real Hausdorff topological vector space
with a solid cone P and � is the partial ordering on E induced by P .

Definition 3.1. Let X and Y be two nonempty sets and d : X × Y → P be a
function, satisfying the following properties:
(i) d(x, y) = θ if and only if x = y; (ii) d(x, y) = d(y, x) for all x, y ∈ X ∩ Y ;

(iii) d(x1, y2) � s[d(x1, y1) + d(x2, y1) + d(x2, y2)] for all x1, x2 ∈ X and y1, y2 ∈ Y ,
where the coefficient s ≥ 1.
Then d is called a bipolar conetvs b-metric on (X,Y ) and the triplet (X,Y, d) is called
a bipolar conetvs b-metric space. In particular, if X ∩ Y 6= ∅ then the space is called
joint, otherwise it is called disjoint. The sets X and Y are respectively called the left
pole and the right pole of (X,Y, d).

Example 3.2. Let X = {−1, 0}, Y = {0, 1}, E = R2 and P = {(x, y) ∈ E :
x, y ≥ 0}. Let d : X × Y → E be defined by d(0, 0) = (0, 0), d(−1, 0) = (3, 3),
d(−1, 1) = d(0, 1) = (1, 1). Then (X,Y, d) is a bipolar conetvs b-metric space with the
coefficient s = 3

2 .

Example 3.3. Let L be the set of all Lebesgue measurable functions on [0, 1], such

that
∫ 1

0
|f(x)|2 dx < ∞. Let X = {f ∈ L : f(x) ≥ 0 for all x ∈ [0, 12 ] and f(x) ≤ 0

for all x ∈ ( 1
2 , 1]} and Y = {g ∈ L : g(x) ≤ 0 for all x ∈ [0, 12 ] and g(x) ≥ 0 for all

x ∈ ( 1
2 , 1]}. Also, d : X × Y → E, where E = C1

R[0, 1] and P = {ϕ ∈ E : ϕ ≥ 0}, is
defined by

d(f, g)(t) =

(∫ 1

0

|f(x)− g(x)|2 dx
)
ϕ(t)

for all t ∈ [0, 1], (f, g) ∈ X × Y and for some ϕ ∈ P . We can choose ϕ(t) = 1
1+t2 or

et for all t ∈ R for instance. Then (X,Y, d) is a bipolar conetvs b-metric space with
s = 3.

Example 3.4. Let Un(R) and Ln(R) be the sets of all upper and lower triangular
matrices of order n respectively. Also let E = R and P = {x ∈ E : x ≥ 0}.
Suppose d : Un(R) × Ln(R) → P is defined as d(A,B) =

∑n
i,j=1 |aij − bij |2 for all

A = (aij)n×n ∈ Un(R) and B = (bij)n×n ∈ Ln(R). Then (Un(R), Ln(R), d) is a
bipolar conetvs b-metric space with the coefficient s = 3.
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Example 3.5. Let A and B be two nonempty sets, (C, h) be a cone b-metric space
with the coefficient s and g : A∪B → C be an injective mapping. Then d : A×B →
[0,∞), defined by d(a, b) = h(g(a), g(b)) for all (a, b) ∈ A × B, is a bipolar conetvs
b-metric with the coefficient s2.

Definition 3.6. (i) The opposite of a bipolar conetvs b-metric space (X,Y, d) is de-
fined as the bipolar conetvs b-metric space (Y,X, d̄), where the function
d̄ : Y ×X → E is defined as d̄(y, x) = d(x, y).

(ii) Let (X1, Y1) and (X2, Y2) be two pairs of sets.
A function F : X1 ∪ Y1 → X2 ∪ Y2 is said to be a covariant map if F (X1) ⊂ X2

and F (Y1) ⊂ Y2 and we denote this as F : (X1, Y1) ⇒ (X2, Y2).
A function F : X1∪Y1 → X2∪Y2 is said to be a contravariant map if F (X1) ⊂ Y2

and F (Y1) ⊂ X2 and we denote this as F : (X1, Y1) 
 (X2, Y2).
If (X1, Y1, d1) and (X2, Y2, d2) are two bipolar conetvs b-metric spaces then we use

the notations F : (X1, Y1, d1) ⇒ (X2, Y2, d2) and F : (X1, Y1, d1) 
 (X2, Y2, d2).

Definition 3.7. Let (X,Y, d) be a bipolar conetvs b-metric space. A point z ∈ X∪Y
is said to be a left point if z ∈ X, a right point if z ∈ Y and a central point if both
hold.

A sequence {xn} ⊂ X is called a left sequence and a sequence {yn} ⊂ Y is called
a right sequence.

A sequence {un} ⊂ X ∪ Y is said to converge to a point u if and only if {un} is
a left sequence, u is a right point and for any c � θ there exists N1 ∈ N such that
d(un, u)� c for all n ≥ N1 or {un} is a right sequence, u is a left point and for any
c� θ there exists N2 ∈ N such that d(u, un)� c for all n ≥ N2.

Definition 3.8. A sequence {(xn, yn)} ⊂ X × Y is called a bisequence. If the
sequences {xn} and {yn} both converge then the bisequence {(xn, yn)} is said to be
convergent.

If {xn} and {yn} both converge to a same point z ∈ X ∩ Y then the bisequence
{(xn, yn)} is said to be biconvergent.

A sequence {(xn, yn)} is a Cauchy bisequence if for any arbitrary c � θ there
exists N ∈ N such that d(xn, ym)� c whenever n,m ≥ N .

Definition 3.9. A bipolar conetvs b-metric space is said to be complete if every
Cauchy bisequence is convergent.

Remark 3.10. In Examples 3.2 and 3.4 we have that (X,Y, d) and (Un(R), Ln(R), d),
respectively, are complete bipolar conetvs b-metric spaces.

Definition 3.11. Let (X1, Y1, d1) and (X2, Y2, d2) be two bipolar conetvs b-metric
spaces:
(i) A mapping F : (X1, Y1, d1) ⇒ (X2, Y2, d2) is called left-continuous at a point
x0 ∈ X1 if for every sequence {yn} ⊂ Y1 with yn → x0 we have F (yn) → F (x0) in
(X2, Y2, d2).
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(ii) A mapping F : (X1, Y1, d1) ⇒ (X2, Y2, d2) is called right-continuous at a point
y0 ∈ Y1 if for every sequence {xn} ⊂ X1 with xn → y0 we have F (xn) → F (y0) in
(X2, Y2, d2).

(iii) A mapping F : (X1, Y1, d1) ⇒ (X2, Y2, d2) is said to be continuous, if it is left-
continuous at each point x ∈ X1 and right-continuous at each y ∈ Y1.

(iv) A contravariant map F : (X1, Y1, d1) 
 (X2, Y2, d2) is continuous if it is contin-
uous as a covariant map F : (X1, Y1, d1) ⇒ (Y2, X2, d̄2).

Lemma 3.12. Let (X,Y, d) be a bipolar conetvs b-metric space. If a central point is a
limit of a sequence, then it is the unique limit of this sequence.

Proof. Let {qn} be a left-sequence in (X,Y, d) which converges to some q ∈ X ∩ Y .
If possible, let q1 ∈ Y be another limit of this sequence, then

d(q, q1) � s[d(qn, q) + d(qn, q1) + d(q, q)] = s[d(qn, q) + d(qn, q1)].

Since {qn} converges to both q and q1 then for any arbitrary c � θ there exists
N1, N2 ∈ N such that d(qn, q) � c

2s if n ≥ N1 and d(qn, q1) � c
2s whenever n ≥ N2.

So for n ≥ N = max{N1, N2} we have d(q, q1)� c and this implies q1 = q. �

Proposition 3.13. In a bipolar conetvs b-metric space every biconvergent bisequence
is a Cauchy bisequence.

Proof. Let {(xn, yn)} be a biconvergent bisequence in a bipolar conetvs b-metric space
(X,Y, d), which biconverges to some z ∈ X ∩ Y . Then for n,m ∈ N

d(xn, ym) � s[d(xn, z) + d(z, z) + d(z, ym)] = s[d(xn, z) + d(z, ym)] (1)

As xn → z and ym → z as n,m → ∞ then for any c � θ there exists N ∈ N such
that d(xn, z)� c

2s and d(z, ym)� c
2s whenever n ≥ N . Then for n,m ≥ N from (1)

we get d(xn, ym)� c. Therefore {(xn, yn)} is a Cauchy bisequence. �

Proposition 3.14. In a bipolar conetvs b-metric space every convergent Cauchy bise-
quence is biconvergent.

Proof. Let (X,Y, d) be a bipolar conetvs b-metric space and {(pn, qn)} be a Cauchy
bisequence, such that pn → q ∈ Y and qn → p ∈ X. Then d(p, q) � s[d(p, qn) +
d(pn, qn) + d(pn, q)]. Now for any arbitrary c � θ there exists N ≥ 1 such that
whenever n ≥ N , d(p, qn) � c

3s , d(pn, q) � c
3s and d(pn, qn) � c

3s and so we have
d(p, q) = θ implies p = q. �

4. Topological construction

In this section we are now in a position to study some topological properties in a
bipolar conetvs b-metric space.
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Definition 4.1. Let (X,Y, d) be a bipolar conetvs b-metric space. For any (x0, y0) ∈
X × Y and c� θ we define

B(x0,y0)
r (x0, c) = {y ∈ Y : d(x0, y)� c+ sd(x0, y0)},
B(x0,y0)
r [x0, c] = {y ∈ Y : d(x0, y) � c+ sd(x0, y0)},

B
(x0,y0)
l (y0, c) = {x ∈ X : d(x, y0)� c+ sd(x0, y0)},

B
(x0,y0)
l [y0, c] = {x ∈ X : d(x, y0) � c+ sd(x0, y0)}.

For x0 ∈ X ∩ Y we denote B
(x0,x0)
r (x0, c) and B

(x0,x0)
l (x0, c) simply by Br(x0, c) and

Bl(x0, c), respectively.

Definition 4.2. Let (X,Y, d) be a bipolar conetvs b-metric space. Then a pair of
sets (U1, U2) is called an open pair if U1 ⊂ X,U2 ⊂ Y and for any (x0, y0) ∈ (U1, U2)

there exist c1, c2 � θ such that B
(x0,y0)
r (x0, c1) ⊂ U2 and B

(x0,y0)
l (y0, c2) ⊂ U1. If

x0 ∈ U1 ∩ U2 then we set c1 = c2.

Proposition 4.3. Let (X,Y, d) be a bipolar conetvs b-metric space, where (E,P ) is
an ordered topological vector space with the property that for each c1, c2 � θ there
exists c� θ such that c � c1, c2. Then the collection B of all open pairs together with
(∅, ∅) and (X,Y ) forms a base for some topology on X × Y .

Proof. Let (U1, U2) and (U ′1, U
′
2) be two open pairs in B such that (x, y) ∈ (U1, U2)∩

(U ′1, U
′
2). Now (x, y) ∈ (U1 ∩ U ′1, U2 ∩ U ′2) ⊂ (U1, U2) ∩ (U ′1, U

′
2), we show that (U1 ∩

U ′1, U2 ∩ U ′2) is an open pair.

Let (a, b) ∈ (U1 ∩ U ′1, U2 ∩ U ′2). Then (a, b) ∈ (U1, U2) and (a, b) ∈ (U ′1, U
′
2). So

there exist c1, c2, c
′
1, c
′
2 � θ such that B

(a,b)
r (a, c1) ⊂ U2, B

(a,b)
l (b, c2) ⊂ U1,

B
(a,b)
r (a, c′1) ⊂ U ′2, B

(a,b)
l (b, c′2) ⊂ U ′1. By the assumed property of (E,P ) there exist

c̄1, c̄2 � θ such that c̄1 � c1, c
′
1 and c̄2 � c2, c

′
2. So B

(a,b)
r (a, c̄1) ⊂ U2 ∩ U ′2 and

B
(a,b)
l (b, c̄2) ⊂ U1 ∩ U ′1. Therefore (U1 ∩ U ′1, U2 ∩ U ′2) is an open pair. So B forms a

base for some topology on X × Y .

This topology is called the topology induced by d. �

Definition 4.4. Let (X,Y, d) be a bipolar conetvs b-metric space such that d induces
a topology on X × Y . Then a pair of sets (F1, F2) is said to be a closed pair if there
exists an open set U such that (F1, F2) = Uc, where Uc = (X × Y ) \ U .

Definition 4.5. Let (A,B) be a pair of sets in (X,Y, d), a bipolar conetvs b-metric
space such that d induces a topology on X × Y . Then the closure of (A,B) is the
smallest closed pair (F1, F2) such that (A,B) ⊂ (F1, F2). We denote the closure of
(A,B) by (Ā, B̄).

Proposition 4.6. Let {(xn, yn)} be a convergent bisequence which converges to (x, y)
in (X,Y, d), where d induces a topology on X×Y . Then for any open set U in X×Y
containing (x, y), there exists n0 ∈ N such that (xk1 , yk2) ∈ U for all k1, k2 ≥ n0.
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Proof. Since {(xn, yn)} converges to (x, y), then xn → y and yn → x as n → ∞. As
(x, y) ∈ U , so there exists a basic open set (U1, U2) such that (x, y) ∈ (U1, U2) ⊂ U .

Since (U1, U2) is an open pair, there exist c1, c2 � θ such that B
(x,y)
l (y, c2) ⊂ U1 and

B
(x,y)
r (x, c1) ⊂ U2. Thus, there exist n1, n2 ∈ N such that yn ∈ B(x,y)

r (x, c1) for all

n ≥ n1 and for every n ≥ n2, xn ∈ B(x,y)
l (y, c2). If we take n0 = max{n1, n2}, then

clearly (xk1 , yk2) ∈ U for all k1, k2 ≥ n0. �

Proposition 4.7. Let (X,Y, d) be a bipolar conetvs b-metric space, where d induces a
topology on X × Y . Suppose that {(xn, yn)} ⊂ (F1, F2), a closed pair, is a convergent
bisequence. If {(xn, yn)} → (x, y) as n→∞ then (x, y) ∈ (F1, F2).

Proof. Since (F1, F2) is a closed pair, there exists an open set U such that (F1, F2) =
Uc. If possible let (x, y) /∈ (F1, F2). As U is open, so by Proposition 4.6 there exists
n0 ≥ 1 such that (xk1 , yk2) ∈ U for all k1, k2 ∈ n0, a contradiction. So (x, y) ∈
(F1, F2). �

Proposition 4.8. For any pair of sets (A,B) in a bipolar conetvs b-metric space,
where d induces a topology on X × Y , we have
{(a, b) ∈ X × Y : there exists a bisequence {(an, bn)} in (A,B) such that {(an, bn)}
converges to (a, b)} ⊂ (Ā, B̄).

Proof. Let {(an, bn)} be a convergent bisequence in (A,B) which converges to (a, b).
Since (Ā, B̄) is a closed pair containing (A,B), so by Proposition 4.7 we have (a, b) ∈
(Ā, B̄). This completes the proof. �

Proposition 4.9. Let (X,Y, d) be a complete bipolar conetvs b-metric space, where
d induces a topology on X × Y , and (F1, F2) be a closed pair. Then (F1, F2, dF1×F2

)
is also complete.

Proof. Let {(xn, yn)} be a Cauchy bisequence in (F1, F2). Then clearly it is also a
Cauchy bisequence in (X,Y, d). Since (X,Y, d) is complete, the bisequence {(xn, yn)}
is biconvergent to some u ∈ X ∩ Y . By proposition 4.7 it follows that u ∈ F1 ∩ F2.
So {(xn, yn)} also converges in (F1, F2, dF1×F2

) and therefore (F1, F2, dF1×F2
) is also

complete. �

Example 4.10. In Example 3.2, Bl(0, (3, 3)) = {0}, Br(0, (1, 1)) = {0}, Bl[0, (3, 3)] =

{−1, 0}, Br[0, (1, 1)] = {0, 1}, B(−1,1)
l (1, ( 3

2 ,
3
2 )) = {−1, 0}, B(−1,1)

r (−1, ( 3
2 ,

3
2 )) = {1},

B
(−1,1)
l [1, ( 3

2 ,
3
2 )] = {−1, 0}, B(−1,1)

r [−1, ( 3
2 ,

3
2 )] = {0, 1}.

Example 4.11. In Example 3.2, ({0}, {0}) is an open pair.

Remark 4.12. Complement of an open set may not be a closed pair. Example 4.11
supports our contention.
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4.1 A version of Cantor’s intersection theorem in a bipolar b-metric space
(i.e. a bipolar conetvs b-metric space with E = R together with the
usual cone P = {x ∈ E : x ≥ 0})

Definition 4.13. Let (X,Y, d) be a bipolar b-metric space and G be any subset of
X × Y . Then diam (G) = sup{d(a, b) : (a, b) ∈ G}.

Definition 4.14. In a bipolar b-metric space (X,Y, d), a sequence {(Fn, F ′n)} of pairs
of subsets is said to be decreasing if F1 ⊃ F2 ⊃ F3 ⊃ · · · and F ′1 ⊃ F ′2 ⊃ F ′3 ⊃ · · · .

Theorem 4.15. Let (X,Y, d) be a complete bipolar b-metric space and {(Fn, F ′n)}
be a decreasing sequence of nonempty closed pairs such that diam ((Fn, F

′
n)) → 0 as

n→∞. Then the intersection
⋂∞
n=1(Fn, F

′
n) contains exactly one point.

Proof. Let xn ∈ Fn and yn ∈ F ′n be arbitrary for all n ∈ N. Since {(Fn, F ′n)}
is decreasing, we have {xn, xn+1, . . .} ⊂ Fn and {yn, yn+1, . . .} ⊂ F ′n. Now for any
n,m ∈ N with n,m ≥ k we get d(xn, ym) ≤ diam ((Fk, F

′
k)), k ≥ 1. Let ε > 0 be given.

Then there exists some p ∈ N such that diam ((Fp, F
′
p)) < ε since diam ((Fn, F

′
n))→ 0

as n → ∞. From this it follows that d(xn, ym) ≤ diam ((Fp, F
′
p)) < ε whenever

n,m ≥ p. So {(xn, yn)} is a Cauchy bisequence in (X,Y, d), therefore it is biconvergent
to some z ∈ X ∩ Y . So by Proposition 4.7 it follows that (z, z) ∈ (Fn, F

′
n) for all

n ∈ N. Now for the uniqueness of (z, z), let (a, b) ∈
⋂∞
n=1(Fn, F

′
n) be any other point.

Then (a, z) ∈ (Fn, F
′
n) for all n ∈ N and we have d(a, z) ≤ diam ((Fn, F

′
n)) → 0 as

n → ∞ implying that d(a, z) = 0 that is a = z. Similarly we have b = z and thus⋂∞
n=1(Fn, F

′
n) = {(z, z)} and this completes our proof. �

5. Fixed point theorems

In this section we prove some fixed point theorems in the setting of bipolar conetvs
b-metric spaces.

Theorem 5.1. Let (X,Y, d) be a complete bipolar conetvs b-metric space and T :
(X,Y, d) ⇒ (X,Y, d) be a mapping satisfying d(Tx, Ty) � αd(x, y) for all (x, y) ∈
X × Y and for some α ∈ (0, 1s ). Then the function T : X ∪ Y → X ∪ Y has a unique
fixed point.

Proof. Let (x0, y0) ∈ X × Y . We construct two iterative sequences {xn} ⊂ X and
{yn} ⊂ Y by xn = Txn−1 = Tnx0 and yn = Tyn−1 = Tny0 for all n ∈ N. Now

d(xn, yn) = d(Txn−1, Tyn−1) � αd(xn−1, yn−1) · · · � αnd(x0, y0) (2)

and d(xn+1, yn) = d(Txn, Tyn−1) � αd(xn, yn−1) · · · � αnd(x1, y0) (3)

for all positive integers n ∈ N. Now for all m,n ∈ N with m > n we have

d(xn, ym) � s[d(xn, yn) + d(xn+1, yn) + d(xn+1, ym)]

�s[αnd(x0, y0) + αnd(x1, y0)] + sd(xn+1, ym) [using (2) and (3)]

=sαn[d(x0, y0) + d(x1, y0)] + sd(xn+1, ym)
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�sαn[d(x0, y0) + d(x1, y0)] + s2[d(xn+1, yn+1) + d(xn+2, yn+1) + d(xn+2, ym)]

�(sαn + s2αn+1)[d(x0, y0) + d(x1, y0)] + s2d(xn+2, ym) � · · ·
�(sαn + s2αn+1 + · · ·+ sm−nαm−1)[d(x0, y0) + d(x1, y0)] + sm−nd(xm, ym)

� (sα)n

1− sα
M, M = d(x0, y0) + d(x1, y0) (4)

In a similar fashion for m < n we obtain

d(xn, ym) � (sα)m

1− sα
M ′, M ′ = d(x0, y0) + d(x0, y1). (5)

Since 0 < sα < 1, from (4) we have that, for arbitrary c� θ there exists N1 ≥ 1 such

that d(xn, ym) � (sα)n

1−sαM � c for all m > n ≥ N1. Similarly from (5) we see that

there exists some N2 ∈ N such that d(xn, ym) � (sα)m

1−sαM
′ � c whenever n > m ≥ N2.

Hence {(xn, yn)} is a Cauchy bisequence in (X,Y, d). By the completeness of (X,Y, d)
{(xn, yn)} biconverges to some u ∈ X ∩ Y . Therefore xn → u as n→∞. Since T is
continuous then we get Txn = xn+1 → Tu as n → ∞ and therefore Tu = u. Hence
u is a fixed point of T .

Now let v ∈ X be another fixed point of T . Hence, Tv = v and we have d(v, u) =
d(Tv, Tu) � αd(v, u), where 0 < α < 1, showing that u = v. If v ∈ Y then we can
also we see that u = v, implying that T has a unique fixed point in (X,Y, d). �

Remark 5.2. If we take E = R with the usual cone P = {a ∈ E : a ≥ 0} and s = 1
in Theorem 5.1 then we get [10, Theorem 5.1].

Theorem 5.3. Let T : (X,Y, d) 
 (X,Y, d), where (X,Y, d) is a complete bipolar
conetvs b-metric space, satisfies

d(Ty, Tx) � ad(x, y) + bd(x, Tx) + cd(Ty, y) (6)

for all x ∈ X, y ∈ Y , where 0 ≤ a, b < 1, 0 ≤ c < 1
s+1 and 0 < sa+ sb+ c < 1. Then

the function T : X ∪ Y → X ∪ Y has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary. For any non-negative integer n, we define yn = Txn
and xn+1 = Tyn. Then we have

d(xn, yn) = d(Tyn−1, Txn) � ad(xn, yn−1) + b(xn, Txn) + cd(Tyn−1, yn−1)

= ad(xn, yn−1) + b(xn, yn) + cd(xn, yn−1)

which implies that d(xn, yn) � a+c
1−bd(xn, yn−1) for all n ∈ N. Again,

d(xn, yn−1) = d(Tyn−1, Txn−1) � ad(xn−1, yn−1) + bd(xn−1, Txn−1) + cd(Tyn−1, yn−1)

= ad(xn−1, yn−1) + bd(xn−1, yn−1) + cd(xn, yn−1)

Hence for all n ≥ 1, d(xn, yn−1) � a+b
1−cd(xn−1, yn−1). Therefore from the above we

get, for all n ∈ N

d(xn, yn) � (a+ b)(a+ c)

(1− c)(1− b)
d(xn−1, yn−1) = λd(xn−1, yn−1), λ =

(a+ b)(a+ c)

(1− c)(1− b)
Thus we have d(xn, yn) � λnd(x0, y0) and d(xn+1, yn) � λn a+b1−cd(x0, y0) for all n ≥ 1.
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So for all natural numbers m,n with m > n we get

d(xn, ym) � s[d(xn, yn) + d(xn+1, yn) + d(xn+1, ym)]

�s
[
λn + λn

a+ b

1− c

]
d(x0, y0) + sd(xn+1, ym)

�sλn
[
1 +

a+ b

1− c

]
d(x0, y0) + s2[d(xn+1, yn+1) + d(xn+2, yn+1) + d(xn+2, ym)]

�sλn
[
1 +

a+ b

1− c

]
d(x0, y0) + s2

[
λn+1 + λn+1 a+ b

1− c

]
d(x0, y0) + s2d(xn+2, ym)

=[sλn + s2λn+1]

(
1 +

a+ b

1− c

)
d(x0, y0) + s2d(xn+2, ym) � · · ·

�[sλn + s2λn+1 + · · ·+ sm−nλm−1]

(
1 +

a+ b

1− c

)
d(x0, y0) + sm−nd(xm, ym)

� (sλ)n

1− sλ

(
1 +

a+ b

1− c

)
d(x0, y0).

Also, if m < n then

d(xn, ym) � s[d(xm+1, ym) + d(xm+1, ym+1) + d(xn, ym+1)]

�s
[
λm(

a+ b

1− c
) + λm+1

]
d(x0, y0) + sd(xn, ym+1)

�sλm
(
a+ b

1− c
+ λ

)
d(x0, y0) + s2[d(xm+2, ym+1) + d(xm+2, ym+2) + d(xn, ym+2)]

�
(
a+ b

1− c
+ λ

)
(sλm + s2λm+1 + · · ·+ sn−mλn−1)d(x0, y0) + sn−md(xn, yn)

� (sλ)m

1− sλ

(
λ+

a+ b

1− c

)
d(x0, y0)

Since 0 < sλ < 1, by routine verification we see that {(xn, yn)} is a Cauchy bisequence
in (X,Y, d). Since (X,Y, d) is complete, so {(xn, yn)} converges and thus biconverges
to some z ∈ X ∩ Y . Now,

d(Tz, Txn) � ad(xn, z)+bd(xn, Txn)+cd(Tz, z) = ad(xn, z)+bd(xn, yn)+cd(Tz, z)

and also

d(Tz, z) � s[d(Tz, yn) + d(xn, yn) + d(xn, z)] = s[d(Tz, Txn) + d(xn, yn) + d(xn, z)]

� s[ad(xn, z) + bd(xn, yn) + cd(Tz, z) + d(xn, yn) + d(xn, z)]

This implies (1− sc)d(Tz, z) � s[(1 + a)d(xn, z) + (1 + b)d(xn, yn)], and therefore

d(Tz, z) � s(1 + a)

1− sc
d(xn, z)+

s(1 + b)

1− sc
d(xn, yn) � s(1 + a)

1− sc
d(xn, z)+

s(1 + b)

1− sc
λnd(x0, y0)

for any n ∈ N. Since xn → z and λn → 0 as n→∞, so we get Tz = z.

Now if u and v are two fixed points of T then u, v ∈ X ∩ Y and we have d(u, v) =
d(Tu, Tv) � ad(v, u) + bd(v, Tv) + cd(u, Tu) = ad(u, v). This shows that d(u, v) = θ
that is u = v. Hence T has a unique fixed point in (X,Y, d). �
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Corollary 5.4. Let (X,Y, d) be a complete bipolar conetvs b-metric space and T :
(X,Y, d) 
 (X,Y, d) be a mapping satisfying d(Ty, Tx) � ad(x, y) for all (x, y) ∈
X × Y and for some a ∈ (0, 1s ). Then the function T : X ∪ Y → X ∪ Y has a unique
fixed point.

Proof. If we put b = c = 0 in (6) of Theorem 5.3 then we get our required result. �

Remark 5.5. If we put E = R with the usual cone P = {a ∈ E : a ≥ 0} and
s = 1, [10, Theorem 5.2] will be implied by our Corollary 5.4.

Corollary 5.6. Let T : (X,Y, d) 
 (X,Y, d), where (X,Y, d) is a complete bipolar
conetvs b-metric space, satisfies d(Ty, Tx) � b[d(x, Tx) + d(Ty, y)] for all x ∈ X and
y ∈ Y , where 0 ≤ b < 1

s+1 . Then the function T : X ∪ Y → X ∪ Y has a unique fixed
point.

Proof. If we put a = 0 and b = c in (6) of Theorem 5.3 then the corollary follows
immediately. �

Remark 5.7. If we take E = R with the usual cone P = {a ∈ E : a ≥ 0} and s = 1
in Corollary 5.6 then we get [10, Theorem 5.6].

Definition 5.8. Let A be the set consisting of all functions α : P 3 → P , where P is
a solid cone in a real topological vector space (E,P ), satisfying
(A1) α is continuous on the set P 3 of all triplets of P with respect to the topology
of (E,P ).

(A2) a � kb for some k ∈ [0, 1) whenever a � α (a, b, b) or a � α (b, a, b) or a �
α (b, b, a), for all a, b ∈ P .
A mapping T : (X,Y, d) 
 (X,Y, d), where (X,Y, d) is a bipolar conetvs b-metric
space, is said to be a contravariant A-contraction if it satisfies d(Ty, Tx) �
α(d(x, y), d(x, Tx), d(Ty, y)) for all (x, y) ∈ X × Y and for some α ∈ A.

Theorem 5.9. Let (X,Y, d) be a complete bipolar conetvs b-metric space and T :
(X,Y, d) 
 (X,Y, d) be a continuous contravariant A-contraction mapping. Then the
function T : X ∪ Y → X ∪ Y has a unique fixed point.

Proof. Since T is a contravariant A-contraction then there exists some α ∈ A such
that d(Ty, Tx) � α (d(x, y), d(x, Tx), d(Ty, y)) for all (x, y) ∈ X × Y . Let x0 ∈ X
and for each n ∈ N∪ {0} let us define yn = Txn and xn+1 = Tyn. Then {(xn, yn)} is
a bisequence on (X,Y, d) and we have

d(xn, yn) = d(Tyn−1, Txn) � α (d(xn, yn−1), d(xn, Txn), d(Tyn−1, yn−1))

= α (d(xn, yn−1), d(xn, yn), d(xn, yn−1)) .

By a property of α we get d(xn, yn) � kd(xn, yn−1) for some 0 < k < 1. Also we see
that

d(xn, yn−1) = d(Tyn−1, Txn−1) � α (d(xn−1, yn−1), d(xn−1, Txn−1), d(Tyn−1, yn−1))

= α (d(xn−1, yn−1), d(xn−1, yn−1), d(xn, yn−1)) ,
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and hence by a property of α we get d(xn, yn−1) � kd(xn−1, yn−1) for all n ≥ 1. Thus
d(xn, yn) � k2nd(x0, y0) and d(xn, yn−1) � k2n−1d(x0, y0) for all n ∈ N.

Proceeding in a similar manner as prescribed in Theorem 5.3, we see that {(xn, yn)}
is a Cauchy bisequence. As (X,Y, d) is complete, {(xn, yn)} is biconvergent to some
z ∈ X ∩ Y . Since xn → z, so by the continuity of T we have yn = Txn → Tz as
n→∞. Therefore Tz = z and z is a fixed point of T .

Let v be another fixed point of T in (X,Y, d). Then v ∈ X∩Y and we get d(u, v) =
d(Tu, Tv) � α(d(v, u), d(v, Tv), d(Tu, u)) = α(d(u, v), θ, θ). Hence d(u, v) � kθ, and
it follows that u = v. Therefore T has a unique fixed point in (X,Y, d). �

Example 5.10. Let us consider the complete bipolar conetvs b-metric space (Un(R),
Ln(R), d) (see Example 3.4) and define T : Un(R) ∪ Ln(R) → Un(R) ∪ Ln(R) by
T ((aij)n×n) = (

aij
4 )n×n for all aij ∈ Un(R) ∪ Ln(R). Then it can be easily seen that

T : (Un(R), Ln(R), d) ⇒ (Un(R), Ln(R), d) satisfies d(T (A), T (B)) � 1
8 d(A,B) for all

(A,B) ∈ (Un(R) × Ln(R)). So it satisfies all the conditions of Theorem 5.1. Here
On×n is the unique fixed point of T , where On×n is the null matrix of order n.

6. Application to a homotopy result

In this section, we obtain a homotopy result as an application of Theorem 5.1. For
this purpose, first we recall the definition of homotopy between two functions.

Let X,Y be two topological spaces, and let G,S : X → Y be two continuous
mappings. Then, a homotopy from G to S is a continuous function H : X× [0, 1]→ Y
such that H(x, 0) = Gx and H(x, 1) = Sx, for all x ∈ X. Also, G and S are called
homotopic mappings. For more details one can refer to [16].

Theorem 6.1. Let (X,Y, d) be a complete bipolar conetvs b-metric space, where d
induces a topology on X × Y such that for any x0 ∈ X ∩ Y and c � θ, the closure
of (Bl(x0, c), Br(x0, c)) is (Bl[x0, c

′], Br[x0, c
′]) for some c′ � c in X × Y . Also let

(U1, U2) be an open pair and (V1, V2) be a closed pair such that (U1, U2) ⊂ (V1, V2).
Suppose J : (V1 ∪ V2)× [0, 1]→ X ∪ Y satisfies the following conditions:
(i) x 6= J(x, t) for all x ∈ (V1 \ U1) ∪ (V2 \ U2) and for any t ∈ [0, 1];

(ii) J(., t) : (V1, V2) ⇒ (X,Y ) for every t ∈ [0, 1] such that d(J(x, t), J(y, t)) �
αd(x, y) for all (x, y) ∈ X × Y and for some α ∈ (0, 1s );

(iii) there exists a continuous function f : [0, 1]→ R such that d(J(x, t1), J(x, t2)) �
|f(t1)−f(t2)|M for some fixed M � θ and for all x ∈ V1∩V2, for every t1, t2 ∈ [0, 1].
Then J(., 0) has a fixed point if and only if J(., 1) has a fixed point.

Proof. Consider the sets G1 = {t ∈ [0, 1] : J(x, t) = x for some x ∈ U1} and G2 =
{t ∈ [0, 1] : J(y, t) = y for some y ∈ U2}. Let us denote G1 ∩G2 by G.

First let us suppose that J(., 0) has a fixed point ξ in V1 ∪ V2, so by assumed
condition (1) and (ii) ξ ∈ U1 ∩ U2. Thus 0 ∈ G and thus G 6= ∅. We now show
that G is a clopen subset of [0, 1] and therefore by the connectedness of [0, 1] we have
G = [0, 1], which implies G1 = G2 = [0, 1].
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Now we show that G is closed. Let a sequence {tn} ⊂ G converges to t. Since
tn ∈ G1 ∩ G2 so there exists xn ∈ U1 and yn ∈ U2 such that J(xn, tn) = xn and
J(yn, tn) = yn for all n ∈ N. Clearly xn = yn ∈ U1 ∩ U2 by assumed condition (ii).
Now

d(xn, xm) = d(J(xn, tn), J(xm, tm))

�s[d(J(xn, tn), J(xn, tm)) + d(J(xn, tm), J(xn, tm))

+ d(J(xn, tm), J(xm, tm))]s[d(J(xn, tn), J(xn, tm)) + d(J(xn, tm), J(xm, tm))]

�s[|f(tn)− f(tm)|M + αd(xn, xm)],

implying that d(xn, xm) � s
1−sα |f(tn) − f(tm)|M for all n,m ≥ 1. Since {tn} is

Cauchy and f is continuous on [0, 1], we have {(xn, xn)} is a Cauchy bisequence in
(V1, V2, d). Hence it biconverges to some x ∈ V1 ∩ V2. We now have

d(J(x, t), xn) = d(J(x, t), J(xn, tn))

�s[d(J(x, t), J(x, tn)) + d(J(x, tn), J(xn, tn))] � s[|f(t)− f(tn)|M + αd(x, xn)].

Since xn → x, tn → t and f is continuous on [0, 1], it follows that xn → J(x, t). Since
{(xn, xn)} biconverges, so J(x, t) = x. Hence t ∈ G and G is closed.

Next we show that G is open. For this let t0 ∈ G. Then there exits x0 ∈ U1

and y0 ∈ U2 such that J(x0, t0) = x0 and J(y0, t0) = y0. So by assumption (ii)
we have x0 = y0 ∈ U1 ∩ U2. Since (U1, U2) is an open pair so there exists some
c � θ such that Bl(x0, c) ⊂ U1 and Br(x0, c) ⊂ U2. So there exists c′ � c such

that
(
Bl(x0, c), Br(x0, c)

)
is (Bl[x0, c

′], Br[x0, c
′]). Let us choose some ε > 0 such

that εM � ( 1
s − α)c′. Since f is continuous on [0, 1], so for ε > 0 there exists

δ(ε) > 0 such that |f(t) − f(t0)| < ε whenever |t − t0| < δ(ε), t ∈ [0, 1]. Now let

t ∈ (t0 − δ(ε), t0 + δ(ε)) ⊂ [0, 1] and (x, y) ∈
(
Bl(x0, c), Br(x0, c)

)
. Then

d(J(x, t), x0) = d(J(x, t), J(x0, t0)) � s[d(J(x, t), J(x0, t)) + d(J(x0, t), J(x0, t0))]

�s[αd(x, x0) + |f(t)− f(t0)|M ] � s[αd(x, x0) + εM ] � s
[
αc′ +

(
1

s
− α

)
c′
]

= c′

and also

d(x0, J(y, t)) = d(J(x0, t0), J(y, t)) � s[d(J(x0, t0), J(x0, t)) + d(J(x0, t), J(y, t))]

�s[|f(t0)− f(t)|M + αd(x0, y)] � s
[(

1

s
− α

)
c′ + αc′

]
= c′

Therefore J(., t) :
(
Bl(x0, c), Br(x0, c)

)
⇒
(
Bl(x0, c), Br(x0, c)

)
. Since (X,Y, d) is

complete so is
(
Bl(x0, c), Br(x0, c)

)
(see Proposition 4.9) and thus J(., t) has a fixed

point in Bl(x0, c) ∩ Br(x0, c) ⊂ V1 ∩ V2. So by the assumed condition (i) this fixed
point must lie in U1 ∩U2 and we have t ∈ G. Therefore (t0 − δ(ε), t0 + δ(ε)) ⊂ G and
it follows that G is open.

Therefore J(., 1) has a fixed point in X ∪ Y . The reverse part can also be proved
in a similar way. �
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Remark 6.2. Theorem 6.1 holds good in a bipolar metric space, i.e. a bipolar conetvs
b-metric space with s = 1 and E = R with the usual cone P = {x ∈ E : x ≥ 0}.
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