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AN EXISTENCE RESULT FOR A CLASS OF p-BIHARMONIC
PROBLEM INVOLVING CRITICAL NONLINEARITY

Anass Ourraoui

Abstract. This paper is concerned with the following elliptic equation with Hardy po-
tential and critical Sobolev exponent

∆(|∆u|p−2∆u)− λ |u|
p−2u

|x|2p = µh(x)|u|q−2u+ |u|p
∗−2u in Ω, u ∈W 2,p

0 (Ω).

By means of the variational approach, we prove that the above problem admits a nontrivial
solution.

1. Introduction

In recent years, a large number of papers have dealt with the existence of solutions of
nonlinear problems involving Sobolev critical and Hardy exponents. See [4,6,13,16,18]
and the references therein.

The importance of p-biharmonic operator has been recognized by several authors,
see, e.g., [7, 11]. Furthermore, this type of equation furnishes a model for study-
ing traveling waves in suspension bridges [14]. In [19], the authors considered a
p-biharmonic problem involving the Hardy term, and they proved the existence of
infinitely many solutions for their problem. In the same spirit, the authors in [10]
were interested in the existence of solutions for this type of singular elliptic prob-
lems. When p = 2, this kind of the problem was studied by several authors, we
quote [2, 12,17].

We cannot apply the standard variational arguments directly, because of the lack
of compactness of the inclusion of W 2,p(Ω) into Lp

∗
(Ω), i.e., in general, the Palais-

Smale condition is not satisfied.
In this note, we consider the problem

∆(|∆u|p−2∆u)− λ |u|
p−2u

|x|2p
= µh(x)|u|q−2u+ |u|p

∗−2u in Ω,

u ∈W 2,p
0 (Ω),

(1)
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278 Existence result for a class of p-biharmonic problem

where Ω ⊂ RN is a bounded domain with smooth boundary, p∗ = Np/(N − 2p)
is the critical Sobolev exponent, 1 < p < N

2 , N ≥ 5 and h ∈ Lp
∗/[p∗−q](Ω), λ∗ =

[N(p− 1)(N − 2p)/p2]
p
> λ ≥ 0, µ ≥ 0.

Let Ls(Ω) be the Lebesque space equipped with the norm |u|s =
(∫

Ω
|u|s dx

)1/s
,

1 ≤ s < ∞ and let W 2,p
0 (Ω) be the usual Sobolev space with respect to the norm

‖u‖ =
(∫

Ω
|∆u|p dx

)1/p
.

Define the constant Sλ = infu∈W 2,p
0 (Ω)

∫
Ω
|∆u|p dx−λ

∫
Ω
|u|p

|x|2p
dx

|u|p
p∗

, with λ ∈ [0, λ∗).

By the Hardy-Rellich inequality (see [17]), we denote the norm

‖u‖1 =

(∫
Ω

(|∆u|p − λ |u|
p

|x|2p
) dx

) 1
p

,

which is equivalent to the standard norm ‖ · ‖, for 0 ≤ λ < λ∗.

Let u ∈W 2,p
0 (Ω) be a weak solution of (1) if∫

Ω

|∆u|p−2∆u∆v dx−λ
∫

Ω

|u|p−2uv

|x|2p
dx−µ

∫
Ω

h(x)|u|q−2uv dx−
∫

Ω

|u|p
∗−2uv dx = 0,

∀v ∈W 2,p
0 (Ω).

Now we state the main results:

Theorem 1.1. Assume that q ∈ (p, p∗) and h is a nonnegative function with h ∈
L

p∗
p∗−q (Ω) and λ∗ > λ ≥ 0. Then there exists µ∗ > 0 such that the problem (1) has a

nontrivial solution when µ ≥ µ∗.

In the sequel, one takes h 6≡ 0, especially h ≡ 1.

Theorem 1.2. Assume that q < p and λ∗ > λ ≥ 0. Then there exists µ∗ > 0 such
that the problem (1) has a nontrivial solution when µ ∈ (0, µ∗).

2. Proof of the result

To show the existence of solution, we shall use the Mountain Pass Theorem [3].

We consider the energy functional associated to the problem (1),

φ(u) =
1

p

(∫
Ω

|∆u|p dx
)
− λ

p

∫
Ω

|u|p

|x|2p
dx− µ

q

∫
Ω

h(x)|u|q dx− 1

p∗

∫
Ω

|u|p
∗
dx. (2)

It is well known that the functional φ ∈ C1(W 2,p
0 (Ω),R) and for any ϕ ∈ W 2,p

0 (Ω),
there holds

φ′(u) · ϕ =

(∫
Ω

|∆u|p−2∆u∆ϕdx

)
− λ

∫
Ω

|u|p−2uϕ

|x|2p
dx

− µ
∫

Ω

h(x)|u|q−2uϕdx−
∫

Ω

|u|p
∗−2uϕdx. (3)
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Lemma 2.1. Under the assumptions of Theorem 1.1 we have the following assertions:
(i) There exist two positive constants r and ρ, such that φ(u) ≥ r for ‖u‖ = ρ.
(ii) There is e ∈W 2,p

0 (Ω) with φ(e) < 0 and ‖e‖ > 0.

Proof. (i) From the formula for φ, there exist positive constants C0, C1, C2 and C3,
such that

φ(u) ≥ 1

p

∫
Ω

|∆u|p dx− λ

p

∫
Ω

|u|p

|x|2p
dx− C0|h| p∗

p∗−q

(∫
Ω

|u|p
∗
dx

) q
p∗

− 1

p∗

∫
Ω

|u|p
∗
dx

≥ 1

p

∫
Ω

|∆u|p dx− λ

p

∫
Ω

|u|p

|x|2p
dx− C0|h| p∗

p∗−q

(∫
Ω

|u|p
∗
dx

) q
p∗

− 1

p∗
S
−p∗
p

0 ‖u‖p
∗

≥ C1‖u‖p1 − C2‖u‖p
∗

1 − C3‖u‖q1.
Since q ∈ (p, p∗) then for ρ > 0 sufficiently small, we may find r > 0 such that

inf‖u‖=ρ φ(u) ≥ r > 0.
(ii) Taking ω ∈ C∞0 (Ω), then for t > 0

φ(tω) ≤ tp

p
‖u‖p − tp

∗

p∗

∫
Ω

|ω|p
∗
− µtq

∫
Ω

h(x)|ω|q dx→ −∞,

when t→∞. �

Lemma 2.2. If (un)n is a Palais-Smale sequence (PS)c of the functional φ, then (un)n

is bounded and the functional φ satisfies (PS)c condition provided c < 1
N S

N
2p .

Proof. From the hypothesis, (un)n is bounded in W 2,p
0 (Ω). In fact, from (2) and (3)

φ(un) = c+ o(1), (4)

and φ′(un).un = o(1)‖un‖. (5)

Combining (4) with (5) we get

o(1)(1 + ‖un‖) + c ≥ φ(un)− 1

p∗
φ′(un).un ≥ (

1

p
− 1

p∗
)‖un‖p − C‖un‖q.

It shows that (un)n is bounded in W 2,p
0 (Ω). Therefore, there exists a subsequence,

denoted also by (un)n, satisfying

un ⇀ u, in W 2,p
0 (Ω),

|un|p−2un
|x|2p

⇀
|u|p−2u

|x|2p
, in Lp(Ω),

|un|p
∗−2un ⇀ |u|p

∗−2u, in Lp
∗
(Ω), un → u, a.e.in. Ω.

Furthermore, un → u, in Lq(Ω), so by the Lebesgue dominated convergence theorem,∫
Ω

h(x)|un|q dx→
∫

Ω

h(x)|u|q dx. (6)

A standard argument shows that the weak limit u of (un)n is a critical point of φ and
then φ′(u) = 0.

Meanwhile, let ωn = un − u. Then by Brezis-Lieb lemma in [5] we get

‖ωn‖p = ‖un‖p + ‖u‖p + on(1), (7)

|ωn|p
∗

p∗ = |un|p
∗

p∗ − |u|
p∗

p∗ + on(1), (8)
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∫
Ω

|un|p

|x|2p
dx =

∫
Ω

|u|p

|x|2p
dx+

∫
Ω

|ωn|p

|x|2p
dx+ on(1).

From (7), (8) and (6) we have

‖ωn‖p = |ωn|p
∗

p∗ + on(1) (9)

and
1

p
‖ωn‖p −

1

p∗
|ωn|p

∗

p∗ = c− φ(u) + on(1). (10)

In view of the boundedness of (un)n in W 2,p
0 (Ω) we may assume that there exists

l ≥ 0 with

‖ωn‖p → l. (11)

It follows from (9) and (11) that

|ωn|p
∗

p∗ → l, (12)

and using the definition of Sλ, we have ‖ωn‖p ≥ Sλ
(
|ωn|p

∗) p
p∗ ; so we infer that

l ≥ Sλl
p
p∗ , and thus we claim that l = 0. Indeed, if l > 0 from the previous inequality

we have l ≥ S
N
2p

λ . From (10), (11) and (12), we have φ(u) + l
N = c < 1

N S
N
2p

λ , which
implies that φ(u) < 0.

Meanwhile, we know that φ′(u) · ϕ = 0, ∀ϕ ∈W 2,p
0 (Ω), hence

‖u‖p1 = µ

∫
Ω

h(x)|u|q dx−
∫

Ω

|u|p
∗
dx,

so it follows that φ(u) =
1

p
‖u‖p1 −

µ

q

∫
Ω

h(x)|u|q dx−
∫

Ω

1

p∗
|u|p

∗
dx ≥ 0.

On the other hand, the assumption c < 1
N S

N
2p

λ implies that φ(u) < 0.

This contradicts φ(u) ≥ 0. Hence l = 0 and it yields un → u in W 2,p
0 (Ω). �

Proof (of Theorem 1.1). We will use the Mountain Pass Lemma to prove the existence
of a solution for the problem (1). In our case, we have already checked the mountain

pass geometry conditions included in Lemma 2.1. It remains to prove that c < p
N S

N
2p .

We choose ω ∈ C∞0 (Ω) such that |ω|p∗ = 1, limt→∞ φ(tω) = −∞, and thus
supt≥0 φ(tω) = φ(tµω), for some tµ > 0. Further, tµ satisfies

tp−1
µ

∫
Ω

(
|∆ω|p − λ |ω|

p

|x|2p

)
dx− tp

∗−1
µ

∫
Ω

|ω|p
∗
dx− µtq−1

µ

∫
Ω

h(x)|ω|q dx = 0, (13)

and so

tq−1
µ

(
tp−qµ

∫
Ω

(
|∆ω|p − |ω|

p

|x|2p

)
dx− tp

∗−q
µ − µ

∫
Ω

h(x)|ω|q dx
)

= 0.

Since −tp∗−qµ − µ
∫

Ω
h(x)|ω|q dx→ −∞ as µ→∞, we have tµ → 0 as µ→∞. From

the continuity of the functional φ we entail that supt≥0 φ(tω) → 0 as µ → ∞; so we

may find µ∗ such that for every µ ≥ µ∗, we have supt≥0 φ(tω) < 1
N S

N
2p .

Putting v = tω, we have, for t large enough, that φ(v) < 0. By the definition
of the minimax value in the Mountain Pass Lemma, if we take α(t) = tv, then

c ≤ supt≥0 φ(tv) < 1
N S

N
2p . �
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Remark 2.3. (i) In view of the Ekeland variational principle [8], we can prove that
there exists a (P.S)c sequence (un)n ⊂ Bρ(0) with c = inf

Bρ(0)
φ < 0. Hence we

obtain a second solution of the problem (1).
(ii) Under the same conditions of Theorem 1.1, it is possible to prove the analogous
result for the problem

∆(|∆u|p−2∆u)− λ |u|
p−2u

|x|2p
= µh(x)|u|q−2u+ |u|p

∗−2u+ g in Ω,

u = ∇u = 0 on ∂Ω,

λ, µ > 0 and g is small enough in the norm of (W 2,p
0 (Ω))∗. With this in mind, the

proof is an adaptation of the above argument.

Lemma 2.4. There exist µ∗ > 0, ρ > 0 and r > 0 such that for all µ ∈ (0, µ∗) we
have φ(u) ≥ r > 0, for ‖u‖ = r.

Proof. From the Hölder’s inequality and the compact embedding theorem, we have

φ(u) ≥ 1

p

∫
Ω

|∆u|p dx− λ
∫

Ω

|u|p

p|x|2p
dx− µ

q

∫
Ω

|u|q dx− 1

p∗

∫
Ω

|u|p
∗
dx

≥ C1‖u‖p1 −
C2µ

q
‖u‖q − 1

p∗S
p∗
p

λ

‖u‖p
∗

≥ C3‖u‖p −
C2µ

q
‖u‖q − 1

p∗S
p∗
p

λ

‖u‖p
∗
, (14)

with C1, C2, C3 > 0. Since q < p then for ‖u‖ = ρ > 0, we may find r > 0 where
inf‖u‖=ρ φ(u) ≥ r > 0. �

Lemma 2.5. The weak limit u∗ of (un)n is a nontrivial solution to (1) for µ ∈ (0, µ∗).

Proof. It is clear that the functional φ is bounded from below in Bρ(0) = {u ∈
W 1,p

0 (Ω) : ‖u‖ ≤ ρ}, with ρ > 0 given by Lemma 2.1. Hence, using the Ekeland’s
variational principle [4] with distance d(u, v) = ‖u − v‖, a standard argument (see
for instance [13]) shows the existence of a (P.S)c̃ sequence (un)n ⊂ Bρ(0) satisfying
c̃ = inf

Bρ(0)
φ. Moreover, c̃ = infBr(0)

φ < 0 and

c̃+ o(1) = φ(un) ≥ C1‖un‖p1 − C2‖un‖p
∗

1 − C3‖un‖q1.

Therefore, C2‖u‖p
∗

1 + C3‖u‖q1 > −c̃ > 0 and u∗ 6= 0.
On the other hand,

‖un‖p
∫

Ω

(
|∆un|p−2∆un − |∆u|p−2∆u

)
(∆un −∆u) dx =

φ′(un) · (un − u) + µ

∫
Ω

|un|q−2un(un − u) dx =∫
Ω

|un|p
∗−2un(un − u) dx− ‖un‖p

∫
Ω

|∆u|p−2∆u (∆un −∆u) dx.
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In view of un ⇀ u, arguing as in Leray-Lions [15] and in [9], it yields ∆un(x)→ ∆u(x)
a.e x ∈ Ω, and un(x)→ u(x) a.e. in Ω. Then

‖un‖p
∫

Ω

(
|∆un|p−2∆un − |∆u|p−2∆u

)
(∆un −∆u) dx→ 0.

Using the following inequalities

|x− y|γ ≤ 2γ(|x|γ−2x− |y|γ−2y).(x− y) if γ ≥ 2,

|x− y|2 ≤ 1

γ − 1
(|x|+ |y|)2−γ(|x|γ−2x− |y|γ−2y).(x− y) if 1 < γ < 2,

∀x, y ∈ RN , where x.y is the inner product in RN , we get∫
Ω

(
|∆un|p−2∆un − |∆u|p−2∆u

)
(∆un −∆u) dx→ 0.

Consequently, ‖un − u‖ → 0, which implies that un → u in W 2,p
0 (Ω). �

Proof (of Theorem 1.2). Theorem 1.2 is a direct corollary of Lemma 2.4 and 2.5. �
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[11] S. Fučik, A. Kufner, Nonlinear Differential Equations, Elsevier, Amsterdam-Oxford-New York,
1980.

[12] F. Gazzola, H-Ch. Grunau, Radial entire solutions for supercritical biharmonic equations,
Math. Ann. 334 (2006), 905–936.

[13] D. Kang and S. Peng, Positive solutions for singular critical elliptic problems, Appl. Math.
Lett. 17(4) (2004), 411–416.

[14] A. Lazer, P. McKenna, Large amplitude periodic oscillations in suspension bridges: some new
connections with nonlinear analysis, SIAM Rev. 32 (1990), 537–578 .



A. Ourraoui 283

[15] J. Leray, J.L. Lions, Quelques résultats de Vǐsik sur les problèmes elliptiques non linéaires par
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