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LM-FUZZY METRIC SPACES AND CONVERGENCE

G. Jäger and F.-G. Shi

Abstract. We study a category of lattice-valued metric spaces that contains many cat-
egories of lattice-valued metric spaces studied before. Furthermore, introducing suitable
convergence structures, we are able to show that the category of these lattice-valued metric
spaces is a coreflective subcategory of the category of lattice-valued convergence spaces and
we even characterize lattice-valued metric spaces by convergence.

1. Introduction

A generalization of metric spaces was given by probabilistic metric spaces [23], first
introduced by Menger [16], where the distances between points were not numbers but
distance distribution functions. In this sense, the range of the metric was generalized
from non-negative real numbers to distance distribution functions. Such spaces can
also be interpreted as fuzzy metric spaces, by suitable adaptation of the axioms [7,11].
Going one step further, the range of a metric can be chosen to be a quantale [13].
In this way, one arrives at quantale-valued metric spaces and for different choices of
the quantale one obtains e.g. preordered sets, metric spaces or probabilistic metric
spaces [6]. Another direction of generalization lies in not quantifying distances be-
tween points of a space but distances between fuzzy points or even between fuzzy
sets, see e.g. [4, 5, 17, 24, 26]. All these approaches have been developed to a certain
extent over the years.

Our paper has two purposes. First, we give a general framework, that encompasses
many of the definitions of generalized metric spaces. Our framework has two variables,
a complete lattice L and a quantale M with underlying completely distributive lattice.
Depending on the choice of these variables, we recover many of the previous definitions
of “generalized metric spaces”. The second purpose of the paper is to show that such
“generalized metric spaces” can be characterized by convergence. To this end, we
define suitable convergence tower spaces, the category of which contains the category
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32 LM -fuzzy metric spaces and convergence

of our generalized metric spaces as a coreflective subcategory and – demanding a
further axiom – a subcategory which is even isomorphic to our category of LM-fuzzy
metric spaces.

2. Preliminaries

Let L be a complete lattice. We assume that L is non-trivial in the sense that > 6= ⊥
for the top element > and the bottom element ⊥. In any complete lattice L we can
define the well-below relation αCβ if for all subsets D ⊆ L such that β ≤

∨
D there is

δ ∈ D such that α ≤ δ. Then α ≤ β whenever αCβ and αC
∨
j∈J βj iff αCβi for some

i ∈ J . A complete lattice is completely distributive (sometimes called constructively
completely distributive) if and only if we have α =

∨
{β : β C α} for any α ∈ L, [20].

In a completely distributive lattice, the well-below relation satisfies the interpolation
property, i.e. α C β implies α C γ C β for some γ ∈ L. An element a ∈ L is called
prime if b ∧ c ≤ a implies b ≤ a or c ≤ a. In a completely distributive lattice, every
element is a meet of primes. More precisely, we have b =

∧
{a ∈ L : a prime, b ≤ a}.

An element a ∈ L is called coprime if a ≤ b ∨ c implies a ≤ b or a ≤ c. The set of all
non-zero coprime elements in L is denoted by J(L). For more results on lattices we
refer to [8].

The triple L = (L,≤, ∗), where (L,≤) is a complete lattice, is called a quantale [22]
if (L, ∗) is a semigroup, and ∗ is distributive over arbitrary joins, i.e.(∨

i∈J
αi

)
∗ β =

∨
i∈J

(αi ∗ β) and β ∗
(∨
i∈J

αi

)
=
∨
i∈J

(β ∗ αi).

A quantale L = (L,≤, ∗) is called commutative if (L, ∗) is a commutative semigroup
and it is called integral if the top element of L acts as the unit, i.e. if α∗> = >∗α = α
for all α ∈ L.

We consider in this paper only commutative and integral quantales L = (L,≤, ∗)
with completely distributive lattices L. The following are two important examples
for such quantales. A further example is given in the next section.

Example 2.1. A triangular norm or t-norm [9,23] is a binary operation ∗ on the unit
interval [0, 1] which is associative, commutative, non-decreasing in each argument and
which has 1 as the unit. The triple L = ([0, 1],≤, ∗) can be considered as a quantale
if the t-norm is left-continuous. The three most commonly used (left-continuous)
t-norms are:

(i) the minimum t-norm: α ∗ β = α ∧ β,
(ii) the product t-norm: α ∗ β = α · β,
(iii) the Lukasiewicz t-norm: α ∗ β = (α+ β − 1) ∨ 0.

Example 2.2 (Lawvere’s quantale, [13]). The interval [0,∞] with the opposite order
and addition as the quantale operation α∗β = α+β (extended by α+∞ =∞+α =∞)
for all α, β ∈ [0,∞] is a quantale L = ([0,∞],≥,+).
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For a set X, we denote its power set by P (X) and the set of all filters F,G, . . .
on X by F(X). The set F(X) is ordered by set inclusion and maximal elements of
F(X) in this order are called ultrafilters. The set of all ultrafilters on X is denoted by
U(X). In particular, for each x ∈ X, the point filter [x] = {A ⊆ X : x ∈ A} ∈ F(X)
is an ultrafilter. If F ∈ F(X) and f : X −→ Y is a mapping, we define f(F) ∈ F(Y )
by f(F) = {G ⊆ Y : f(F ) ⊆ G for some F ∈ F}.

We denote further the set of L-sets of X by LX = {a : X −→ L}. Using the
pointwise order inherited from L, the set LX also becomes a lattice and we call
a ∈ J(LX) an L-point. For a ∈ LX , b ∈ LX′ and f : X −→ X ′ we define f(a) ∈ LX′

by f(a)(y) =
∨
x:f(x)=y a(x) for y ∈ X ′ and f←(b) = b ◦ f . It is not difficult to show

that for a ∈ J(LX) we have f(a) ∈ J(LX
′
).

We assume some familiarity with category theory and refer to the textbooks [1,18]
for more details and notation.

3. The quantale of M-valued distance distribution functions

Let M be a completely distributive lattice. A function ϕ : [0,∞] −→M with ϕ(t) =∨
s<t ϕ(s) for all t ∈ [0,∞) is called an M -valued distance distribution function. The

set of all these M -valued distance distribution functions is denoted by ∆+
M . In case

M = [0, 1] we obtain the distance distribution functions that are used in the theory of
probabilistic metric spaces [23], however we omit the finiteness condition ϕ(∞) = 1.
We note that ϕ ∈ ∆+

M satisfies ϕ(0) = ⊥M (using
∨
∅ = ⊥M ) and is non-decreasing.

For example, for each 0 ≤ a ≤ ∞ the functions

εa(x) =

{
⊥M if 0 ≤ x ≤ a
>M if a < x ≤ ∞

are in ∆+
M . The set ∆+

M is ordered pointwise, i.e. for ϕ,ψ ∈ ∆+
M we define ϕ ≤ ψ if

for all s ≥ 0 we have ϕ(s) ≤ ψ(s). The bottom element of ∆+
M is ε∞ and the top

element is ε0. It is not difficult to show that for ϕj ∈ ∆+
M (j ∈ J), the pointwise

supremum
∨
j∈J ϕj is in ∆+

M . If ϕ,ψ ∈ ∆+
M , also the pointwise minimum ϕ ∧ ψ is in

∆+
M . From the frame law for M we immediately obtain (ϕ∧ψ)(t) ≥

∨
s<t(ϕ∧ψ)(s).

For the converse inequality, let α C
∨
s<t

∨
u<t(ϕ(s) ∧ ψ(u)). Then there are s < t

and u < t such that α ≤ ϕ(s) ∧ ψ(u). As both ϕ,ψ are non-decreasing, we conclude
with w = s ∨ u < t that α ≤ ϕ(w) ∧ ψ(w) = (ϕ ∧ ψ)(w). Hence α ≤

∨
w<t(ϕ ∧ ψ)(w)

and from the complete distributivity of M we conclude (ϕ∧ψ)(t) ≤
∨
w<t(ϕ∧ψ)(w).

Hence the set ∆+
M with the pointwise order becomes a complete lattice. We note that∧

i∈I ϕi is in general not the pointwise infimum. We are now going to show that ∆+
M

is completely distributive. To this end, we define for 0 < δ ≤ ∞ and ε ∈ M \ {⊥M}
the M -valued distance distribution function fδε by

fδε(t) =

{
⊥ if t ≤ δ
ε if t > δ.
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Note that we have fδε = ε ∧ 1(δ,∞] with the characteristic function of the interval
(δ,∞] defined by

1(δ,∞](x) =

{
>M if x ∈ (δ,∞]
⊥M otherwise.

It is not difficult to show that fδε ≤ fδ′ε′ if and only if δ′ ≤ δ and ε ≤ ε′ and we can
deduce the following result.

Lemma 3.1. We have fδε =
∨
δ<α,γCε fαγ .

Proof. We use the representation of fδε by characteristic functions. From (δ,∞] =⋃
δ<α(α,∞] we immediately see that fδε =

∨
δ<α fαε and from ε =

∨
{γ ∈M : γCε}

we obtain fδε =
∨
γCε fδγ . �

Lemma 3.2. We have fδε C fδ′ε′ if and only if δ′ < δ and εC ε′.

Proof. By Lemma 3.1, if fδε C fδ′ε′ =
∨
δ′<α,γCε′ fαγ , then there is α > δ′ and γ C ε′

such that fδε ≤ fαγ and hence δ′ < α ≤ δ and ε ≤ γ C ε′, from which we get δ′ < δ
and εC ε′.

For the converse, let δ′ < δ and ε C ε′ and assume fδε 6Cfδ′ε′ . Then there are
ψj ∈ ∆+

M , j ∈ J , such that fδ′ε′ ≤
∨
j∈J ψj but fδε 6≤ ψj for all j ∈ J . Hence, for

all j ∈ J there is tj such that ε = fδε(tj) 6≤ ψ(j)(tj). We conclude δ′ < δ ≤ t0 =
inf{sj : j ∈ J} and hence εC ε′ = fδ′ε′(t0) ≤

∨
j∈J ψj(t0). Thus there is j0 such that

ε ≤ ψj0(t0) ≤ ψj0(tj0), a contradiction. �

Lemma 3.3. For ϕ ∈ ∆+
M we have ϕ =

∨
{fδε : fδε ≤ ϕ}.

Proof. Clearly
∨
{fδε : fδε ≤ ϕ} ≤ ϕ. For the converse inequality, we fix t0 ∈

(0,∞]. We further note that for any s ∈ (0,∞] we have fsϕ(s) ≤ ϕ. If t < t0 then
ϕ(t) = ftϕ(t)(t0) ≤ ϕ(t0) and hence ϕ(t0) =

∨
t<t0

ϕ(t) =
∨
t<t0

ftϕ(t)(t0) ≤ ϕ(t0). We

conclude ϕ(t0) =
∨
t<t0

ftϕ(t)(t0) ≤
∨
{fδε(t0) : fδε ≤ ϕ}. �

Lemma 3.4. We have fδε C ϕ if and only if εC ϕ(δ).

Proof. Let first fδεCϕ =
∨
{fδε : fδε ≤ ϕ}. Then there are δ′, ε′ such that fδεCfδ′ε′

and hence δ′ < δ and εC ε′ and we conclude εC ε′ = fδ′ε′(δ) ≤ ϕ(δ).
Let now εCϕ(δ) and let ϕ ≤

∨
j∈J ψj for ψj ∈ ∆+

M , j ∈ J . Then εC
∨
j∈J ψj(δ) and

hence there is j0 such that ε ≤ ψj0(δ). We conclude fδε ≤ ψj0 and hence fδε Cϕ. �

Lemma 3.5. Let ϕ ∈ ∆+
M . Then ϕ =

∨
{fδε : fδε C ϕ}.

Proof. The inequality ϕ ≥
∨
{fδε : fδε C ϕ} is obvious. To show the converse

inequality, we first note ftϕ(t) =
∨
{ftε : εC ϕ(t)}. Hence for any t0 we get

ϕ(t0) =
∨
t<t0

ftϕ(t)(t0) =
∨
t<t0

∨
{ftε(t0) : εC ϕ(t)}

=
∨
t<t0

∨
{ftε(t0) : ftεCϕ} ≤

∨
{fδε(t0) : fδε C ϕ}.
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As a consequence, we obtain the main result.

Theorem 3.6. (∆+
M ,≤) is completely distributive.

A binary operation, ∗ : ∆+
M × ∆+

M −→ ∆+
M , which is commutative, associative,

non-decreasing in each variable and that satisfies the boundary condition ϕ ∗ ε0 = ϕ
for all ϕ ∈ ∆+

M , is called a triangle function [23]. A triangle function is called sup-
continuous [23], if (

∨
i∈I ϕi) ∗ ψ =

∨
i∈I(ϕi ∗ ψ) for all ϕi, ψ ∈ ∆+

M , (i ∈ I), i.e.

if L = (∆+
M ,≤, ∗) is a quantale. Two typical sup-continuous triangle functions are

defined as follows. Let (M,≤) be completely distributive and let ∗ be a quantale
operation on M . We define, for ϕ,ψ ∈ ∆+

M and 0 ≤ t ≤ ∞,

ϕ�∗ψ(t) = ϕ(t) ∗ ψ(t) and ϕ~ ψ(t) =
∨

u+v=t

ϕ(u) ∗ ψ(v).

It is not difficult to show that (∆+
M ,≤, �∗ ) and (∆+

M ,≤,~) are quantales.

4. LM-fuzzy metric spaces

For a complete lattice L = (L,≤) and a quantale M = (M,≤, ∗), an LM-fuzzy metric
space is a pair (X, d) of a set X and a mapping d : J(LX)× J(LX) −→M such that,
for all a, b, c ∈ J(LX),
(LMD1) d(a, a) = >M ;
(LMD2) d(a, b) ∗ d(b, c) ≤ d(a, c);
(LMD3) d(a, b) =

∨
cCb d(a, c).

A mapping between two LM-fuzzy metric spaces, f : (X, d) −→ (X ′, d′) is called
an LM-fuzzy metric morphism if d(a, b) ≤ d′(f(a), f(b)) for all a, b ∈ J(LX). We
denote the category of LM-fuzzy metric spaces with LM-fuzzy metric morphisms by
LM-FMET.

Note that an M-metric space (Z, d) (also called an M-preordered set, see e.g. [12]
and the literature cited there) is a set Z together with a mapping d : Z × Z −→ M
which is reflexive, d(z, z) = >M for all z ∈ Z, and transitive, d(x, y) ∗ d(y, z) ≤
d(x, z) for all x, y, z ∈ Z. Special instances of M-metric spaces are metric spaces,
with Lawevere’s quantale M = ([0,∞],≥,+), [13], or probabilistic metric spaces with
M = (∆+

[0,1],≤, ∗), see [6]. The major difference between an LM-fuzzy metric space

(X, d) and an M-metric space defined on Z = J(LX) is the axiom (LMD3). This
axiom has an interesting consequence, that we state in the next result.

Lemma 4.1. Let d : J(LX) × J(LX) −→ M satisfy (LMD3). Then (LMD1) is
equivalent to (LMD1’) d(a, b) = >M whenever a ≤ b.

Proof. It is clear that (LMD1’) implies (LMD1). For the converse, let a ≤ b, a, b ∈
J(LX) and let αC>M . By (LMD1) and (LMD3), αC d(a, a) =

∨
cCa d(a, c). Hence

there is c C a such that α ≤ d(a, c) and as also c C b we conclude, again using
(LMD3), that α ≤

∨
cCb d(a, c) = d(a, b). This is true for all αC>M and by complete

distributivity >M = d(a, b). �
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We note further, that in an LM-metric space, the property (LMD1’) is equivalent
to (LMD4) d(b, c) ≤ d(a, c) whenever a ≤ b. In fact, if (LMD1’) is valid and a ≤ b, by
(LMD2) d(a, c) ≥ d(a, b) ∗ d(b, c) = d(b, c), i.e. (LMD4) is valid and conversely, from
(LMD4) we conclude with (LMD1), that a ≤ b = c implies d(a, b) ≥ d(b, b) = >M ,
i.e. (LMD1’) is satisfied. Similarly, we can show that (LMD1’) is equivalent to
(LMD4’) d(c, a) ≤ d(c, b) whenever a ≤ b.
Remark 4.2. A mapping d : J(LX) × J(LX) −→ M can be identified with its “ex-
ponential mate” pdq : X×X −→MJ(L)×J(L), defined by pdq(x, y)(α, β) = d(xα, yβ).
Here we use the representation J(LX) = {xα : x ∈ X,α ∈ J(L)} where xα ∈ J(LX)
is defined by xα(z) = α if z = x and xα(z) = ⊥M for z 6= x. If we use on MJ(L)×J(L)

the pointwise quantale structure, i.e. if we put for ϕ,ψ : J(L) × J(L) −→ M ,
ϕ ∗ ψ(α, β) = ϕ(α, β) ∗ ψ(α, β), then we can demand that pdq is an MJ(L)×J(L)-
metric space. However, we cannot identify this quantale-metric space with an LM-
fuzzy metric space in general. For instance, the axiom pdq(x, x) = >MJ(L)×J(L)

means here that pdq(x, x)(α, β) = >M for all α, β ∈ J(L), which would entail
d(xα, xβ) = >M for all xα, xβ ∈ J(LX). This is in general not satisfied by an
LM-fuzzy metric space and counterexamples are readily available, e.g. in the Exam-
ple 4.5 below. Also the triangle inequality pdq(x, y) ∗ pdq(y, z) ≤ pdq(x, z) entails
for all α, β ∈ J(L) that d(xα, yβ) ∗ d(yα, zβ) ≤ d(xα, zβ), which again is not true
in general for an LM -fuzzy metric space. Again, examples are easily constructed in
Example 4.5 below. We note however, that for an LM-fuzzy metric space (X, d), if
yβ ≤ yα, i.e. if α ≤ β for α, β ∈ J(L), by (LMD1’) we do have d(xα, yβ) ∗ d(yα, zβ) =
d(xα, yβ) ∗ d(yβ , yα)︸ ︷︷ ︸

=>M

∗ d(yα, zβ) ≤ d(xα, yα) ∗ d(yα, zβ) ≤ d(xα, zβ).

We will show with Remark 4.8 below, that an LM-fuzzy metric space can induce
an LM -fuzzy topological space [27]. It is unclear at present how this can be achieved
with quantale-valued metric spaces.

We give some examples for LM-fuzzy metric spaces.

Example 4.3. Let L = ({0, 1},≤) and M = ([0,∞],≥,+). For a set X, a coprime
element of LX can be identified with a point x ∈ X. Hence the axiom (LMD1)
becomes d(a, a) = 0, the axiom (LMD2) turns into the well-known triangle inequality
d(a, c) ≤ d(a, b)+d(b, c) and the axiom (LMD3) is void. So an LM-fuzzy metric space
is a pseudo-quasimetric space and a LM-fuzzy metric morphism is a non-expansive
map.

Example 4.4. Let L = ({0, 1},≤) and M = (∆+
[0,1],≤, ∗) with a sup-continuous trian-

gle function. An LM-fuzzy metric space is a probabilistic pseudo-quasimetric space [23].
These spaces can be identified with the fuzzy pseudo-quasimetric spaces in the sense
of Kramosil and Michalek [11], where a fuzzy pseudo-quasimetric on X is a mapping
M : X × X × [0,∞] −→ [0, 1] such that M(x, y, ·) is left-continous, M(x, y, 0) = 0,
M(x, x, t) = 1 for all t > 0 and M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s) for all
x, y, z ∈ X, s, t ∈ [0,∞]. The identification is obtained if we define d : X×X −→ ∆+

[0,1]

by d(x, y)(t) = M(x, y, t) and use the triangle function ~ on ∆+
[0,1].
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Example 4.5. Let L = M = ([0, 1],≤, ∗) with the Lukasiewicz t-norm α∗β = (α+β−
1) ∨ 0 and let X = IR. If we denote the L-points by xλ defined by xλ(y) = λ if y = x
and xλ(y) = 0 if y 6= x, where λ > 0, then d(xλ, yµ) = 1 − (|x − y| + ((λ − µ) ∨ 0))
defines an LM-fuzzy metric on IR. With regard to Remark 4.2, we mention that
d(x0.5, x0.25) = 3

4 6= 1.

Example 4.6. Let L = (L,≤) be completely distributive and let M = ([0,∞],≥,+).
An LM-fuzzy metric d : J(LX) × J(LX) −→ M satisfies the axioms (M1) d(a, a) =
0 for all a ∈ J(LX), (M2) d(a, c) ≤ (a, b) + d(b, c) for all a, b, c ∈ J(LX), (M3)
d(a, b) =

∨
cCb d(a, c) for all a, b ∈ J(LX) and (M4) a ≤ b implies d(a, c) ≤ d(b, c) for

all a, b, c ∈ J(LX). In this sense an LM-fuzzy metric space can be identified with a
pointwise pseudo-quasimetric in the sense of Shi [24]. In contrast to Shi’s definition
in [24], we allow the value ∞ for the distance and do not demand a symmetry axiom.

Example 4.7. Let L = (L,≤,∧) and N = (N,≤, ∗) where the lattices L,N are
completely distributive and let M = (∆+

N ,≤,~). An LM-fuzzy metric d : J(LX) ×
J(LX) −→M can be identified with a mapping D : J(LX)× J(LX)× [0,∞] −→M
via D(a, b, t) = d(a, b)(t) and satisfies the axioms (LMD1) D(a, b, 0) = ⊥M , (LMD2)
D(a, b, t) =

∨
s<tD(a, b, s), (LMD4) a ≤ b implies

∧
t>0D(a, b, t) = >M , (LMD5)

D(a, b, s) ∗D(b, c, t) ≤ D(a, c, s+ t), (LMD6) D(a, b, t) =
∨
cCbD(a, c, t). In this way,

for ∗ = ∧, an LM-fuzzy metric space can be identified with an (L,M)-fuzzy pseudo-
quasimetric space in the definition of Shi [26]. Note that our axioms are slightly
altered, as we allow again the value ∞ and we do not demand a finiteness-condition
(LMD3)

∨
t>0D(a, b, t) = >M .

Remark 4.8 (LM-approach distances and LM -fuzzy topological spaces). One moti-
vation for considering LM-fuzzy metric spaces is the possibility of defining distances
between L-points and L-sets. For notational convenience, we denote in this remark
L-sets by capital letters A,B, · · · ∈ LX . Let (X, d) be an LM-fuzzy metric space, let
a ∈ J(LX) and let A ∈ LX . We define δd : J(LX)× LX −→M by

δd(a,A) =
∨

b≤A,b∈J(LX)

d(a, b).

We then have the following properties.

(LMAD1) δd(a, a) = >M ;
(LMAD2) δd(a,⊥L) = ⊥M ;
(LMAD3) δd(a,A ∨B) = δd(a,A) ∨ δd(a,B);
(LMAD4) δd(a,A) ≥ δd(a,A(ε)) ∗ ε, where A(ε) =

∨
{b ∈ J(LX) : δd(b, A) ≥ ε}.

We only prove (LMAD4). First we note that δd(a,A) =
∨
bCA d(a, b). Let α C

δd(a,A). Then there is c ≤ A such that α C d(a, c) and hence, by (LMD3), there is
b C c ≤ A such that α ≤ d(a, b). It follows α ≤

∨
bCA d(a, b) and by the complete

distributivity δd(a,A) ≤
∨
bCA d(a, b). The converse inequality is clear. In order

to show (LMAD4), let c C A(ε). Then there is c ≤ b such that δd(b, A) ≥ ε. Let
δ C ε. Then there is e ≤ A such that d(b, e) ≥ δ. From (LMD2) we infer d(a, e) ≥
d(a, b) ∗ d(b, e) ≥ d(a, b) ∗ δ and hence δd(a,A) ≥ d(a, b) ∗ δ. This is true for all δ C ε



38 LM -fuzzy metric spaces and convergence

and hence we conclude from the distributivity of the quantale operation over joins,
the complete distributivity of M and (LMD1) and (LMD2)

δd(a,A) ≥ d(a, b) ∗ ε ≥ d(a, c) ∗ d(c, b) ∗ ε = d(a, c) ∗ ε.
This implies δd(a,A) ≥

∨
cCA(ε) d(a, c) ∗ ε = δd(a,A(ε)) ∗ ε.

The axioms (LMAD1)–(LMAD4) are suitable generalizations of the axioms of an
approach distance [14] to the lattice-valued case.

We now show that an LM-fuzzy metric space can induce an LM -fuzzy topological
space in a natural way. An LM -fuzzy topological space [27] is a set X together with
a mapping T : LX −→M such that
(LMT1) T (>X) = >M ,
(LMT2) T (A) ∧ T (B) ≤ T (A ∧B) and
(LMT3)

∧
j∈J T (Aj) ≤ T (

∨
j∈J Aj)

for all A,B,Aj ∈ LX . An LM -closure operator [25] is a mapping Cl : LX −→MJ(LX)

such that
(LMC1) Cl(A)(a) =

∧
bCa Cl(A)(b),

(LMC2) Cl(⊥X)(a) = ⊥M for all a ∈ J(LX),
(LMC3) Cl(A)(a) = >M whenever a ≤ A,
(LMC4) Cl(A ∨B) = Cl(A) ∨ Cl(B) and
(LMC5) Cl(

∨
(Cl(A))[λ])(a) ≥ λ implies Cl(A)(a) ≥ λ, where (Cl(A))[λ] = {b ∈

J(LX) : Cl(A)(b) ≥ λ}.
It is shown in [26] together with [25] that if L,M are completely distributive lattices
equipped with order-reversing involutions, the categories of LM -closure spaces and
of LM -fuzzy topological spaces are isomorphic.

Proposition 4.9. Let L = (L,≤),M = (M,≤) be completely distributive lattices and

consider the minimum ∧ as the quantale operation on M . Then Cld : LX −→MJ(LX)

defined by Cld(A)(a) = δd(a,A) for A ∈ LX and a ∈ J(LX) is an LM -closure
operator. Hence, in case both L and M are equipped with order-reversing involutions,
an LM-fuzzy metric space induces an LM -fuzzy topological space (X, Td) via the LM -
closure operator Cld, i.e. we have [25, 26]

Td(A) =
∧

a 6≤A′,a∈J(LX)

(Cld(A
′)(a))′ =

∧
a,b∈J(LX),a 6≤A′,b≤A

(d(a, b))′

for all A ∈ LX .

Proof. We only need to show (LMC1), (LMC3) and (LMC5). For (LMC1), we note
that if b C a, we have b ≤ a and hence d(a, c) ≤ d(b, c) by (LMD4). We conclude
Cld(A)(a) =

∧
c≤A d(a, c) ≤

∧
c≤a d(b, c) = Cld(A)(b) and hence we have Cld(A)(a) ≤∧

bCa Cld(A)(b). For the converse, assume that Cld(A)(a) 6≥
∧
bCa Cld(A)(b). Clearly,

Cld(A)(a) 6= > and as every element in M is a meet of primes, we conclude that there
is a prime element λ ∈M \ {>M} such that λ ≥ Cld(A)(a) but λ 6≥

∧
bCa Cld(A)(b).

Hence for any b C a there exists c ≤ A with c ∈ J(LX) such that d(b, c) 6≤ λ and
d(a, c) ≤ λ. By (LMD2) we have d(a, b) ∧ d(b, c) ≤ d(a, c) ≤ λ and since λ is a prime
element, we conclude d(a, b) ≤ λ. Thus we obtain >M = d(a, a) =

∨
bCa d(a, b) ≤ λ,
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a contradicition.
(LMC3) is a consequence of (LMAD1), as for a ≤ A we have Cld(A)(a) =∨

b≤a d(a, b) ≥ d(a, a) = >M .

For (LMC5) we note that
∨

(Cl(A))[λ] = A(λ) and hence with (LMAD4) from

above we get δd(a,A) ≥ δd(a,A(λ)) ∧ λ. So if Cld(
∨

(Cl(A))[λ])(a) = δd(a,A(λ)) ≥ λ,

also Cld(A)(a) = δd(a,A) ≥ λ. �

5. LM-fuzzy metric spaces as LM-fuzzy convergence tower spaces

Let X be a set. We consider filters in J(LX) and denote the set of all such filters by
F(J(LX)). For instance, a sequence of L-points generates such a filter in the usual
way by considering the filter base consisting of the end pieces of the sequence.

A family of mappings c = (cα : F(J(LX)) −→ P (J(LX)))α∈M which satisfies the
axioms, for all a, b ∈ J(LX), α, β ∈M , F,G ∈ F(J(LX)),
(LMC1) a ∈ cα([b]) whenever a ≤ b;
(LMC2) cα(F) ⊆ cα(G) whenever F ≤ G;
(LMC3) cβ(F) ⊆ cα(F) whenever α ≤ β;
(LMC4) x ∈ c⊥(F) for all x ∈ X,F ∈ F(J(LX));

is called an LM-fuzzy convergence tower on X and the pair (X, c) is called an LM-
fuzzy convergence tower space. A mapping f : X −→ X ′ between the LM-fuzzy
convergence tower spaces (X, c) and (X ′, c′), is called continuous if, for all a ∈ J(LX)
and all F ∈ F(J(LX)), f(a) ∈ c′α(f(F)) whenever a ∈ cα(F). The category of LM-
fuzzy convergence tower spaces with continuous mappings as morphisms is denoted
by LM-FCTS.

It is not difficult to show that LM-FCTS is a topological category, where initial
structures are formed as follows. Let for each j ∈ J , (Xj , cj) be an LM-fuzzy con-
vergence tower space and let fj : X −→ Xj be a mapping. The initial LM-fuzzy
convergence tower on X is defined by

a ∈ cα(F) ⇐⇒ fj(a) ∈ cjα(fj(F))∀j ∈ J.
We would like to point out, however, that, in general, the category LM-FCTS is

not well-fibred, as there may be more than one LM-fuzzy convergence tower on a
one-point set. This is due to the fact that for a one-point set X = {x} we can identify
J(LX) with J(L) and there is in general more than one filter on this set.

An LM-fuzzy convergence tower space (X, c) is called
(i) pretopological if

⋂
i∈I cα(Fi) ⊆ cα(

∧
i∈I Fi) whenever α ∈ M and (Fi)i∈I ∈

F(J(LX))I ;
(ii) left-continuous if for all subsets A ⊆M we have a ∈ c∨A(F) whenever a ∈ cα(F)

for all α ∈ A;
(iii) ∗-transitive if a ∈ cα∗β([c]) whenever a ∈ cα([b]) and b ∈ cβ([c]);
(iv) approximating if a ∈ cα([b]) if and only if for all β C α there is c C b such that
a ∈ cβ([c]).
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Remark 5.1. A left-continuous LM-fuzzy convergence tower c can be identified with
a limit function λ : F(J(LX)) −→MX , where λ(F)(a) =

∨
{α ∈M : a ∈ cα(F)}.

We give some examples for LM-fuzzy convergence tower spaces.

Example 5.2. Identifying for L = {0, 1} the set J(LX) with X, we see that in this
case we have the following examples.
1. Generalized convergence spaces. If M = {0, 1}, an LM-fuzzy convergence space is

a generalized convergence space in the sense of Preuss [19].
2. Probabilistic convergence spaces. If M = [0, 1], an LM-fuzzy convergence space is

a probabilistic convergence space in the sense of Richardson and Kent [21].
3. Probabilistic convergence spaces. If M = (∆+

[0,1],≤, ∗) with a sup-continuous tri-

angle function, an LM-fuzzy convergence space is a probabilistic convergence space in
the sense of [10].
4. Limit tower spaces. If M = ([0,∞],≥,+), a left-continuous LM-fuzzy convergence

space is a limit tower space in the sence of Brock and Kent [2]. These spaces can be
identified with convergence approach spaces [15]. We note that in [2] one additional
axiom is demanded that we do not use here.

Example 5.3. Let X = [0, 1] and let L = M = ([0, 1],≤, ∗) with the Lukasiewicz
t-norm defined by α ∗ β = (α + β − 1) ∨ 0. We define, for F ∈ F(J(LX)) and
α ∈ M , xλ ∈ cα(F) if for all ε > 0 there is F ∈ F such that for all yµ ∈ F we have
|x− y|+ ((λ− µ) ∨ 0) < 1− α+ ε. Then ([0, 1], c) is an LM-fuzzy convergence space.

A space (X, c) ∈ |LM-FCTS| that is ∗-transitive, left-continuous, pretopolog-
ical and approximating, is called an LM-prefuzzy-metric fuzzy convergence tower
space and we denote the subcategory of LM-FCTS with these spaces as objects by
LM-PreFMET-FCTS.

Let (X, d) ∈ |LM-FMET|. We define a family of mappings cd = (cdα : F(J(LX)) −→
P (J(LX)))α∈M by

a ∈ cdα(F) ⇐⇒
∨
F∈F

∧
b∈F

d(a, b) ≥ α.

Proposition 5.4. E : LM-FMET −→ LM-PreFMET-FCTS defined by E((X, d)) =

(X, cd), E(f) = f is an embedding functor.

Proof. We first show that for (X, d) ∈ LM-FMET, (X, cd) ∈ LM-FCTS.
We first note that a ∈ cdα([b]) if and only if d(a, b) ≥ α. This follows from∨

F∈[b]
∧
c∈F d(a, c) ≥ d(a, b), as {b} ∈ [b], and also

∨
F∈[b]

∧
c∈F d(a, c) ≤

∨
F∈[b] d(a, b)

= d(a, b), as b ∈ F for all F ∈ [b].
(LMC1) We have by (LMD1’) for a ≤ b, d(a, b) = >M ≥ α and hence a ∈ cdα([b]).

(LMC2), (LMC3) and (LMC4) are obvious.
Let now f : (X, d) −→ (X ′, d′) be an LM-fuzzy metric morphism. We show that

f : (X, cd) −→ (X ′, cd′) is continuous. Let a ∈ cdα(F). Then

α ≤
∨
F∈F

∧
b∈F

d(a, b) ≤
∨
F∈F

∧
b∈F

d′(f(a), f(b))
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=
∨
F∈F

∧
b′∈f(F )

d′(f(a), b′) ≤
∨

G∈f(F)

∧
b′∈G

d′(f(a), b′).

Hence f(a) ∈ cd′α (f(F)).

Next we show that (X, cd) is ∗-transitive, left-continuous, pretopological and ap-
proximating. For transitivity, let a ∈ cdα([b]) and b ∈ cdβ([c]). Then d(a, b) ≥ α
and d(b, c) ≥ β and by (LMD2) this implies d(a, c) ≥ d(a, b) ∗ d(b, c) ≥ α ∗ β, i.e.
a ∈ cdα∗β([c]).

For left-continuity, let a ∈ cdα(F) for all α ∈ A ⊆ M . Then for all α ∈ A we have∨
F∈F

∧
b∈F d(a, b) ≥ α and therefore also

∨
F∈F

∧
b∈F d(a, b) ≥

∨
A, i.e. a ∈ cd∨A(F).

To show the pretopologicalness, let a ∈
⋂
j∈J c

d
α(Fj). Then, using the interpolation

property for the well-below relation, for all j ∈ J and all εC α there is F εj ∈ Fj such
that for all bj ∈ F εj , d(a, bj) ≥ ε. We conclude F =

⋃
j∈J F

ε
j ∈

∧
j∈J Fj and for all

b ∈ F we have d(a, b) ≥ ε. Hence
∨
F∈

∧
j∈J Fj

∧
b∈F d(a, b) ≥ ε. This is true for all

εCα and hence, using the complete distributivity of M ,
∨
F∈

∧
j∈J Fj

∧
b∈F d(a, b) ≥ α

and we obtain a ∈ cdα(
∧
j∈J Fj).

For the approximation property, let first a ∈ cdα([b]) and β C α. By (LMD3) this
implies the existence of cC b such that d(a, c) ≥ β, i.e. such that a ∈ cdβ([c]). For the
converse, let for all β C α exist a c C b such that d(a, c) ≥ β. Then for all β C α we
have d(a, b) =

∨
cCb d(a, c) ≥ β and hence, by the complete distributivity, α ≤ d(a, b)

which is equivalent to a ∈ cdα([b]).

Finally we show that this functor is injective on objects. If d 6= d′, without loss
of generality, there are a, b ∈ J(LX) such that d(a, b) 6≤ d′(a, b). Then a ∈ cdd(a,b)([b])
but a /∈ cd′d(a,b)([b]). �

We are going to show next, that there is a coreflector for E. To this end, for
(X, c) ∈ |LM-PreFMET-FCTS| we define dc : J(LX)× J(LX) −→M by

dc(a, b) =
∨

a∈cα([b])

α.

Proposition 5.5. (1) H : LM-PreFMET-FCTS −→ LM-FMET defined by H((X, c)) =
(X, dc), H(f) = f is a functor.
(2) We have H ◦ E = idLM-FMET.
(3) We have E ◦H ≤ idLM-PreFMET-FCTS.

Proof. (1) We first show that for (X, c) ∈ |LM-PreFMET-FCTS| we have (X, dc) ∈
|LM-FMET|.

(LMD1) If a ≤ b, we have a ∈ c>([b]) and hence dc(a, b) = >. Hence (LMD1’) is
satisfied and therefore also (LMD1). (LMD2) follows from the distributivity of the
quantale operation over arbitrary joins and the transitivity as

dc(a, b) ∗ dc(b, c) =
∨

a∈cα([b]),b∈cβ([c])

α ∗ β ≤
∨

a∈cα∗β([c])

α ∗ β ≤ dc(a, c).
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For (LMD3) we first note that from c ≤ b we conclude, using (LMD1’) and (LMD2),
dc(a, c) = dc(a, c) ∗ dc(c, b) ≤ dc(a, b). Hence

∨
cCb d

c(a, c) ≤ dc(a, b). For the
converse inequality, let β C dc(a, b). Then there is α ∈ M such that β C α and
a ∈ cα([b]). By the approximation property, there is c C b such that a ∈ cβ([c])
and hence β ≤

∨
a∈cγ([c]) γ = dc(a, c). We conclude β ≤

∨
cCb d

c(a, c) and from the

complete distributivity we obtain finally dc(a, b) ≤
∨
cCb d

c(a, c).

Next we show that if f : (X, c) −→ (X ′, c′) is a morphism in LM-PreFMET-FCTS,
then f : (X, dc) −→ (X ′, dc

′
) is an LM-fuzzy metric morphism. We have for a, b ∈

J(LX): dc(a, b) =
∨
a∈cα([b]) α ≤

∨
f(a)∈c′α([f(b)])

α = dc
′
(f(a), f(b)). Hence H is a

functor.
(2) We show that for (X, d) ∈ |LM-FMET| we have d(c

d) = d. We note again

that a ∈ cdα([b]) is equivalent to d(a, b) ≥ α. Hence d(c
d)(a, b) =

∨
a∈cdα([b])

α =∨
d(a,b)≥α α = d(a, b).

(3) We show that for (X, c) ∈ |LM-PreFMET-FCTS|, we have c
(dc)
α (F) ⊆ cα(F). Let

a ∈ c(d
c)

α (F) and let εCα. Then there is Fε ∈ F such that for all b ∈ Fε there is β ≥ ε
such that a ∈ cβ([b]) and, consequently, also a ∈ cε([b]). Hence we have for all εCα a
set Fε ∈ F such that a ∈

⋂
b∈Fε cε([b]). From Fε ∈ F we conclude [Fε] =

∧
b∈Fε [b] ≤ F

and from pretopologicalness we conclude that for all ε C α there is Fε ∈ F such that
a ∈ cε([Fε]) ⊆ cε(F). This is true for all εCα and from the left-continuity we conclude
a ∈ cα(F). �

Theorem 5.6. The category LM-FMET can be coreflectively embedded into the cate-
gory LM-PreFMET-FCTS.

We are now going to identify a subcategory of LM-PreFMET-FCTS that is isomor-
phic to LM-FMET. To this end, we introduce the following axiom for an LM-fuzzy
convergence tower space. A space (X, c) ∈ |LM-FCTS| satisfies the axiom (FM) if for
all U ∈ U(J(LX)) and all α ∈M we have
(FM) a ∈ cα(U) ⇐⇒ ∀U ∈ U, β C α∃b ∈ U s.t. a ∈ cβ([b]).

This axiom was first introduced for the case L = {0, 1} and M = ([0, 1],≤,∧)
in [3] for probabilistic convergence spaces in the sense of Richardson and Kent [21].

We denote the subcategory of LM-PreFMET-FCTS with objects the LM-fuzzy con-
vergence tower spaces that satisfy the axiom (FM) by LM-FMET-FCTS. The next re-
sult shows that the embedding functor E actually has its range in
LM-FMET-FCTS.

Proposition 5.7. Let (X, d) ∈ |LM-FMET|. Then (X, cd) satisfies (FM).

Proof. Let U ∈ U(J(LX)) and let α ∈ L. Let first a ∈ cdα(U) and let U ∈ U and βCα.
Then there is Fβ ∈ U such that for all b ∈ Fβ we have d(a, b) ≥ β. Choose b ∈ U ∩Fβ .
Then

∨
F∈[b]

∧
c∈F d(a, c) ≥

∧
c∈U∩Fβ d(a, c) ≥ β, i.e. a ∈ cdβ([b]).

Conversely, let for all U ∈ U, β C α there is b = bβ ∈ U such that a ∈ cdβ([b]),
i.e. such that

∨
F∈[b]

∧
c∈F d(a, c) ≥ β. Let further F ∈ Ua =

∧
a∈cdβ(F)

F. Then, for

U ∈ U in particular F ∈ [b], i.e. b ∈ F ∩ U . Hence U ∨ Ua exists and because U
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is an ultrafilter, we get U ≥
∧
a∈cdβ(F)

F. As (X, cd) is pretopological, we conclude

cdβ(U) ≥
⋂
a∈cdβ(F)

cdβ(F) and we have a ∈ cdβ(U). This is true for any β C α and by

left-continuity we obtain a ∈ cdα(U). �

Proposition 5.8. Let (X, c) ∈ |LM-PreFMET-FCTS| satisfy the axiom (FM). Then,

for all α ∈M and all F ∈ F(J(LX)) we have c
(dc)
α (F) = cα(F).

Proof. Let U ∈ U(J(LX)) be an ultrafilter and let a ∈ cα(U). By the axiom (FM) we
obtain, for β C α that Na

β = {b ∈ J(LX) : a ∈ cβ([b])} satisfies Na
β ∩ U 6= ∅ for all

U ∈ U and hence Na
β ∈ U. Furthermore, for a ∈ cβ([b]) we have dc(a, b) ≥ β. Hence∨

U∈U

∧
b∈U

dc(a, b) ≥
∧
b∈Naβ

dc(a, b) =
∧

a∈cβ([b])

dc(a, b) ≥ β.

This is true for all β C α and hence also
∧
b∈Naβ

dc(a, b) =
∧
a∈cβ([b]) d

c(a, b) ≥ α,

which is equivalent to a ∈ c(d
c)

α (U). Hence we have shown cα(U) ⊆ c
(dc)
α (U) for all

U ∈ U(J(LX)) and because both (X, c) and (X, c(dc)) are pretopological, we have for

F ∈ F(J(LX)) that cα(F) ⊆ c
(dc)
α (F). The converse implication is always true and so

we have the equality. �

If we denote the restriction of the functor H on LM-FMET-FCTS for simplicity
again by H, we have E ◦H = idLM-FMET-FCTS and H ◦ E = idLM-FMET and we obtain
the following main result.

Theorem 5.9. The categories LM-FMET-FCTS and LM-FMET are isomorphic.
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