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FRACTIONAL-ORDER BOUNDARY VALUE PROBLEMS

Ahmed Alsaedi, Najla Alghamdi, Bashir Ahmad and Sotiris K. Ntouyas

Abstract. In this paper we study a new kind of boundary value problems of multi-term
fractional differential inclusions and three-point nonlocal boundary conditions. The existence
of solutions is established for convex and non-convex multivalued maps by using standard
theorems from the fixed point theory. We also construct some examples for demonstrating
the application of the main results.

1. Introduction

In recent years, the study of fractional-order boundary value problems received much
attention in view of their occurrence in several diverse disciplines. Now one can find a
variety of results involving different kinds of boundary conditions in the related liter-
ature. Such problems can be categorized as single-valued and multivalued problems.
For recent development on the topic, we refer the reader to a series of papers [2, 3, 9]
and the references cited therein. Fractional-order models are regarded more realis-
tic than their integer-order counterparts, for instance, see [14, 20, 22]. This fact has
added worth to the topic of boundary value problems of fractional-order. In par-
ticular, multivalued (inclusions) problems are found to be of special significance in
studying dynamical systems and stochastic processes, see e.g. [17,21] for the analysis
of control problems.

Equations containing more than one differential operator are termed as multi-
term differential equations, for example, see [17–19, 23, 24]. In a recent work [1], the
authors obtained some existence results for multi-term fractional differential equations
supplemented with nonlocal boundary conditions.

Let η ∈ (0, 1) be a fixed number. In this paper, motivated by [1], we investigate
a new boundary value problem of multi-term fractional differential inclusions and
nonlocal three-point boundary conditions given by

(a2
cDq+2 + a1

cDq+1 + a0
cDq)x(t) ∈ F (t, x(t)), 0 < q < 1, 0 < t < 1, (1)
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x(0) = 0, x(η) = 0, x(1) = 0, (2)

where cDq denotes the Caputo fractional derivative of order q, ai (i = 0, 1, 2) are real
constants and F : [0, 1] × R → P(R) is a multivalued map, P(R) is the family of all
nonempty subsets of R.

The paper is organized as follows. In Section 2 we recall some preliminary con-
cepts from multi-valued analysis and fractional calculus related to our work. Section 3
contains the main results. The first result involving convex valued maps is based on
the nonlinear alternative of Leray-Schauder type. The second result dealing with
non-convex valued maps relies on a fixed point theorem for contractive multivalued
maps due to Covitz and Nadler, while in the third result, we combine the nonlin-
ear alternative of Leray-Schauder type for single-valued maps with a selection the-
orem due to Bressan and Colombo for lower semicontinuous multivalued maps with
nonempty closed and decomposable values. The methods used in our analysis are
standard, however their exposition in the framework of problem (1)-(2) is new and
worth-contributing to the literature on fractional-order multivalued problems.

2. Preliminaries

2.1 Basic material from fractional calculus

We begin this subsection with some definitions [12].

Definition 2.1. The Riemann-Liouville fractional integral of order τ > 0 of a func-
tion h : (0,∞)→ R is defined by

Iτh(u) =

∫ u

0

(u− v)τ−1

Γ(τ)
h(v) dv, u > 0,

provided the right-hand side is point-wise defined on (0,∞), where Γ is the Gamma
function.

Definition 2.2. The Caputo derivative of order τ for a function h : [0,∞)→ R with
h ∈ Cn[0,∞) is defined by

cDτh(u) =
1

Γ(n− τ)

∫ u

0

h(n)(v)

(u− v)τ+1−n dv = In−τh(n)(u), t > 0, n− 1 < τ < n,

Property 2.3. With the given notation, the following equality holds:

Iτ (cDτh(u)) = h(u)− c0 − c1u− . . .− cn−1u
n−1, u > 0, n− 1 < τ < n,

where ci = h(i)(0)
i! , i = 1, . . . , n− 1.

The following known result [1] facilitates the transformation of the problem (1)-(2)
into a fixed point problem.

Lemma 2.4. For any y ∈ C([0, 1],R), the solution of linear multi-term fractional
differential equation

(a2
cDq+2 + a1

cDq+1 + a0
cDq)x(t) = y(t), 0 < q < 1, 0 < t < 1,
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supplemented with the boundary conditions (2) is given by

(i) x(t) =
1

a2(m2 −m1)

{∫ t

0

∫ s

0

Φ(t)
(s− u)q−1

Γ(q)
y(u) du ds

+ σ1(t)

∫ 1

0

∫ s

0

Φ(1)
(s− u)q−1

Γ(q)
y(u) du ds

+ σ2(t)

∫ η

0

∫ s

0

Φ(η)
(s− u)q−1

Γ(q)
y(u) du ds

}
, if a2

1 − 4a0a2 > 0,

where Φ(κ) =em2(κ−s) − em1(κ−s), κ = t, 1, and η,

m1 =
−a1 −

√
a2

1 − 4a0a2

2a2
, m2 =

−a1 +
√
a2

1 − 4a0a2

2a2
,

σ1(t) =
γ2ρ2(t)− γ4ρ1(t)

µ
, σ2(t) =

γ3ρ1(t)− γ1ρ2(t)

µ
, µ = γ1γ4 − γ2γ3 6= 0,

ρ1(t) =
m2(1− em1t)−m1(1− em2t)

a2m1m2(m2 −m1)
, ρ2(t) = em1t − em2t,

γ1 =
m2(1−em1)−m1(1−em2)

a2m1m2(m2−m1)
, γ2 =

m2(1−em1η)−m1(1−em2η)

a2m1m2(m2−m1)
, (3)

γ3 =em1 − em2 , γ4 = em1η − em2η,

(ii) x(t) =
1

a2

{∫ t

0

∫ s

0

Ψ(t)
(s− u)q−1

Γ(q)
y(u) du ds

+ ψ1(t)

∫ 1

0

∫ s

0

Ψ(1)
(s− u)q−1

Γ(q)
y(u) du ds

+ ψ2(t)

∫ η

0

∫ s

0

Ψ(η)
(s− u)q−1

Γ(q)
y(u) du ds

}
, if a2

1 − 4a0a2 = 0,

where Ψ(κ) =(κ− s)em(κ−s), κ = t, 1, and η,

ψ1(t) =
(t− η)em(t+η) − temt + ηemη

Λ
, ψ2(t) =

(1− t)em(t+1) + temt − em

Λ
,

Λ =(η − 1)em(η+1) − ηemη + em 6= 0, m =
−a1

2a2
,

(iii) x(t) =
1

a2β

{∫ t

0

∫ s

0

Ω(t)
(s− u)q−1

Γ(q)
y(u) du ds

+ ϕ1(t)

∫ 1

0

∫ s

0

Ω(1)
(s− u)q−1

Γ(q)
y(u) du ds

+ ϕ2(t)

∫ η

0

∫ s

0

Ω(η)
(s− u)q−1

Γ(q)
y(u) du ds

}
, if a2

1 − 4a0a2 < 0,

where Ω(κ) =e−α(κ−s) sinβ(κ− s), κ = t, 1, and η,
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α =
a1

2a2
, β =

√
4a0a2 − a1

2

2a2
,

ϕ1(t) =
ω4%1(t)− ω2%2(t)

Ω
, ϕ2(t) =

ω1%2(t)− ω3%1(t)

Ω
,

%1(t) =
β − βe−αt cosβt− αe−αt sinβt

α2 + β2
, %2(t) = a2βe

−αt sinβt,

ω1 =
β − βe−α cosβ − αe−α sinβ

α2 + β2
, ω2 =

β − βe−αη cosβη − αe−αη sinβη

α2 + β2
,

ω3 =a2βe
−α sinβ, ω4 = a2βe

−αη sinβη, Ω = ω2ω3 − ω1ω4 6= 0.

2.2 Basic material for multivalued maps

Let C := C([0, 1],R) denote the Banach space of all continuous functions from [0, 1]
into R with the norm ‖x‖ = sup{|x(t)|, t ∈ [0, 1]}. Also by L1([0, 1],R) we denote

the space of functions x : [0, 1]→ R such that ‖x‖L1 =
∫ 1

0
|x(t)| dt.

For each y ∈ C, define the set of selections of F by

SF,y := {v ∈ L1([0, 1],R) : v(t) ∈ F (t, y(t)) a.e. on [0, 1]}.
We define the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y, y ∈ G(x)} and

recall a result for closed graphs and upper-semicontinuity.

Lemma 2.5 ( [7, Proposition 1.2]). If G : X → Pcl(Y ) (Pcl(X) = {Y ∈ P(X) :
Y is closed} is u.s.c., then Gr(G) is a closed subset of X ×Y ; i.e., for every sequence
{xn}n∈N ⊂ X and {yn}n∈N ⊂ Y , if when n→∞, xn → x∗, yn → y∗ and yn ∈ G(xn),
then y∗ ∈ G(x∗). Conversely, if G is completely continuous and has a closed graph,
then it is upper semi-continuous.

The following lemma will be used in the sequel.

Lemma 2.6 ([16]). Let X be a separable Banach space. Let F : J × R → Pcp,c(X)
(Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}) be an L1-Carathéodory mul-
tivalued map and let Θ be a linear continuous mapping from L1(J,X) to C(J,X).
Then the operator Θ ◦ SF : C(J,X)→ Pcp,c(C(J,X)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x) is
a closed graph operator in C(J,X)× C(J,X).

We recall the well-known nonlinear alternative of Leray-Schauder for multivalued
maps.

Lemma 2.7 ( [10, Nonlinear alternative for Kakutani maps]). Let E be a Banach
space, C a closed convex subset of E, U an open subset of C and 0 ∈ U . Suppose that
F : U → Pcp,c(C) is an upper semicontinuous compact map. Then either
(i) F has a fixed point in U, or

(ii) there are u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u).

For some basic concepts about multivalued analysis, we refer the reader to the
books [7, 11].
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3. Existence results for the case a2
1 − 4a0a2 > 0

3.1 The Carathéodory case

In this subsection we consider the case when F has convex values and prove an
existence result based on nonlinear alternative of Leray-Schauder type, assuming that
F is Carathéodory.

Definition 3.1. Let a2
1−4a0a2 > 0. A function x ∈ C, possessing a Caputo derivative

of order at most q+2, is a solution of the problem (1)-(2) if x(0) = 0, x(η) = 0, x(1) =
0, and there exists a function v ∈ L1([0, 1],R) such that v(t) ∈ F (t, x(t)) a.e. on [0, 1]
and

x(t) =
1

a2(m2 −m1)

{∫ t

0

∫ s

0

Φ(t)
(s− u)q−1

Γ(q)
v(u) du ds (4)

+σ1(t)

∫ 1

0

∫ s

0

Φ(1)
(s− u)q−1

Γ(q)
v(u) du ds+ σ2(t)

∫ η

0

∫ s

0

Φ(η)
(s− u)q−1

Γ(q)
v(u) du ds

}
.

Theorem 3.2. Assume that:
(H1) F : [0, 1]× R→ Pcp,c(R) is L1-Carathéodory;

(H2) there exists a continuous nondecreasing function Q : [0,∞) → (0,∞) and a
function g ∈ C([0, 1],R+) such that

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ g(t)Q(‖x‖) for each (t, x) ∈ [0, 1]× R;

(H3) there exists a constant M > 0 such that M
‖g‖Q(M)
Γ(q+1)

{
ε+σ̂1γ1+ηqσ̂2γ2

} > 1, where

σ̂1 = max
t∈[0,1]

|σ1(t)|, σ̂2 = max
t∈[0,1]

|σ2(t)|, ε = max
t∈[0,1]

∣∣∣m2(1− em1t)−m1(1− em2t)

a2m1m2(m2 −m1)

∣∣∣,
and γ1, γ2 are defined in (3).

Then the boundary value problem (1)-(2), with a2
1 − 4a0a2 > 0, has at least one

solution on [0, 1].

Proof. To transform the problem (1)-(2) into a fixed point problem, we define an
operator F : C −→ P(C) by

F(x) =



h ∈ C([0, 1],R) :

h(t) =



1
a2(m2−m1)

{∫ t
0

∫ s
0

Φ(t) (s−u)q−1

Γ(q) v(u) du ds

+σ1(t)
∫ 1

0

∫ s
0

Φ(1) (s−u)q−1

Γ(q) v(u) du ds

+σ2(t)
∫ η

0

∫ s
0

Φ(η) (s−u)q−1

Γ(q) v(u) du ds

}
,




for v ∈ SF,x. It is obvious that the fixed points of F are solutions of the boundary
value problem (1)-(2).

We will show that F satisfies the assumptions of Leray-Schauder nonlinear alter-
native (Lemma 2.7). The proof consists of several steps.
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Step 1. F(x) is convex for each x ∈ C.
This step is obvious since SF,x is convex (F has convex values), and therefore we

omit the proof.

Step 2. F maps bounded sets (balls) into bounded sets in C.
For a positive number r, let Br = {x ∈ C([0, 1],R) : ‖x‖ ≤ r} be a bounded ball

in C. Then, for each h ∈ F(x), x ∈ Br, there exists v ∈ SF,x such that

h(t) =
1

a2(m2 −m1)

{∫ t

0

∫ s

0

Φ(t)
(s− u)q−1

Γ(q)
v(u) du ds

+σ1(t)

∫ 1

0

∫ s

0

Φ(1)
(s− u)q−1

Γ(q)
v(u) du ds+ σ2(t)

∫ η

0

∫ s

0

Φ(η)
(s− u)q−1

Γ(q)
v(u) du ds

}
.

Then, for t ∈ [0, 1], we have

|h(t)| ≤ 1

a2(m2−m1)
sup
t∈[0,1]

{∫ t

0

∫ s

0

Φ(t)
(s−u)q−1

Γ(q)
|v(u)| du ds

+ |σ1(t)|
∫ 1

0

∫ s

0

Φ(1)
(s−u)q−1

Γ(q)
|v(u)| du ds+ |σ2(t)|

∫ η

0

∫ s

0

Φ(η)
(s−u)q−1

Γ(q)
|v(u)| du ds

}

≤ ‖g‖Q(r)

a2(m2−m1)
sup
t∈[0,1]

{∫ t

0

(
em2(t−s)−em1(t−s)

) sq

Γ(q + 1)
ds

+ |σ1(t)|
∫ 1

0

(
em2(1−s)−em1(1−s)

) sq

Γ(q + 1)
ds+ |σ2(t)|

∫ η

0

(
em2(η−s)−em1(η−s)

) sq

Γ(q + 1)
ds

}

≤ ‖g‖Q(r)

Γ(q + 1)

{
ε+ σ̂1γ1 + ηqσ̂2γ2

}
,

which yields ‖h‖ ≤ ‖g‖Q(r)
Γ(q+1)

{
ε+ σ̂1γ1 + ηqσ̂2γ2

}
.

Step 3. F maps bounded sets into equicontinuous sets of C.
Let t1, t2 ∈ J with t1 < t2 and x ∈ Br. Then, for each h ∈ B(x), we obtain

|h(t2)−h(t1)| ≤ 1

a2(m2−m1)

{∣∣∣∣∣
∫ t1

0

∫ s

0

[
Φ(t2)−Φ(t1)

] (s−u)q−1

Γ(q)
v(u) du ds

+

∫ t2

t1

∫ s

0

Φ(t2)
(s−u)q−1

Γ(q)
v(u) du ds

∣∣∣∣∣+ |σ1(t2)−σ1(t1)|
∫ 1

0

∫ s

0

Φ(1)
(s−u)q−1

Γ(q)
|v(u)| du ds

+ |σ2(t2)−σ2(t1)|
∫ η

0

∫ s

0

Φ(η)
(s−u)q−1

Γ(q)
|v(u)| du ds

}

≤ ‖g‖Q(r)

a2m1m2(m2−m1)Γ(q + 1)

{(
tq1−t

q
2

)(
m1(1−em2(t2−t1))−m2(1−em1(t2−t1))

)
+ tq1

(
m1(em2t2−em2t1)−m2(em1t2−em1t1)

)
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+ |σ1(t2)−σ1(t1)|(m2(1−em1)−m1(1−em2))

+ |σ1(t2)−σ1(t1)|ηq(m2(1−em1η)−m1(1−em2η))
}
.

Obviously the right-hand side of the above inequality tends to zero independently
of x ∈ Br as t2 − t1 → 0. Therefore it follows by the Ascoli-Arzelá theorem that
F : C → P(C) is completely continuous.

Since F is completely continuous, in order to prove that it is u.s.c. it is enough to
prove that it has a closed graph.

Step 4. F has a closed graph.

Let xn → x∗, hn ∈ F(xn) and hn → h∗. Then we need to show that h∗ ∈ F(x∗).
Associated with hn ∈ F(xn), there exists vn ∈ SF,xn

such that for each t ∈ [0, 1],

hn(t) =
1

a2(m2 −m1)

{∫ t

0

∫ s

0

Φ(t)
(s− u)q−1

Γ(q)
vn(u) du ds

+ σ1(t)

∫ 1

0

∫ s

0

Φ(1)
(s− u)q−1

Γ(q)
vn(u) du ds+ σ2(t)

∫ η

0

∫ s

0

Φ(η)
(s− u)q−1

Γ(q)
vn(u) du ds

}
.

Thus it suffices to show that there exists v∗ ∈ SF,x∗ such that for each t ∈ [0, 1],

h∗(t) =
1

a2(m2 −m1)

{∫ t

0

∫ s

0

Φ(t)
(s− u)q−1

Γ(q)
v∗(u) du ds

+ σ1(t)

∫ 1

0

∫ s

0

Φ(1)
(s− u)q−1

Γ(q)
v∗(u) du ds+ σ2(t)

∫ η

0

∫ s

0

Φ(η)
(s− u)q−1

Γ(q)
v∗(u) du ds

}
.

Let us consider the linear operator Θ : L1([0, 1],R)→ C given by

v 7→ Θ(v)(t) =
1

a2(m2 −m1)

{∫ t

0

∫ s

0

Φ(t)
(s− u)q−1

Γ(q)
v(u) du ds

+ σ1(t)

∫ 1

0

∫ s

0

Φ(1)
(s− u)q−1

Γ(q)
v(u) du ds+ σ2(t)

∫ η

0

∫ s

0

Φ(η)
(s− u)q−1

Γ(q)
v(u) du ds

}
.

Observe that ‖hn(t)−h∗(t)‖ → 0, as n→∞, and thus, it follows by Lemma 2.6 that
Θ◦SF is a closed graph operator. Further, we have hn(t) ∈ Θ(SF,xn). Since xn → x∗,
therefore, we have

h∗(t) =
1

a2(m2 −m1)

{∫ t

0

∫ s

0

Φ(t)
(s− u)q−1

Γ(q)
v∗(u) du ds

+ σ1(t)

∫ 1

0

∫ s

0

Φ(1)
(s− u)q−1

Γ(q)
v∗(u) du ds+ σ2(t)

∫ η

0

∫ s

0

Φ(η)
(s− u)q−1

Γ(q)
v∗(u) du ds

}
,

for some v∗ ∈ SF,x∗ .
Step 5. We show that there exists an open set U ⊆ C with x /∈ θF(x) for any
θ ∈ (0, 1) and x ∈ ∂U .
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Let θ ∈ (0, 1) and x ∈ θF(x). Then there exists v ∈ L1([0, 1],R) with v ∈ SF,x
such that, for t ∈ [0, 1], we have

x(t) = θ
1

a2(m2 −m1)

{∫ t

0

∫ s

0

Φ(t)
(s− u)q−1

Γ(q)
v(u) du ds

+ σ1(t)

∫ 1

0

∫ s

0

Φ(1)
(s− u)q−1

Γ(q)
v(u) du ds+ σ2(t)

∫ η

0

∫ s

0

Φ(η)
(s− u)q−1

Γ(q)
v(u) du ds

}
.

Then, by using the computations from Step 2., we get

|x(t)| ≤ ‖g‖Q(‖x‖)
a2(m2 −m1)

sup
t∈[0,1]

{∫ t

0

(
em2(t−s) − em1(t−s)

) sq

Γ(q + 1)
ds

+ |σ1(t)|
∫ 1

0

(
em2(1−s) − em1(1−s)

) sq

Γ(q + 1)
ds

+ |σ2(t)|
∫ η

0

(
em2(η−s) − em1(η−s)

) sq

Γ(q + 1)
ds

}

≤ ‖g‖Q(‖x‖)
Γ(q + 1)

{
ε+ σ̂1γ1 + ηqσ̂2γ2

}
,

which implies that ‖x‖
‖g‖Q(‖x‖)

Γ(q+1)

{
ε+σ̂1γ1+ηqσ̂2γ2

} ≤ 1.

In view of (H3), there exists M such that ‖x‖ 6= M . Let us set U = {x ∈ C :
‖x‖ < M}. Note that the operator F : U → P(C) is a compact multi-valued map,
u.s.c. with convex closed values. From the choice of U , there is no x ∈ ∂U such
that x ∈ θF(x) for some θ ∈ (0, 1). Consequently, by the nonlinear alternative of
Leray-Schauder type (Lemma 2.7), we deduce that F has a fixed point x ∈ U which
is a solution of the problem (1)-(2). This completes the proof.

3.2 The Lipschitz case

In this subsection we prove the existence of solutions for the problem (1)-(2) with a
not necessary nonconvex valued right-hand side, by applying a fixed point theorem
for multivalued maps due to Covitz and Nadler [6].

Let (X, d) be a metric space induced from the normed space (X; ‖ · ‖). Let Hd :
P(X)×P(X)→ R∪{∞} be defined byHd(A,B) = max{supa∈A d(a,B), supb∈B d(A, b)},
where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then (Pcl,b(X), Hd) is a
metric space (see [13]).

Definition 3.3. Let Pcl(X) = {Y ∈ P(X) : Y is closed}. A multivalued operator
N : X → Pcl(X) is called (i) γ-Lipschitz if and only if there exists γ > 0 such that
Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X; and (ii) a contraction if and only if it
is γ-Lipschitz with γ < 1.

Lemma 3.4 ([6]). Let (X, d) be a complete metric space. If N : X → Pcl(X) is a
contraction, then FixN 6= ∅.
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Theorem 3.5. Assume that:
(A1) F : [0, 1] × R → Pcp(R) (Pcp(R) = {Y ∈ P(R) : Y is compact}) is such that
F (·, x) : [0, 1]→ Pcp(R) is measurable for each x ∈ R;

(A2) Hd(F (t, x), F (t, x̄)) ≤ m(t)|x − x̄| for almost all t ∈ [0, 1] and x, x̄ ∈ R with
m ∈ C([0, 1],R+) and d(0, F (t, 0)) ≤ m(t) for almost all t ∈ [0, 1].
Then the boundary value problem (1)-(2), with a2

1−4a0a2 > 0, has at least one solution

on [0, 1] if ‖m‖
Γ(q+1)

{
ε+ σ̂1γ1 + ηqσ̂2γ2

}
< 1.

Proof. Consider the operator F defined at the beginning of the proof of Theorem 3.2.
Observe that the set SF,x is nonempty for each x ∈ C by the assumption (A1), so F
has a measurable selection (see [5, Theorem III.6]). Now we show that the operator
F satisfies the assumptions of Lemma 3.4. We show that F(x) ∈ Pcl(C) for each
x ∈ C([0, 1],R). Let {un}n≥0 ∈ F(x) be such that un → u (n → ∞) in C. Then
u ∈ C and there exists vn ∈ SF,xn

such that, for each t ∈ [0, 1],

un(t) =
1

a2(m2 −m1)

{∫ t

0

∫ s

0

Φ(t)
(s− u)q−1

Γ(q)
vn(u) du ds

+ σ1(t)

∫ 1

0

∫ s

0

Φ(1)
(s− u)q−1

Γ(q)
vn(u) du ds+ σ2(t)

∫ η

0

∫ s

0

Φ(η)
(s− u)q−1

Γ(q)
vn(u) du ds

}
.

As F has compact values, we pass onto a subsequence (if necessary) to obtain that
vn converges to v in L1([0, 1],R). Thus, v ∈ SF,x and for each t ∈ [0, 1], we have

un(t)→ v(t) =
1

a2(m2 −m1)

{∫ t

0

∫ s

0

Φ(t)
(s− u)q−1

Γ(q)
v(u) du ds

+ σ1(t)

∫ 1

0

∫ s

0

Φ(1)
(s− u)q−1

Γ(q)
v(u) du ds+ σ2(t)

∫ η

0

∫ s

0

Φ(η)
(s− u)q−1

Γ(q)
v(u) du ds

}
.

Hence, u ∈ F(x).

Next we show that there exists δ < 1
(
δ := ‖m‖

Γ(q+1)

{
ε+ σ̂1γ1 + ηqσ̂2γ2

})
such that

Hd(F(x),F(x̄)) ≤ δ‖x − x̄‖ for each x, x̄ ∈ C. Let x, x̄ ∈ C and h1 ∈ F(x). Then
there exists v1(t) ∈ F (t, x(t)) such that, for each t ∈ [0, 1],

h1(t) =
1

a2(m2 −m1)

{∫ t

0

∫ s

0

Φ(t)
(s− u)q−1

Γ(q)
v1(u) du ds

+ σ1(t)

∫ 1

0

∫ s

0

Φ(1)
(s− u)q−1

Γ(q)
v1(u) du ds+ σ2(t)

∫ η

0

∫ s

0

Φ(η)
(s− u)q−1

Γ(q)
v1(u) du ds

}
.

By 2, we have Hd(F (t, x), F (t, x̄)) ≤ m(t)|x(t) − x̄(t)|. So, there exists w ∈
F (t, x̄(t)) such that |v1(t)− w| ≤ m(t)|x(t)− x̄(t)|, t ∈ [0, 1].

Define U : [0, 1]→ P(R) by U(t) = {w ∈ R : |v1(t)−w| ≤ m(t)|x(t)− x̄(t)|}. Since
the multivalued operator U(t)∩F (t, x̄(t)) is measurable ( [5, Proposition III.4]), there
exists a function v2(t) which is a measurable selection for U . So v2(t) ∈ F (t, x̄(t))
and for each t ∈ [0, 1], we have |v1(t)− v2(t)| ≤ m(t)|x(t)− x̄(t)|.
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For each t ∈ [0, 1], let us define

h2(t) =
1

a2(m2 −m1)

{∫ t

0

∫ s

0

Φ(t)
(s− u)q−1

Γ(q)
v2(u) du ds

+ σ1(t)

∫ 1

0

∫ s

0

Φ(1)
(s− u)q−1

Γ(q)
v2(u) du ds+ σ2(t)

∫ η

0

∫ s

0

Φ(η)
(s− u)q−1

Γ(q)
v2(u) du ds

}
.

Thus,

|h1(t)− h2(t)| ≤ 1

a2(m2 −m1)

{∫ t

0

∫ s

0

Φ(t)
(s− u)q−1

Γ(q)
|v1(u)− v2(u)| du ds

+ σ1(t)

∫ 1

0

∫ s

0

Φ(1)
(s− u)q−1

Γ(q)
|v1(u)− v2(u)| du ds

+ σ2(t)

∫ η

0

∫ s

0

Φ(η)
(s− u)q−1

Γ(q)
|v1(u)− v2(u)| du ds

}

≤ ‖m‖
a2(m2 −m1)Γ(q + 1)

sup
t∈[0,1]

{∫ t

0

(
em2(t−s) − em1(t−s)

)
ds

+ |σ1(t)|
∫ 1

0

(
em2(1−s) − em1(1−s)

)
ds+ ηq|σ2(t)|

∫ η

0

(
em2(η−s) − em1(η−s)

)
ds

}
‖x− x̄‖

≤ ‖m‖
Γ(q + 1)

{
ε+ σ̂1γ1 + ηqσ̂2γ2

}
‖x− x̄‖.

Hence, ‖h1 − h2‖ ≤ ‖m‖
Γ(q+1)

{
ε+ σ̂1γ1 + ηqσ̂2γ2

}
‖x− x̄‖.

Analogously, interchanging the roles of x and x, we obtain Hd(F(x),F(x̄)) ≤
‖m‖

Γ(q+1)

{
ε+ σ̂1γ1 + ηqσ̂2γ2

}
‖x− x̄‖.

So F is a contraction. Therefore, it follows by Lemma 3.4 that F has a fixed point
x which is a solution of (1)-(2). �

3.3 The lower semicontinuous case

In the next result, F is not necessarily convex valued. Our strategy to deal with this
problem is based on the nonlinear alternative of Leray Schauder type together with
the selection theorem of Bressan and Colombo [4] for lower semi-continuous maps
with decomposable values.

Let X be a nonempty closed subset of a Banach space E and G : X → P(E)
be a multivalued operator with nonempty closed values. G is lower semi-continuous
(l.s.c.) if the set {y ∈ X : G(y)∩B 6= ∅} is open for any open set B in E. Let A be a
subset of [0, 1]×R. A is L⊗B measurable if A belongs to the σ-algebra generated by
all sets of the form J × D, where J is Lebesgue measurable in [0, 1] and D is Borel
measurable in R. A subset A of L1([0, 1],R) is decomposable if for all u, v ∈ A and
measurable J ⊂ [0, 1] = J , the function uχJ + vχJ−J ∈ A, where χJ stands for the
characteristic function of J .
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Definition 3.6. Let Y be a separable metric space and let N : Y → P(L1([0, 1],R))
be a multivalued operator. We say that N has a property (BC) if N is lower semi-
continuous (l.s.c.) and has nonempty closed and decomposable values.

Let F : [0, 1]× R → P(R) be a multivalued map with nonempty compact values.
Define a multivalued operator F : C([0, 1]× R)→ P(L1([0, 1],R)) associated with F
as

F(x) = {w ∈ L1([0, 1],R) : w(t) ∈ F (t, x(t)) for a.e. t ∈ [0, 1]},

which is called the Nemytskii operator associated with F .

Definition 3.7. Let F : [0, 1]×R→ P(R) be a multivalued function with nonempty
compact values. We say that F is of lower semi-continuous type (l.s.c. type) if its
associated Nemytskii operator F is lower semi-continuous and has nonempty closed
and decomposable values.

Lemma 3.8 ([8]). Let Y be a separable metric space and let N : Y → P(L1([0, 1],R))
be a multivalued operator satisfying the property (BC). Then N has a continuous se-
lection, that is, there exists a continuous function (single-valued) g : Y → L1([0, 1],R)
such that g(x) ∈ N(x) for every x ∈ Y .

Theorem 3.9. Assume that (H2), (H3) and the following condition holds:
(H4) F : [0, 1]×R→ P(R) is a nonempty compact-valued multivalued map such that

(a) (t, x) 7−→ F (t, x) is L ⊗ B measurable,

(b) x 7−→ F (t, x) is lower semicontinuous for each t ∈ [0, 1];
Then the boundary value problem (1)-(2), with a2

1−4a0a2 > 0, has at least one solution
on [0, 1].

Proof. It follows from (H2) and (H4) that F is of l.s.c. type. Then from Lemma 3.8,
there exists a continuous function f : C → L1([0, 1],R) such that f(x) ∈ F(x) for all
x ∈ C.

Consider the problem{
(a2

cDq+2 + a1
cDq+1 + a0

cDq)x(t) = f(x(t)), 0 < q < 1, 0 < t < 1,

x(0) = 0, x(η) = 0, x(1) = 0, 0 < η < 1.
(5)

Observe that if x ∈ C is a solution of (5) in the sense of Definition 3.1, then x is a
solution to the problem (1)-(2). In order to transform the problem (5) into a fixed
point problem, we define an operator F by

Fx(t) =
1

a2(m2 −m1)

{∫ t

0

∫ s

0

Φ(t)
(s− u)q−1

Γ(q)
f(x(u)) du ds

+ σ1(t)

∫ 1

0

∫ s

0

Φ(1)
(s− u)q−1

Γ(q)
f(x(u)) du ds+ σ2(t)

∫ η

0

∫ s

0

Φ(η)
(s− u)q−1

Γ(q)
f(x(u)) du ds

}
.

It can be easily shown that F is continuous and completely continuous. The remaining
part of the proof is similar to that of Theorem 3.2. �
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4. Existence results for the case a2
1 − 4a0a2 = 0.

In this section, we discuss the existence of solutions for the problem (1)-(2) when
a2

1 − 4a0a2 = 0. Let us first define a solution of the problem (1)-(2) in this case.

Definition 4.1. Let a2
1−4a0a2 = 0. A function x ∈ C, possessing a Caputo derivative

of at most order q+2, is a solution of the problem (1)-(2) if x(0) = 0, x(η) = 0, x(1) =
0, and there exists function v ∈ L1([0, 1],R) such that v(t) ∈ F (t, x(t)) a.e. on [0, 1]
and

x(t) =
1

a2

{∫ t

0

∫ s

0

Ψ(t)
(s− u)q−1

Γ(q)
v(u) du ds+ ψ1(t)

∫ 1

0

∫ s

0

Ψ(1)
(s− u)q−1

Γ(q)
v(u) du ds

+ ψ2(t)

∫ η

0

∫ s

0

Ψ(η)
(s− u)q−1

Γ(q)
v(u) du ds

}
. (6)

Analogously to Theorems 3.2, 3.5, and 3.9 proved in the last section, we present
the existence results for the problem (1)-(2) when a2

1− 4a0a2 = 0. We do not provide
the proofs of the proposed results as those are similar to the ones for Theorems 3.2,
3.5, and 3.9.

Theorem 4.2. Assume that (H1), (H2) are satisfied. In addition we assume that:

(H ′3) There exists a constant M1 > 0 such that: M1

‖g‖Q(M1)µ > 1,

where

ψ̂1 = maxt∈[0,1] |ψ1(t)|, ψ̂2 = maxt∈[0,1] |ψ2(t)|,
µ = 1

a2m2Γ(q+1)

{
(1 + ψ̂1)

(
(m− 1)em + 1

)
+ ψ̂2η

q
(

(mη − 1)emη + 1
)}
.

(7)

Then the boundary value problem (1)-(2), with a2
1−4a0a2 = 0, has at least one solution

on [0, 1].

Theorem 4.3. Assume that (A1), (A2) are satisfied. Then the boundary value prob-
lem (1)-(2), with a2

1 − 4a0a2 = 0, has at least one solution on [0, 1] if ‖m‖µ < 1.

Theorem 4.4. Assume that (H2), (H ′3) and (H4) are satisfied. Then the boundary
value problem (1)-(2), with a2

1 − 4a0a2 = 0, has at least one solution on [0, 1].

5. Existence results for the case a2
1 − 4a0a2 < 0.

This section is devoted to the existence results for the problem (1)-(2) with
a2

1 − 4a0a2 < 0. Before presenting the main results, we define a solution of the
problem (1)-(2) in this case.

Definition 5.1. Let a2
1−4a0a2 < 0. A function x ∈ C, possessing a Caputo derivative

of at most order q+2, is a solution of the problem (1)-(2) if x(0) = 0, x(η) = 0, x(1) =
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0, and there exists a function v ∈ L1([0, 1],R) such that v(t) ∈ F (t, x(t)) a.e. on [0, 1]
and

x(t) =
1

a2β

{∫ t

0

∫ s

0

Ω(t)
(s− u)q−1

Γ(q)
v(u) du ds

+ ϕ1(t)

∫ 1

0

∫ s

0

Ω(1)
(s− u)q−1

Γ(q)
v(u) du ds+ ϕ2(t)

∫ η

0

∫ s

0

Ω(η)
(s− u)q−1

Γ(q)
v(u) du ds

}
.

Now we give the existence results for the problem (1)-(2) in case of a2
1−4a0a2 < 0

without proof. One can prove these results following the strategy employed in the
proofs of Theorems 3.2, 3.5, and 3.9.

Theorem 5.2. Assume that (H1), (H2) are satisfied. In addition we assume that:
(H ′′3 ) There exists a constant M2 > 0 such that: M2

‖g‖Q(M2)ρ > 1, where

ϕ̂1 = max
t∈[0,1]

|ϕ1(t)|, ϕ̂2 = max
t∈[0,1]

|ϕ2(t)|,

ρ =
1

a2(α2 + β2)Γ(q + 1)

{
(1 + ϕ̂1)

(
1− e−α cosβ − (α/β)e−α sinβ

)
+ ϕ̂2η

q
(

1− e−αη cosβη − (α/β)e−αη sinβη
)}
.

Then the boundary value problem (1)-(2), with a2
1−4a0a2 < 0, has at least one solution

on [0, 1].

Theorem 5.3. Assume that (A1), (A2) are satisfied. Then the boundary value prob-
lem (1)-(2), with a2

1 − 4a0a2 < 0, has at least one solution on [0, 1] if ‖m‖ρ < 1.

Theorem 5.4. Assume that (H2), (H ′′3 ) and (H4) are satisfied. Then the boundary
value problem (1)-(2), with a2

1 − 4a0a2 < 0, has at least one solution on [0, 1].

6. Examples

Example 6.1. Consider the following boundary value problem for fractional differ-
ential inclusions{

( cD5/2 + 5 cD3/2 + 4 cD1/2)x(t) ∈ F (t, x(t)), 0 < q < 1, 0 < t < 1,

x(0) = 0, x(4/5) = 0, x(1) = 0,
(8)

where F (t, x(t)) =

[
2√
t2+64

(
|x(t)|

3

(
|x(t)|
|x(t)|+1 + 2

)
+ 1
)
, e−t

9+t

(
sinx(t) + 1

80

)]
.

Here q = 1/2, η = 4/5, a2
1 − 4a0a2 = 9 > 0. Clearly |F (t, x(t))| ≤ g(t)Q(‖x‖),

where g(t) = 2√
t2+64

and Q(‖x‖) = ‖x‖+1. Using the value ε+σ̂1γ1+ηqσ̂2γ2

Γ(q+1) ≈ 0.75241,

we find that M > 0.231682. Since the hypotheses of Theorem 3.2 are satisfied, the
problem (8) has at least one solution on [0, 1].
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Example 6.2. Consider the following boundary value problem for fractional differ-
ential inclusions{

( cD7/3 + 6 cD4/3 + 5 cD1/3)x(t) ∈ F (t, x(t)), 0 < q < 1, 0 < t < 1,

x(0) = 0, x(3/4) = 0, x(1) = 0,
(9)

where F (t, x(t)) =

[
1√

81+t2
, sin x(t)

(2−t)2 + 2
49

]
.

Here q = 1/3, η = 3/4, a2
1 − 4a0a2 = 16 > 0. Clearly Hd(F (t, x), F (t, x̄)) ≤

m(t)|x − x̄|, where m(t) = 1
(2−t)2 . We find that ‖m‖

Γ(q+1)

{
ε + σ̂1γ1 + ηqσ̂2γ2

}
≈

0.123565 < 1. Since the hypotheses of Theorem 3.5 are satisfied, the problem (9)
has at least one solution on [0, 1].
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