MATEMATIČKI VESNIK МАТЕМАТИЧКИ ВЕСНИК 71, 1–2 (2019), [155–](#page-0-0)[161](#page-6-0) March 2019

research paper оригинални научни рад

MICHA˘ILICHENKO GROUP OF MATRICES OVER SKEW-FIELDS

Alar Leibak

Abstract. In this paper we generalize the Mikhaĭlichenko group for matrices over skew-fields.

1. Introduction

In [\[2\]](#page-6-1) Bardakov and Simonov introduced the Mikhaĭlichenko group of square matrices over a field with respect to nonstandard product of matrices. This group was introduced by Mikhaĭlichenko in studying a classification problem in the theory of physical structures (see [\[2\]](#page-6-1) and the references therein).

Since quaternions are widely used in physics, it motivates to generalize the Mikha˘ılichenko group for matrices over skew-field of quaternions. In this paper we generalize the Mikha˘ılichenko group for matrices over an arbitrary skew-field.

2. Dieudonne' determinant

For the convenience of the reader we recall here the definition and main properties of Dieudonne' determinant.¹ Let K be a skew-field. Denote by K[∗] its multiplicative group of nonzero elements and by \mathbb{K}^{ab} the factor group $\mathbb{K}^*/[\mathbb{K}^*, \mathbb{K}^*]$. Write π for the homomorphism $\mathbb{K}^* \to \mathbb{K}^{ab}$. We extend the homomorphism π to homomorphism of monoids $\mathbb{K} \to \mathbb{K}^{ab} \cup \{0\}$ by setting $\pi(0) = 0$. Denote by $M_{m,n}(\mathbb{K})$ the set of all $m \times n$ -matrices with elements in K. To shorten notation we write $M_n(\mathbb{K})$ instead of $M_{n,n}(\mathbb{K}).$

DEFINITION 2.1. Dieudonne' determinant is the map det_D: $M_n(\mathbb{K}) \to \mathbb{K}^{ab} \cup \{0\}$ satisfying the following properties: (DD1) $\det_D(AB) = \det_D(A) \cdot \det_D(B)$ for all $A, B \in M_n(\mathbb{K}),$

²⁰¹⁰ Mathematics Subject Classification: 20G99, 20H25, 15A30

Keywords and phrases: Group of matrices; generalized matrix multiplication; skew-field.

¹For more details about Dieudonne' determinant we refer reader to [\[1,](#page-6-2)3].

156 Mikha˘ılichenko group of matrices over skew-fields

(DD2) if $A' \in M_n(\mathbb{K})$ is obtained from $A \in M_n(\mathbb{K})$ by multiplying one row by $\lambda \in \mathbb{K}$ from the left, then $\det_D(A') = \pi(\lambda) \det_D(A)$,

(DD3) if $A' \in M_n(\mathbb{K})$ is obtained from $A \in M_n(\mathbb{K})$ by replacing a row r_i by sum of two different rows $r_i + r_j$, $i \neq j$, then $\det_D(EA) = \det_D(A);$

For a matrix A we denote its *i*th row by A_i and *i*th column by A^i . Next we recall main properties of Dieudonne' determinant.

THEOREM 2.2. Dieudonne' determinant has the following properties: (DD4) matrix A is invertible iff $\det_D(A) \neq 0;$

(DD5) if matrix A' is obtained from matrix A by replacing a row A_i by $A_i + \lambda A_j$ for some $\lambda \in \mathbb{K}$ and $j \neq i$, then $\det_D(A') = \det_D(A)$;

(DD6) if matrix A' is obtained from matrix A by replacing a column A^i by $A^i + A^j \lambda$ for some $\lambda \in \mathbb{K}$ and $j \neq i$, then $\det_D(A') = \det_D(A)$;

(DD7) if we exchange two rows in matrix A, then $\det_D(A)$ is multiplied by $\pi(-1)$;

(DD8) if we exchange two columns in matrix A, then $\det_D(A)$ is multiplied by $\pi(-1)$;

$$
\det_D \begin{pmatrix} I_{n-1} & 0 \\ 0 & \lambda \end{pmatrix} = \pi(\lambda);
$$

(DD10) if $A \in M_n(\mathbb{K})$ and $B \in M_m(\mathbb{K})$ then $\det_D \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ 0 B $= det_D(A) \cdot det_D(B).$

See [\[1\]](#page-6-2) for the proof.

3. Mikha˘ılichenko group over a skew-field

Let P be a field. In [\[2\]](#page-6-1), Bardakov and Simonov studied nonstandard matrix operation $X \circledast Y = XVY + XU + U^{t}Y, \qquad X, Y \in M_{n}(P),$ (1)

where

$$
U = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \dots & \vdots \\ 0 & \dots & 0 \\ 1 & \dots & 1 \end{pmatrix} \in M_n(P) \quad \text{and} \quad V = (I_n - U)(I_n - U^t).
$$

They proved that the set $G_n(P) = \{ Y \in M_n(P) \mid \det(VY + U) \neq 0 \}$ is a group under \mathcal{F} for each $n \geq 2$. They also proved that the group $G_n(\mathbb{R})$ is isomorphic to the Mikhaĭlichenko group (see [\[2\]](#page-6-1)).

Let K be a skew-field. Write $G_n(\mathbb{K}) = \{ Y \in M_n(\mathbb{K}) \mid \det_D(VY + U) \neq 0 \}.$ To show that the set $G_n(\mathbb{K})$ is a group with respect to the binary operation \circledast we need the following lemma.

A. Leibak 157

LEMMA 3.1. For each $Y \in M_n(\mathbb{K})$ we have $\det_D(VY + U) = \det_D(YV + U^t).$

Proof. Direct calculations show that

$$
YV + U^{t} = \begin{pmatrix} y_{11} - y_{1n} & y_{12} - y_{1n} & \dots & y_{1,n-1} - y_{1n} & 1 + n y_{1n} - \sum_{i=1}^{n} y_{1i} \\ y_{21} - y_{2n} & y_{22} - y_{2n} & \dots & y_{2,n-1} - y_{2n} & 1 + n y_{2n} - \sum_{i=1}^{n} y_{2i} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n1} - y_{nn} & y_{n2} - y_{nn} & \dots & y_{n,n-1} - y_{nn} & 1 + n y_{nn} - \sum_{i=1}^{n} y_{ni} \end{pmatrix}.
$$

By [\(DD10\)](#page-1-0) we have

$$
\det_D(YV + U^t) = \det_D \begin{pmatrix} 1 & 0 \\ 0 & YV + U^t \end{pmatrix}
$$

i.e. we add one row and one column to the matrix $YV + U^t$. Next we add second, third, $...,$ nth column to the last column. By [\(DD6\)](#page-1-1), the value of determinant remains unchanged. Therefore

$$
\det_D(YV + U^t) = \det_D \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & y_{11} - y_{1n} & y_{12} - y_{1n} & \dots & y_{1,n-1} - y_{1n} & 1 \\ 0 & y_{21} - y_{2n} & y_{22} - y_{2n} & \dots & y_{2,n-1} - y_{2n} & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & y_{n1} - y_{nn} & y_{n2} - y_{nn} & \dots & y_{n,n-1} - y_{nn} & 1 \end{pmatrix}
$$

In the matrix we replace i -th row by the sum i -th row plus first row multiplied by $y_{i-1,n}$ from the left $(i = 2, \ldots, n + 1)$. By [\(DD6\)](#page-1-1), we have

$$
\det_D(YV + U^t) = \det_D \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ y_{1n} & y_{11} - y_{1n} & y_{12} - y_{1n} & \dots & y_{1,n-1} - y_{1n} & 1 \\ y_{2n} & y_{21} - y_{2n} & y_{22} - y_{2n} & \dots & y_{2,n-1} - y_{2n} & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ y_{nn} & y_{n1} - y_{nn} & y_{n2} - y_{nn} & \dots & y_{n,n-1} - y_{nn} & 1 \end{pmatrix}.
$$

Adding first column to columns $2, 3, \ldots, n$ we get

$$
\det_D(YV + U^t) = \det_D \begin{pmatrix} 1 & 1 & 1 & \dots & 1 & 0 \\ y_{1n} & y_{11} & y_{12} & \dots & y_{1,n-1} & 1 \\ y_{2n} & y_{21} & y_{22} & \dots & y_{2,n-1} & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ y_{nn} & y_{n1} & y_{n2} & \dots & y_{n,n-1} & 1 \end{pmatrix}
$$

by [\(DD6\)](#page-1-1). Finally we exchange first and last column. Then, by [\(DD8\)](#page-1-2), we have

$$
\det_D(YV + U^t) = \pi(-1)\det_D\begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & y_{11} & y_{12} & \dots & y_{1n} \\ 1 & y_{21} & y_{22} & \dots & y_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & y_{n1} & y_{n2} & \dots & y_{nn} \end{pmatrix}.
$$

By applying same technique to $\det_D(VY + U)$ (but that the operations for row and

.

158 Mikha˘ılichenko group of matrices over skew-fields

columns are interchanged), it can be shown that

$$
\det_D(VY + U) = \det_D\begin{pmatrix} 1 & 0 \\ 0 & VY + U \end{pmatrix} = \pi(-1)\det_D\begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & y_{11} & y_{12} & \dots & y_{1n} \\ 1 & y_{21} & y_{22} & \dots & y_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & y_{n1} & y_{n2} & \dots & y_{nn} \end{pmatrix}.
$$

THEOREM 3.2. The set $G_n(\mathbb{K})$ is a group under \mathcal{L} .

Proof. We divide the proof into four steps.

1. We start the proof by showing that $G_n(\mathbb{K})$ is closed under \mathscr{E} .

$$
V(X \circledast Y) + U = V(XVY + XU + U^{t}Y) + U = VXVY + VXU + \underbrace{VU^{t}}_{0}Y + U
$$

$$
= VXVY + VXU + \underbrace{UV}_{0}Y + U^{2} = (VX + U)(VY + U)
$$

If $X, Y \in G_n(\mathbb{K})$ then by the multiplicativity of Dieudonne' determinant we have $\det_D(V(X \otimes Y) + U) = \det_D((V X + U)(V Y + U)) = \det_D(V X + U) \cdot \det_D(V Y + U) \neq 0,$ i.e. $X \otimes Y \in G_n(\mathbb{K})$.

2. Identity element. Next we demonstrate that the matrix

$$
E = \begin{pmatrix} I_{n-1} & 0 \\ 0 & 0 \end{pmatrix}
$$

is the identity element with respect to $%$. Direct computation yields

$$
VE + U = \begin{pmatrix} -1 \\ I_{n-1} & \vdots \\ -1 & \dots & -1 \\ -1 & \dots & -1 \end{pmatrix} \begin{pmatrix} I_{n-1} & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \dots & \vdots \\ 0 & \dots & 0 \\ 1 & \dots & 1 \end{pmatrix} = I_n.
$$

Hence $\det_D(V E + U) = \pi(1) \neq 0$ i.e. $E \in G_n(\mathbb{K})$.

Since V, E and I_n are symmetric, we also have $I_n = EV + U^t$. From this and from $EU = 0 = U^t E$ we get

$$
E \circledast X = EVX + EU + UtX = (EV + Ut)X = InX = X,
$$

$$
X \circledast E = XVE + XU + UtE = X(VE + U) = XIn = X,
$$

as desired.

3. Associativity. Expanding $(X \otimes Y) \otimes Z$ and $X \otimes (Y \otimes Z)$ and using the equalities $UV = 0 = VU^t$ we obtain the associativity identity.

4. Inverse elements. Let $X \in G_n(\mathbb{K})$ and we are looking for an element X_r such that $X \otimes X_r = XV X_r + XU + U^t X_r = E$, i.e. $(XV + U^t)X_r = E - XU$. If we can show that $XV + U^t$ is an invertible matrix then we have $X_r = (XV + U^t)^{-1}(E - XU)$. We use Dieudonne' determinant to show that $XV + U^t$ is regular i.e. $\det_D(XV + U^t) \neq 0$.

A. Leibak 159

Since $X \in G_n(\mathbb{K})$, then by Lemma [3.1](#page-2-0) we have $\det_D(XV + U^t) = \det_D(VX + U) \neq 0$, i.e. $XV + U^t$ is invertible. Analogously, we are looking for the matrix X_l such that $X_l \otimes X = X_l V X + X_l U + U^t X = E$. From this we get $X_l(V X + U) = E - U^t X$. Since $\det_D(VX+U) \neq 0$ we have that $VX+U$ is invertible and $X_l = (VX+U)^{-1}(E-U^tX)$. To prove the equality $X_l = X_r$ we compute

$$
X_l = X_l \circledast E = X_l \circledast (X \circledast X_r) = (X_l \circledast X) \circledast X_r = E \circledast X_r = X_r.
$$

4. Embedding the group $G_n(\mathbb{K})$ into $GL_{n+1}(\mathbb{K})$

Obviously, the mapping $\varphi(X) = VX + U$ is a homomorphism of the group $G_n(\mathbb{K})$ into the general linear group $GL_n(\mathbb{K})$.

Bardakov and Simonov showed that, if P is a field, then the Mikhaılichenko group $G_n(P)$ can be embedded into the general linear group $GL_{n+1}(P)$ (see [\[2\]](#page-6-1)). We show next that if K is a skew-field, then $G_n(\mathbb{K})$ is isomorphic to a subgroup of $GL_{n+1}(\mathbb{K})$.

As in [\[2\]](#page-6-1), we consider the mapping $\phi: G_n(\mathbb{K}) \to GL_{n+1}(\mathbb{K})$

$$
\phi(X) = \begin{pmatrix} & & & 0 \\ & VX + U & & \vdots \\ \hline x_{n1} & \cdots & x_{nn} & 1 \end{pmatrix}.
$$
 (2)

THEOREM 4.1. The group $G_n(\mathbb{K})$ can be embedded into $GL_{n+1}(\mathbb{K})$ for any $n \geq 2$.

Proof. We divide the proof into two lemmas.

LEMMA 4.2. The mapping ϕ is a homomorphism of groups.

Proof (of Lemma [4.2\)](#page-4-0). Suppose $X, Y \in G_n(\mathbb{K})$. Then, by Theorem [3.2,](#page-3-0) $(VX +$ $U)(VY + U) = V(X \otimes Y) + U$. From immediate computations we have

$$
\begin{pmatrix}\nVX+U & \begin{vmatrix} 0 \\ \vdots \\ 0 \end{vmatrix} & VY+U & \begin{vmatrix} 0 \\ \vdots \\ 0 \end{vmatrix} \\
= \begin{pmatrix}\n(VX+U)(VY+U) & \begin{vmatrix} 0 \\ \vdots \\ 0 \end{vmatrix} \\
= \begin{pmatrix}\nV(X \otimes Y) + U & \begin{vmatrix} 0 \\ \vdots \\ 0 \end{vmatrix} \\
\text{where } (z_{n1},...,z_{nn}) = (x_{n1},...,x_{nn})(VY+U) + (y_{n1},...,y_{nn}). \text{ Since } \\
VY+U = \begin{pmatrix} -1 \\ I_{n-1} & \vdots \\ -1 & ... & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \ddots & \vdots \\ y_{n1} & y_{n2} & \cdots & y_{nn} \end{pmatrix} + \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \cdots & \vdots \\ 0 & \cdots & 0 \\ 1 & \cdots & 1 \end{pmatrix}
$$

160 Mikha˘ılichenko group of matrices over skew-fields

$$
= \begin{pmatrix} y_{11} - y_{n1} & \cdots & y_{1n} - y_{nn} \\ y_{21} - y_{n1} & \cdots & y_{2n} - y_{nn} \\ \vdots & \ddots & \vdots \\ y_{n-1,1} - y_{n1} & \cdots & y_{n-1,n} - y_{nn} \\ 1 + (n-1)y_{n1} - \sum_{k=1}^{n-1} y_{k1} & \cdots & 1 + (n-1)y_{nn} - \sum_{k=1}^{n-1} y_{kn} \end{pmatrix}
$$
(3)

we obtain

form

$$
z_{nj} = \sum_{k=1}^{n-1} x_{nk} (y_{kj} - y_{nj}) + x_{nn} \left(1 + (n-1)y_{nj} - \sum_{k=1}^{n-1} y_{kj} \right) + y_{nj}
$$

=
$$
\sum_{k=1}^{n-1} x_{nk} (y_{kj} - y_{nj}) + \sum_{k=1}^{n-1} x_{nn} (y_{nj} - y_{kj}) + x_{nn} + y_{nj}
$$

=
$$
\sum_{k=1}^{n-1} (x_{nk} - x_{nn}) (y_{kj} - y_{nj}) + x_{nn} + y_{nj}
$$

for each $1 \leq j \leq n$. Put $W = X \circledast Y$. Then we have (see also [\[2\]](#page-6-1))

$$
w_{ij} = \sum_{k=1}^{n-1} (x_{ik} - x_{in})(y_{kj} - y_{nj}) + x_{in} + y_{nj}.
$$

From this we get $w_{nj} = z_{nj}$ for each j. Hence $\phi(X)\phi(Y) = \phi(X \otimes Y)$ and the lemma is proved. \Box

LEMMA 4.3. The homomorphism ϕ is injective.

Proof (of Lemma [4.3\)](#page-5-0). Suppose $\phi(X) = \phi(Y)$ for some $X, Y \in G_n(P)$. Then $x_{nj} =$ y_{nj} for each j by [\(2\)](#page-4-1). Moreover, from $x_{ij} - x_{nj} = y_{ij} - y_{nj}$ we get $x_{ij} = y_{ij}$ for any $1 \leq i \leq n-1$ and for any $1 \leq j \leq n$. Hence $X = Y$ as desired.

By previous, the theorem is proved. \square

Denote by $H_{n+1}(\mathbb{K})$ the subgroup of $GL_{n+1}(\mathbb{K})$ consisting of all matrices of the

$$
\left(\begin{array}{ccc} & & 0 \\ & Y & & \vdots \\ \hline a_1 & \cdots & a_n & 1 \end{array}\right),
$$

where $Y\in \mathrm{GL}_n(\mathbb{K})$ is of the form

$$
\begin{pmatrix}\ny_{11} & y_{12} & \cdots & y_{1n} \\
y_{21} & y_{22} & \cdots & y_{2n} \\
\vdots & \vdots & \cdots & \vdots \\
y_{n-1,1} & y_{n-1,2} & \cdots & y_{n-1,n} \\
1 - \sum_{i=1}^{n-1} y_{i1} & 1 - \sum_{i=1}^{n-1} y_{i2} & \cdots & 1 - \sum_{i=1}^{n-1} y_{in}\n\end{pmatrix}.
$$

A. Leibak 161

Obviously Im $\phi \subseteq H_{n+1}(\mathbb{K})$, by [\(3\)](#page-5-1). Suppose now

$$
\left(\begin{array}{c|c}\n & 0 \\
 & \vdots \\
\hline\na_1 & \cdots & a_n & 1\n\end{array}\right) \in H_{n+1}.
$$

It is easy to check that the equation

$$
\left(\begin{array}{ccc} & & 0 \\ & VX+U & \\ \hline x_{n1} & \cdots & x_{nn} & 1 \end{array}\right) = \left(\begin{array}{ccc} & & 0 \\ & Y & \\ \hline a_1 & \cdots & a_n & 1 \end{array}\right)
$$

has a unique solution $X \in M_n(\mathbb{K})$. Thus we have the following.

COROLLARY 4.4. The group $G_n(\mathbb{K})$ is isomorphic to the subgroup $H_{n+1}(\mathbb{K})$ of $GL_{n+1}(\mathbb{K})$.

REFERENCES

- [1] E. Artin, Geometric Algebra, 1957.
- [2] V. G. Bardakov, A. A. Simonov, Rings and groups of matrices with a nonstandard product, Siberian Math J+, 54(3) (2013), 393-405.
- [3] P. K. Draxl, Skew Fields, LMS Lecture Notes Series 81, CUP 1983.

(received 20.09.2018; in revised form 15.10.2018; available online 23.11.2018)

School of Science, Tallinn University of Technology, Estonia School of Digital Technologies, Tallinn University, Estonia E-mail: alar.leibak@taltech.ee, alar.leibak@tlu.ee