МАТЕМАТІČКІ VESNIK МАТЕМАТИЧКИ ВЕСНИК 71, 1–2 (2019), 155–161 March 2019

research paper оригинални научни рад

MICHAĬLICHENKO GROUP OF MATRICES OVER SKEW-FIELDS

Alar Leibak

 ${\bf Abstract}.$ In this paper we generalize the Mikhaı́lichenko group for matrices over skew-fields.

1. Introduction

In [2] Bardakov and Simonov introduced the Mikhaĭlichenko group of square matrices over a field with respect to nonstandard product of matrices. This group was introduced by Mikhaĭlichenko in studying a classification problem in the theory of physical structures (see [2] and the references therein).

Since quaternions are widely used in physics, it motivates to generalize the Mikhaĭlichenko group for matrices over skew-field of quaternions. In this paper we generalize the Mikhaĭlichenko group for matrices over an arbitrary skew-field.

2. Dieudonne' determinant

For the convenience of the reader we recall here the definition and main properties of Dieudonne' determinant.¹ Let \mathbb{K} be a skew-field. Denote by \mathbb{K}^* its multiplicative group of nonzero elements and by \mathbb{K}^{ab} the factor group $\mathbb{K}^*/[\mathbb{K}^*, \mathbb{K}^*]$. Write π for the homomorphism $\mathbb{K}^* \to \mathbb{K}^{ab}$. We extend the homomorphism π to homomorphism of monoids $\mathbb{K} \to \mathbb{K}^{ab} \cup \{0\}$ by setting $\pi(0) = 0$. Denote by $M_{m,n}(\mathbb{K})$ the set of all $m \times n$ -matrices with elements in \mathbb{K} . To shorten notation we write $M_n(\mathbb{K})$ instead of $M_{n,n}(\mathbb{K})$.

DEFINITION 2.1. Dieudonne' determinant is the map $\det_D : M_n(\mathbb{K}) \to \mathbb{K}^{ab} \cup \{0\}$ satisfying the following properties: (**DD1**) $\det_D(AB) = \det_D(A) \cdot \det_D(B)$ for all $A, B \in M_n(\mathbb{K})$,

²⁰¹⁰ Mathematics Subject Classification: 20G99, 20H25, 15A30

Keywords and phrases: Group of matrices; generalized matrix multiplication; skew-field.

¹For more details about Dieudonne' determinant we refer reader to [1,3].

Mikhaĭlichenko group of matrices over skew-fields

(DD2) if $A' \in M_n(\mathbb{K})$ is obtained from $A \in M_n(\mathbb{K})$ by multiplying one row by $\lambda \in \mathbb{K}$ from the left, then $\det_D(A') = \pi(\lambda) \det_D(A)$,

(DD3) if $A' \in M_n(\mathbb{K})$ is obtained from $A \in M_n(\mathbb{K})$ by replacing a row r_i by sum of two different rows $r_i + r_j$, $i \neq j$, then $\det_D(EA) = \det_D(A)$;

For a matrix A we denote its *i*th row by A_i and *i*th column by A^i . Next we recall main properties of Dieudonne' determinant.

THEOREM 2.2. Dieudonne' determinant has the following properties: (DD4) matrix A is invertible iff $\det_D(A) \neq 0$;

(DD5) if matrix A' is obtained from matrix A by replacing a row A_i by $A_i + \lambda A_j$ for some $\lambda \in \mathbb{K}$ and $j \neq i$, then $\det_D(A') = \det_D(A)$;

(DD6) if matrix A' is obtained from matrix A by replacing a column A^i by $A^i + A^j \lambda$ for some $\lambda \in \mathbb{K}$ and $j \neq i$, then $\det_D(A') = \det_D(A)$;

(DD7) if we exchange two rows in matrix A, then $det_D(A)$ is multiplied by $\pi(-1)$;

(DD8) if we exchange two columns in matrix A, then $det_D(A)$ is multiplied by $\pi(-1)$;

(DD9)
$$\det_D \begin{pmatrix} I_{n-1} & 0 \\ 0 & \lambda \end{pmatrix} = \pi(\lambda)$$

(DD10) if $A \in M_n(\mathbb{K})$ and $B \in M_m(\mathbb{K})$ then $\det_D \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = \det_D(A) \cdot \det_D(B)$.

See [1] for the proof.

3. Mikhaĭlichenko group over a skew-field

Let P be a field. In [2], Bardakov and Simonov studied nonstandard matrix operation $X \circledast Y = XVY + XU + U^tY, \qquad X, Y \in M_n(P),$ (1)

where

$$U = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \dots & \vdots \\ 0 & \dots & 0 \\ 1 & \dots & 1 \end{pmatrix} \in M_n(P) \quad \text{and} \quad V = (I_n - U)(I_n - U^t)$$

They proved that the set $G_n(P) = \{Y \in M_n(P) \mid \det(VY + U) \neq 0\}$ is a group under \circledast for each $n \ge 2$. They also proved that the group $G_n(\mathbb{R})$ is isomorphic to the Mikhaĭlichenko group (see [2]).

Let \mathbb{K} be a skew-field. Write $G_n(\mathbb{K}) = \{Y \in M_n(\mathbb{K}) \mid \det_D(VY + U) \neq 0\}$. To show that the set $G_n(\mathbb{K})$ is a group with respect to the binary operation \circledast we need the following lemma.

A. Leibak

LEMMA 3.1. For each $Y \in M_n(\mathbb{K})$ we have $\det_D(VY + U) = \det_D(YV + U^t).$

Proof. Direct calculations show that

$$YV + U^{t} = \begin{pmatrix} y_{11} - y_{1n} & y_{12} - y_{1n} & \dots & y_{1,n-1} - y_{1n} & 1 + ny_{1n} - \sum_{i=1}^{n} y_{1i} \\ y_{21} - y_{2n} & y_{22} - y_{2n} & \dots & y_{2,n-1} - y_{2n} & 1 + ny_{2n} - \sum_{i=1}^{n} y_{2i} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_{n1} - y_{nn} & y_{n2} - y_{nn} & \dots & y_{n,n-1} - y_{nn} & 1 + ny_{nn} - \sum_{i=1}^{n} y_{ni} \end{pmatrix}.$$

By (DD10) we have

$$\det_D(YV + U^t) = \det_D \begin{pmatrix} 1 & 0 \\ 0 & YV + U^t \end{pmatrix}$$

i.e. we add one row and one column to the matrix $YV + U^t$. Next we add second, third, ..., *n*th column to the last column. By **(DD6)**, the value of determinant remains unchanged. Therefore

$$\det_D(YV+U^t) = \det_D \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & y_{11} - y_{1n} & y_{12} - y_{1n} & \dots & y_{1,n-1} - y_{1n} & 1 \\ 0 & y_{21} - y_{2n} & y_{22} - y_{2n} & \dots & y_{2,n-1} - y_{2n} & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & y_{n1} - y_{nn} & y_{n2} - y_{nn} & \dots & y_{n,n-1} - y_{nn} & 1 \end{pmatrix}.$$

In the matrix we replace *i*-th row by the sum *i*-th row plus first row multiplied by $y_{i-1,n}$ from the left (i = 2, ..., n + 1). By **(DD6)**, we have

$$\det_D(YV+U^t) = \det_D \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ y_{1n} & y_{11} - y_{1n} & y_{12} - y_{1n} & \dots & y_{1,n-1} - y_{1n} & 1 \\ y_{2n} & y_{21} - y_{2n} & y_{22} - y_{2n} & \dots & y_{2,n-1} - y_{2n} & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ y_{nn} & y_{n1} - y_{nn} & y_{n2} - y_{nn} & \dots & y_{n,n-1} - y_{nn} & 1 \end{pmatrix}.$$

Adding first column to columns $2, 3, \ldots, n$ we get

$$\det_D(YV + U^t) = \det_D \begin{pmatrix} 1 & 1 & 1 & \dots & 1 & 0 \\ y_{1n} & y_{11} & y_{12} & \dots & y_{1,n-1} & 1 \\ y_{2n} & y_{21} & y_{22} & \dots & y_{2,n-1} & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_{nn} & y_{n1} & y_{n2} & \dots & y_{n,n-1} & 1 \end{pmatrix}$$

by (DD6). Finally we exchange first and last column. Then, by (DD8), we have

$$\det_D(YV + U^t) = \pi(-1)\det_D \begin{pmatrix} 0 & 1 & 1 & \dots & 1\\ 1 & y_{11} & y_{12} & \dots & y_{1n}\\ 1 & y_{21} & y_{22} & \dots & y_{2n}\\ \vdots & \vdots & \vdots & & \vdots\\ 1 & y_{n1} & y_{n2} & \dots & y_{nn} \end{pmatrix}.$$

By applying same technique to $\det_D(VY + U)$ (but that the operations for row and

Mikhaĭlichenko group of matrices over skew-fields

columns are interchanged), it can be shown that

$$\det_D(VY+U) = \det_D\begin{pmatrix}1&0\\0&VY+U\end{pmatrix} = \pi(-1)\det_D\begin{pmatrix}0&1&1&\dots&1\\1&y_{11}&y_{12}&\dots&y_{1n}\\1&y_{21}&y_{22}&\dots&y_{2n}\\\vdots&\vdots&\vdots&\vdots\\1&y_{n1}&y_{n2}&\dots&y_{nn}\end{pmatrix}.$$

THEOREM 3.2. The set $G_n(\mathbb{K})$ is a group under \circledast .

Proof. We divide the proof into four steps.

1. We start the proof by showing that $G_n(\mathbb{K})$ is closed under \circledast .

$$V(X \circledast Y) + U = V(XVY + XU + U^{t}Y) + U = VXVY + VXU + \underbrace{VU^{t}}_{0}Y + U$$
$$= VXVY + VXU + \underbrace{UV}_{0}Y + U^{2} = (VX + U)(VY + U)$$

If $X, Y \in G_n(\mathbb{K})$ then by the multiplicativity of Dieudonne' determinant we have $\det_D(V(X \circledast Y) + U) = \det_D((VX + U)(VY + U)) = \det_D(VX + U) \cdot \det_D(VY + U) \neq 0,$ i.e. $X \circledast Y \in G_n(\mathbb{K}).$

2. Identity element. Next we demonstrate that the matrix

$$E = \begin{pmatrix} I_{n-1} & 0\\ 0 & 0 \end{pmatrix}$$

is the identity element with respect to \circledast . Direct computation yields

$$VE + U = \begin{pmatrix} & -1 \\ I_{n-1} & \vdots \\ & -1 \\ -1 & \dots & -1 & n-1 \end{pmatrix} \begin{pmatrix} I_{n-1} & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \dots & \vdots \\ 0 & \dots & 0 \\ 1 & \dots & 1 \end{pmatrix} = I_n.$$

Hence $\det_D(VE + U) = \pi(1) \neq 0$ i.e. $E \in G_n(\mathbb{K})$.

Since V, E and I_n are symmetric, we also have $I_n = EV + U^t$. From this and from $EU = 0 = U^t E$ we get

$$E \circledast X = EVX + EU + U^{t}X = (EV + U^{t})X = I_{n}X = X,$$

$$X \circledast E = XVE + XU + U^{t}E = X(VE + U) = XI_{n} = X,$$

as desired.

3. Associativity. Expanding $(X \otimes Y) \otimes Z$ and $X \otimes (Y \otimes Z)$ and using the equalities $UV = 0 = VU^t$ we obtain the associativity identity.

4. Inverse elements. Let $X \in G_n(\mathbb{K})$ and we are looking for an element X_r such that $X \circledast X_r = XVX_r + XU + U^tX_r = E$, i.e. $(XV + U^t)X_r = E - XU$. If we can show that $XV + U^t$ is an invertible matrix then we have $X_r = (XV + U^t)^{-1}(E - XU)$. We use Dieudonne' determinant to show that $XV + U^t$ is regular i.e. $\det_D(XV + U^t) \neq 0$.

A. Leibak

Since $X \in G_n(\mathbb{K})$, then by Lemma 3.1 we have $\det_D(XV + U^t) = \det_D(VX + U) \neq 0$, i.e. $XV + U^t$ is invertible. Analogously, we are looking for the matrix X_l such that $X_l \circledast X = X_l V X + X_l U + U^t X = E$. From this we get $X_l (VX + U) = E - U^t X$. Since $\det_D(VX + U) \neq 0$ we have that VX + U is invertible and $X_l = (VX + U)^{-1}(E - U^t X)$. To prove the equality $X_l = X_r$ we compute

$$X_l = X_l \circledast E = X_l \circledast (X \circledast X_r) = (X_l \circledast X) \circledast X_r = E \circledast X_r = X_r.$$

4. Embedding the group $G_n(\mathbb{K})$ into $\operatorname{GL}_{n+1}(\mathbb{K})$

Obviously, the mapping $\varphi(X) = VX + U$ is a homomorphism of the group $G_n(\mathbb{K})$ into the general linear group $\operatorname{GL}_n(\mathbb{K})$.

Bardakov and Simonov showed that, if P is a field, then the Mikhallichenko group $G_n(P)$ can be embedded into the general linear group $\operatorname{GL}_{n+1}(P)$ (see [2]). We show next that if \mathbb{K} is a skew-field, then $G_n(\mathbb{K})$ is isomorphic to a subgroup of $\operatorname{GL}_{n+1}(\mathbb{K})$.

As in [2], we consider the mapping $\phi: G_n(\mathbb{K}) \to \operatorname{GL}_{n+1}(\mathbb{K})$

$$\phi(X) = \begin{pmatrix} & & 0 \\ VX + U & \vdots \\ & & 0 \\ \hline x_{n1} & \cdots & x_{nn} & 1 \end{pmatrix}.$$
 (2)

THEOREM 4.1. The group $G_n(\mathbb{K})$ can be embedded into $\operatorname{GL}_{n+1}(\mathbb{K})$ for any $n \ge 2$.

Proof. We divide the proof into two lemmas.

LEMMA 4.2. The mapping ϕ is a homomorphism of groups.

Proof (of Lemma 4.2). Suppose $X, Y \in G_n(\mathbb{K})$. Then, by Theorem 3.2, $(VX + U)(VY + U) = V(X \circledast Y) + U$. From immediate computations we have

Mikhaĭlichenko group of matrices over skew-fields

$$= \begin{pmatrix} y_{11} - y_{n1} & \dots & y_{1n} - y_{nn} \\ y_{21} - y_{n1} & \dots & y_{2n} - y_{nn} \\ \vdots & \ddots & \vdots \\ y_{n-1,1} - y_{n1} & \dots & y_{n-1,n} - y_{nn} \\ 1 + (n-1)y_{n1} - \sum_{k=1}^{n-1} y_{k1} \dots & 1 + (n-1)y_{nn} - \sum_{k=1}^{n-1} y_{kn} \end{pmatrix}$$
(3)

we obtain

$$z_{nj} = \sum_{k=1}^{n-1} x_{nk} (y_{kj} - y_{nj}) + x_{nn} \left(1 + (n-1)y_{nj} - \sum_{k=1}^{n-1} y_{kj} \right) + y_{nj}$$
$$= \sum_{k=1}^{n-1} x_{nk} (y_{kj} - y_{nj}) + \sum_{k=1}^{n-1} x_{nn} (y_{nj} - y_{kj}) + x_{nn} + y_{nj}$$
$$= \sum_{k=1}^{n-1} (x_{nk} - x_{nn}) (y_{kj} - y_{nj}) + x_{nn} + y_{nj}$$

for each $1 \leq j \leq n$. Put $W = X \circledast Y$. Then we have (see also [2])

$$w_{ij} = \sum_{k=1}^{n-1} (x_{ik} - x_{in})(y_{kj} - y_{nj}) + x_{in} + y_{nj}.$$

From this we get $w_{nj} = z_{nj}$ for each j. Hence $\phi(X)\phi(Y) = \phi(X \circledast Y)$ and the lemma is proved.

LEMMA 4.3. The homomorphism ϕ is injective.

Proof (of Lemma 4.3). Suppose $\phi(X) = \phi(Y)$ for some $X, Y \in G_n(P)$. Then $x_{nj} = y_{nj}$ for each j by (2). Moreover, from $x_{ij} - x_{nj} = y_{ij} - y_{nj}$ we get $x_{ij} = y_{ij}$ for any $1 \leq i \leq n-1$ and for any $1 \leq j \leq n$. Hence X = Y as desired.

By previous, the theorem is proved.

Denote by $H_{n+1}(\mathbb{K})$ the subgroup of $\operatorname{GL}_{n+1}(\mathbb{K})$ consisting of all matrices of the form

$$\begin{pmatrix} & & & 0 \\ & Y & \vdots \\ \hline & & 0 \\ \hline a_1 & \cdots & a_n & 1 \end{pmatrix}$$

where $Y \in \operatorname{GL}_n(\mathbb{K})$ is of the form

$$\begin{pmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & & \vdots \\ y_{n-1,1} & y_{n-1,2} & \cdots & y_{n-1,n} \\ 1 - \sum_{i=1}^{n-1} y_{i1} & 1 - \sum_{i=1}^{n-1} y_{i2} & \cdots & 1 - \sum_{i=1}^{n-1} y_{in} \end{pmatrix}$$

160

A. Leibak

Obviously $\operatorname{Im} \phi \subseteq H_{n+1}(\mathbb{K})$, by (3). Suppose now

$$\begin{pmatrix} & & & 0 \\ Y & & \vdots \\ \hline a_1 & \cdots & a_n & 1 \end{pmatrix} \in H_{n+1}.$$

It is easy to check that the equation

$$\begin{pmatrix} & & & 0 \\ VX + U & \vdots \\ 0 \\ \hline x_{n1} & \cdots & x_{nn} & 1 \end{pmatrix} = \begin{pmatrix} & & & 0 \\ Y & \vdots \\ 0 \\ \hline a_1 & \cdots & a_n & 1 \end{pmatrix}$$

has a unique solution $X \in M_n(\mathbb{K})$. Thus we have the following.

COROLLARY 4.4. The group $G_n(\mathbb{K})$ is isomorphic to the subgroup $H_{n+1}(\mathbb{K})$ of $GL_{n+1}(\mathbb{K})$.

References

- [1] E. Artin, Geometric Algebra, 1957.
- [2] V. G. Bardakov, A. A. Simonov, Rings and groups of matrices with a nonstandard product, Siberian Math J+, 54(3) (2013), 393–405.
- [3] P. K. Draxl, Skew Fields, LMS Lecture Notes Series 81, CUP 1983.

(received 20.09.2018; in revised form 15.10.2018; available online 23.11.2018)

School of Science, Tallinn University of Technology, Estonia School of Digital Technologies, Tallinn University, Estonia *E-mail*: alar.leibak@taltech.ee, alar.leibak@tlu.ee