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ON THE PARTIAL NORMALITY OF A CLASS OF BOUNDED
OPERATORS

Y. Estaremi

Abstract. In this paper, some various partial normality classes of weighted conditional
expectation type operators on L2(Σ) are investigated. For a weakly hyponormal weighted
conditional expectation type operator MwEMu, we show that the conditional Cauchy-
Schwartz inequality for u and w becomes an equality. Assuming this equality, we then show
that the joint point spectrum is equal to the point spectrum of MwEMu. Also, we compute
the approximate point spectrum of MwEMu and we prove that under a mild condition the
approximate point spectrum and the spectrum of MwEMu are the same.

1. Introduction

The notion of conditional expectation is rightfully thought of as belonging to the
theory of probability. In that context, it is set against a background of a probability
space (Ω,F , P ) and σ-subalgebra (σ-field as it is commonly called in probability texts)
G of F . If X denotes an integrable random variable, then the conditional expected
value of X given G is the random variable E[X|G] such that
1. E[X|G] is G-measurable,

2. E[X|G] satisfies the functional relation
∫
G
E[X|G] dP =

∫
G
X dP, ∀G ∈ G.

A number of standard texts will illustrate concisely the probabilistic formulation
and interpretation of the function E[X|G], and the reader is invited to consult for
example reference [2]. Our main interests, however, reside in the view of conditional
expectation as an operator between the Lp-spaces, specially between L2-spaces.

Among the earlier investigations along these lines is that of Shu-Teh Chen Moy in
his seminal 1954 paper [10]. Set within the familiar framework of a probability space
(Ω,F , P ), Moy obtains necessary and sufficient conditions for a linear transformation
T between function spaces to be of the form TX = E[gX|G], where G ⊂ F is a
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208 Weighted conditional expectation type operators

σ-subalgebra and g is a nonnegative measurable function with bounded conditional
expected value. The function E[gX|G] can best be described as the weighted con-
ditional expected value of X. Moreover, conditional expectations have been studied
in an operator theoretic setting, by, for example, R. G. Douglas, [4], de Pagter and
Grobler [7], P.G. Dodds, C.B. Huijsmans and B. De Pagter, [3], J. Herron, [8], Alan
Lambert [9] and Rao [11, 12], as positive operators acting on Lp-spaces or Banach
function spaces. The combination of conditional expectation and multiplication oper-
ators appears more often as a tool in the study of other operators rather than being,
in themselves, the object of the study.

In [5], we investigated some classic properties of multiplication conditional ex-
pectation operators MwEMu on Lp spaces. We continue in this paper our study of
properties of multiplication conditional expectation operators. Here we will be con-
cerned with characterizing weighted conditional expectation type operators on L2(Σ)
in terms of membership in the various partial normality classes and some applications
of them in spectral theory.

2. Preliminaries

Let (X,Σ, µ) be a complete σ-finite measure space. For any σ-subalgebra A ⊆ Σ,
the L2-space L2(X,A, µ|A) is abbreviated by L2(A), and its norm is denoted by
‖.‖2. All comparisons between two functions or two sets are to be interpreted as
holding up to a µ-null set. The support of a measurable functions f is defined as
S(f) = {x ∈ X; f(x) 6= 0}. We denote the vector space of all equivalence classes of
almost everywhere finite valued measurable functions on X by L0(Σ).

For a σ-subalgebra A ⊆ Σ, the conditional expectation operator associated with
A is the mapping f 7→ EAf , defined for all non-negative, measurable functions f as
well as for all f ∈ L2(Σ), where EAf , by the Radon-Nikodym theorem, is the unique
A-measurable function satisfying∫

A

f dµ =

∫
A

EAf dµ, ∀A ∈ A.

As an operator on L2(Σ), EA is idempotent and EA(L2(Σ)) = L2(A). If there is no
possibility of confusion, we write E(f) in place of EA(f). This operator will play a
major role in our work and we list here some of its useful properties:
(i) If g is A-measurable, then E(fg) = E(f)g.

(ii) |E(f)|2 ≤ E(|f |2).

(iii) If f ≥ 0, then E(f) ≥ 0; if f > 0, then E(f) > 0.

(iv) |E(fg)| ≤ (E(|f |2))
1
2 (E(|g|2))

1
2 , (Hölder inequality).

(v) For each f ≥ 0, S(f) ⊆ S(E(f)).
A detailed discussion and verification of most of these properties may be found in [13].

Let f ∈ L0(Σ); then f is said to be conditionable with respect to E if f ∈ D(E) :=
{g ∈ L0(Σ) : E(|g|) ∈ L0(A)}. Throughout this paper we take u and w in D(E).
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Every operator T on a Hilbert space H can be decomposed into T = U |T | with

a partial isometry U , where |T | = (T ∗T )
1
2 . U is determined uniquely by the kernel

condition N (U) = N (|T |). This decomposition is called the polar decomposition.

The Aluthge transformation of T is the operator T̂ given by T̂ = |T | 12U |T | 12 .
The plan for the remainder of this paper is to present characterizations of weighted

conditional expectation type operators in some various normality classes. Here is a
brief review of what constitutes membership for an operator T on a Hilbert space in
some classes:
(i) T is normal if T ∗T = TT ∗.

(ii) T is hyponormal if T ∗T ≥ TT ∗.

(iii) For 0 < p <∞, T is p-hyponormal if (T ∗T )p ≥ (TT ∗)p.

(iv) T is ∞-hyponormal if it is p-hyponormal for all p.

(v) T is p-quasihyponormal if T ∗(T ∗T )pT ≥ T ∗(TT ∗)pT .

(vi) T is weakly hyponormal if |T̂ | ≥ |T | ≥ |T̂ ∗|.

(vii) T is normaloid if ‖T‖n = ‖Tn‖ for all n ∈ N.

3. Some classes of weighted conditional expectation type operators

We first recall some theorems that we have proved in [5].

Theorem 3.1. The operator T = MwEMu is bounded on L2(Σ) if and only if

(E|w|2)
1
2 (E|u|2)

1
2 ∈ L∞(A), and in this case its norm is given by

‖T‖ = ‖(E(|w|2))
1
2 (E(|u|2))

1
2 ‖∞.

Lemma 3.2. Let T = MwEMu be a bounded operator on L2(Σ) and p ∈ (0,∞). Then

(T ∗T )p = Mū(E(|u|2))p−1χS(E(|w|2))pEMu and (TT ∗)p = Mw(E(|w|2))p−1χG(E(|u|2))pEMw̄,

where S = S(E(|u|2)) and G = S(E(|w|2)).

Theorem 3.3. The unique polar decomposition of bounded operator T = MwEMu is

U |T |, where |T |(f) =
(
E(|w|2)
E(|u|2)

) 1
2

χS ūE(uf) and U(f) =
(

χS∩G
E(|w|2)E(|u|2)

) 1
2

wE(uf),

for all f ∈ L2(Σ).

Theorem 3.4. The Aluthge transformation of T = MwEMu is T̂ (f) = χSE(uw)
E(|u|2) ūE(uf),

f ∈ L2(Σ).

From now on, we consider the operators MwEMu and EMu to be bounded oper-
ators on L2(Σ). In the sequel some necessary and sufficient conditions for normality,
hyponormality, p-hyponormality, etc. will be presented.

Theorem 3.5. Let T = MwEMu, then
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(a) If (E(|u|2))
1
2 w̄ = u(E(|w|2))

1
2 , then T is normal.

(b) If T is normal, then |E(u)|2E(|w|2) = |E(w)|2E(|u|2).

Proof. (a) Applying Lemma 3.2 we have T ∗T−TT ∗ = MūE(|w|2)EMu−MwE(|u|2)EMw̄.
So for every f ∈ L2(Σ),

〈T ∗T − TT ∗(f), f〉 =

∫
X

E(|w|2)E(uf)uf − E(|u|2)E(w̄f)wf̄ dµ

=

∫
X

|E(u(E(|w|2))
1
2 f)|2 − |E((E(|u|2))

1
2 w̄f)|2 dµ.

This implies that if (E(|u|2))
1
2 w̄ = u(E(|w|2))

1
2 , then for all f ∈ L2(Σ), 〈T ∗T −

TT ∗(f), f〉 = 0, thus T ∗T = TT ∗.
(b) Suppose that T is normal. For all f ∈ L2(Σ) we have∫

X

|E(u(E(|w|2))
1
2 f)|2 − |E((E(|u|2))

1
2 w̄f)|2 dµ = 0.

Let A ∈ A, with 0 < µ(A) <∞. By replacing f to χA, we have∫
A

|E(u(E(|w|2))
1
2 )|2 − |E((E(|u|2))

1
2 w̄)|2 dµ = 0

and so

∫
A

|E(u)|2E(|w|2)− |E(w)|2E(|u|2) dµ = 0.

Since A ∈ A is arbitrary, then |E(u)|2E(|w|2) = |E(w)|2E(|u|2). �

Corollary 3.6. The operator EMu is normal if and only if u ∈ L∞(A).

Theorem 3.7. Let T = MwEMu and let p ∈ (0,∞).
(a) The following statements are equivalent:

T is hyponormal ⇐⇒ T is p-hyponormal ⇐⇒ T is ∞-hyponormal

(b) If |E(uf)|2 ≥ E(|f |2)E(|u|2) on G for all f ∈ L2(Σ), then T is hyponormal.

(c) If T is hyponormal, then |E(u)|2E(|w|2)− |E(w)|2E(|u|2) ≥ 0.

Proof. (a) Applying Lemma 3.2 we obtain that (T ∗T )p ≥ (TT ∗)p if and only if

MχS∩G(E(|u|2))p−1(E(|w|2))p−1(MūE(|w|2)EMu −MwE(|u|2)EMw̄) ≥ 0.

This inequality holds if and only if T ∗T−TT ∗ = MūE(|w|2)EMu−MwE(|u|2)EMw̄ ≥ 0,
where we have used the fact that T1T2 ≥ 0 if T1 ≥ 0, T2 ≥ 0 and T1T2 = T2T1 for
all Ti ∈ B(H), the set of all bounded linear operators on Hilbert space H. Since
0 < p <∞ is arbitrary, all equivalencies hold.

(b) By Lemma 3.2, we have T ∗T − TT ∗ = MūE(|w|2)EMu −MwE(|u|2)EMw̄. So
for every f ∈ L2(Σ),

〈T ∗T − TT ∗(f), f〉 =

∫
X

E(|w|2)|E(uf)|2 − E(|u|2)|E(w̄f)|2 dµ

≥
∫
X

E(|w|2)(|E(uf)|2 − E(|f |2)E(|u|2)) dµ.
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This implies that, if |E(uf)|2 ≥ E(|f |2)E(|u|2) on G, then T is hyponormal.
(c) Let T be hyponormal. For all f ∈ L2(Σ) we have∫

X

|E(u(E(|w|2))
1
2 f)|2 − |E((E(|u|2))

1
2 w̄f)|2 dµ ≥ 0.

Let A ∈ A, with 0 < µ(A) <∞. By replacing f by χA, we have∫
A

|E(u(E(|w|2))
1
2 )|2 − |E((E(|u|2))

1
2 w̄)|2 dµ ≥ 0

and so

∫
A

|E(u)|2E(|w|2)− |E(w)|2E(|u|2) dµ ≥ 0.

Since A ∈ A is arbitrary, then |E(u)|2E(|w|2) ≥ |E(w)|2E(|u|2). �

Theorem 3.8. Let T = MwEMu, then T is p-quasihyponormal if and only if |E(uw)|2 ≥
E(|u|2)E(|w|2) .

Proof. By Lemma 3.2, it is easy to check that

T ∗(T ∗T )pT = Mū(E(|u|2))p−1χS(E(|w|2))p|E(uw)|2EMu;

T ∗(TT ∗)pT = Mū(E(|w|2))p+1(E(|u|2))pEMu.

It follows that T ∗(T ∗T )pT ≥ T ∗(TT ∗)pT if

M(E(|u|2))p−1χS(E(|w|2))pM(|E(uw)|2−E(|w|2)E(|u|2))MūEMu ≥ 0. (1)

By the same argument as in Theorem 3.7, (1) holds if M(|E(uw)|2−E(|w|2)E(|u|2)) ≥ 0
i.e. |E(uw)|2 − E(|w|2)E(|u|2) ≥ 0.

Conversely, suppose that T is p-quasihyponormal. Then for all f ∈ L2(A), we
have

〈T ∗(T ∗T )pT − T ∗(TT ∗)pTf, f〉

=

∫
X

(E(|u|2))p−1χS(E(|w|2))p(|E(uw)|2 − E(|w|2)E(|u|2))|E(u)|2|f |2 dµ ≥ 0.

Thus (E(|u|2))p−1χS(E(|w|2))p(|E(uw)|2−E(|w|2)E(|u|2))|E(u)|2 ≥ 0, and hence we
obtain |E(uw)|2 ≥ E(|w|2)E(|u|2). �

So we have the following corollary.

Corollary 3.9. Let T = EMu and p ∈ (0,∞). Then the following statements are
equivalent.

(i) T is normal.

(ii) T is hyponormal.

(iii) T is p-hyponormal.

(iv) T is ∞-hyponormal.

(v) T is p-quasihyponormal.

(vi) u ∈ L∞(A).

Theorem 3.10. Let T = MwEMu; then T is weakly hyponormal if and only if
|E(uw)|2 = E(|u|2)E(|w|2).

Proof. For every f ∈ L2(Σ), by Theorems 3.3 and 3.4, we have |T̂ |(f) = |(T̂ )∗|(f) =
|E(uw)|χS(E(|u|2))−1ūE(uf), where S = S(E(|u|2)).
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So, T is weakly hyponormal if and only if |T | = |T̂ |. For every f ∈ L2(Σ),

〈|T |(f)− |T̂ |(f), f〉 =

∫
X

(
E(|w|2)

E(|u|2)

) 1
2

χSufE(uf)− |E(uw)|χS(E(|u|2))−1ufE(uf) dµ∫
X

(
E(|w|2)

E(|u|2)

) 1
2

χS |E(uf)|2 − |E(uw)|χS(E(|u|2))−1|E(uf)|2 dµ;

this implies that if |E(uw)|2 = E(|u|2)E(|w|2), then |T | = |T̂ |.

Conversely, if |T | = |T̂ |, then for all f ∈ L2(Σ) we have∫
X

(
E(|w|2)

E(|u|2)

) 1
2

χS |E(uf)|2 − |E(uw)|χS(E(|u|2))−1|E(uf)|2 dµ = 0.

Let A ∈ A, with 0 < µ(A) <∞. By replacing f by χA, we have∫
A

(
E(|w|2)

E(|u|2)

) 1
2

χS |E(u)|2 − |E(uw)|χS(E(|u|2))−1|E(u)|2 dµ = 0.

Since A ∈ A is arbitrary, then(
E(|w|2)

E(|u|2)

) 1
2

χS |E(u)|2 − |E(uw)|χS(E(|u|2))−1|E(u)|2 = 0.

Hence |E(uw)|2 = E(|u|2)E(|w|2). �

Theorems 3.7, 3.10 and [1, Theorem 1.3] imply that if u(E(|w|2))
1
2 −(E(|u|2))

1
2 w̄ ≥ 0,

then |E(uw)|2 = E(|u|2)E(|w|2).

Corollary 3.11. (a) If T = EMu, then T is weakly hyponormal if and only if
u ∈ L∞(A).

(b) If T = MwE, then T is weakly hyponormal if and only if w ∈ L∞(A).

Theorem 3.12. If T=MwEMu is weakly hyponormal with kerT⊂ kerT ∗, then T=T̂ .

Proof. Direct computations show that T̂ is normal and by [1, Theorem 2.6] T = T̂ . �

Here we give some examples of conditional expectation operators.

Example 3.13. (a) Let X = N, G = 2N and let µ({x}) = pqx−1, for each x ∈ X,
0 ≤ p ≤ 1 and q = 1−p. Elementary calculations show that µ is a probability measure
on G. Let A be the σ-algebra generated by the partition B = {X1 = {3n : n ≥ 1}, Xc

1}
of X. So, for every f ∈ D(EA), E(f) = α1χX1

+ α2χXc
1

and direct computations
show that

α1 =

∑
n≥1 f(3n)pq3n−1∑

n≥1 pq
3n−1

and α2 =

∑
n≥1 f(n)pqn−1 −

∑
n≥1 f(3n)pq3n−1∑

n≥1 pq
n−1 −

∑
n≥1 pq

3n−1
.

If we set f(x) = x, then we have α1 = 3
1−q3 , α2 = 1+q6−3q4+4q3−3q2

(1−q2)(1−q3) .

(b) Let Ω = [−π, π], dµ = 1
2dx and A = 〈{(−a, a) : 0 ≤ a ≤ π}〉 (Sigma algebra

generated by symmetric intervals). Then EA(f)(x) = 1
2 (f(x) + f(−x)), x ∈ Ω,
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where EA(f) is defined. Let Jn(x) =
∞∑
m=0

(−1)m

m!Γ(m+n+1) (x2 )2m+n, for each n ∈ N and

−π ≤ x ≤ π where Γ(z) is the Gamma function, be Bessel functions of the first kind.
Then for every n ∈ N, E(J2n−1) = 0 and E(J2n) = J2n. And so, {J2n−1 : n ∈ N} ⊆
{f ∈ L2([−π, π]) : E(f) = 0, a.e}.

Also, {J2n}n∈N ⊆ R(E). Thus, the null space and the range of conditional expec-
tation E contains infinite number of special functions.

4. Some applications

In this section, we shall denote by σ(T ), σp(T ), σjp(T ), σa(T ), r(T ) the spectrum of
T , the point spectrum of T , the joint point spectrum of T , the approximate point
spectrum, the spectral radius of T , respectively. The spectrum of an operator T is the
set σ(T ) = {λ ∈ C : T − λI is not invertible}. A complex number λ ∈ C is said to
be in the point spectrum σp(T ) of the operator T , if there is a unit vector x satisfying
(T − λ)x = 0. If in addition, (T ∗ − λ̄)x = 0, then λ is said to be in the joint point
spectrum σjp(T ) of T . The approximate point spectrum of T is the set of all λ such
that T − λI is not an isomorphism onto a closed subspace of the space [6].

Also, the spectral radius of T is defined by r(T ) = sup{|λ| : λ ∈ σ(T )}.
For each natural number n, we define 4n(T ) = 4̂n−1T 41(T ) = 4(T ) = T̂ . We

call 4n(T ) the n-th Aluthge transformation of T . It is proved in [15] that r(T ) =
limn→∞ ‖4n(T )‖.

Theorem 4.1. Let T = MwEMu. Then
(a) T̂ is normaloid.

(b) T is normaloid if and only if ‖E(uw)‖∞ = ‖(E(|u|2))
1
2 (E(|w|2))

1
2 ‖∞.

Proof. (a) By Theorem 3.1 we have ‖T̂‖ = ‖E(uw)‖∞. By Theorem 3.4 we conclude

that for every natural number n we have 4n(T ) = 4(T ) = T̂ . Hence r(T̂ ) = r(T ) =

‖T̂‖ = ‖E(uw)‖∞. So T̂ is normaloid.
(b) By conditional type Hölder inequality, boundedness of T and Theorem 3.1 we

have r(T ) = ‖E(uw)‖∞ ≤ ‖(E(|u|2))
1
2 (E(|w|2))

1
2 ‖∞ = ‖T‖. Hence T is normaloid

if and only if ‖E(uw)‖∞ = ‖(E(|u|2))
1
2 (E(|w|2))

1
2 ‖∞. Theorems 4.1 and 3.10 show

that if T is weakly hyponormal, then T is normaloid. Also, Theorem 1.3 of [1] and

Theorem 3.7 imply that if u(E(|w|2))
1
2 − (E(|u|2))

1
2 w̄ ≥ 0, then T is normaloid. �

It can be proved that (see [6, 14]): σ(MwEMu) \ {0} = ess range (E(uw)) \ {0}
and σp(MwEMu) \ {0} = {λ ∈ C : µ(Aλ,w) > 0} \ {0}, where Aλ,w = {x ∈ X :
E(uw)(x) = λ} and ess range (E(uw)) = {λ ∈ C : ∀ε > 0, µ({x ∈ X : |E(uw)(x) −
λ| < ε}) > 0}. Furthermore, for every bounded operator S on a Hilbert space H we
have σ(S) = σa(S) ∪ σp(S∗) [16]. By these facts we get that σa(MwEMu) \ {0} =
ess range (E(uw)) \ ({λ ∈ C : µ(Aλ,w) > 0} ∪ {0}).

Theorem 4.2. If |E(uw)|2 ≥ E(|u|2)E(|w|2), then σp(MwEMu) = σjp(MwEMu).
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So, by Theorems 3.8 and 3.10 we have the next corollary.

Corollary 4.3. If T = MwEMu is weakly hyponormal or p-quasihyponormal, then
σp(MwEMu) = σjp(MwEMu).

Theorem 4.4. If u(E(|w|2))
1
2−(E(|u|2))

1
2 w̄ ≥ 0, then σp(MwEMu) = σjp(MwEMu).

Proof. If u(E(|w|2))
1
2 − (E(|u|2))

1
2 w̄ ≥ 0, then by Theorem 3.7 T = MwEMu is

p-hyponormal for p ∈ (0,∞). Also, by [1, Theorem 1.3] we have that T is weakly-
hyponormal and then by Corollary 4.3 we get that σp(MwEMu) = σjp(MwEMu). �

For a semi-hyponormal operator S on a Hilbert space H we have σ(S) = {λ : λ̄ ∈
σa(S∗)} (see [16]). So from Theorem 3.7 the following holds.

Theorem 4.5. If u(E(|w|2))
1
2 − (E(|u|2))

1
2 w̄ ≥ 0, then σ(MwEMu) \ {0} = {λ : λ̄ ∈

σa(MūEMw̄)} \ {0} or equivalently σa(MwEMu) \ {0} = ess range (E(uw)) \ {0}.
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