MATEMATIČKI VESNIK МАТЕМАТИЧКИ ВЕСНИК 70, 4 (2018), [364](#page-0-0)[–376](#page-12-0) December 2018

research paper оригинални научни рад

ON GRADED 2-ABSORBING SUBMODULES OVER Gr-MULTIPLICATION MODULES

Fatemeh Soheilnia and Ahmad Yousefian Darani

Abstract. Let G be a multiplicative group with identity e , R be a G-graded commutative ring and M be a graded R -module. The aim of this article is some investigations of graded 2-absorbing submodules over Gr-multiplication modules. A graded submodule N of R-module M is called graded 2-absorbing if whenever $a, b \in h(R)$ and $m \in h(M)$ with abm $\in N$, then either $ab \in (N :_R M)$ or am $\in N$ or bm $\in N$. We also introduce the concept of graded classical 2-absorbing submodule as a generalization of graded classical prime submodules and show a number of results in this class.

1. Introduction

Throughout this paper all rings are G-graded commutative rings and M is a graded Rmodule with non-zero identity. Let G be a multiplicative group with identity e . Then R is a G-graded ring, if there exist additive subgroups R_g of R such that $R = \bigoplus_{g \in G} R_g$ and $R_qR_h \subseteq R_{gh}$ for all $g, h \in G$. It is denoted by $G(R)$. The elements of R_q are called *homogeneous* of degree g, where R_g are additive subgroups of R indexed by elements $g \in G$. If $a \in R$, then a can be written uniquely as $\sum_{g \in G} a_g$, where a_g is the component of a in R_g . Also, we write $h(R) = \bigcup_{g \in G} R_g$. Let \check{I} be an ideal of $G(R)$. Then I is a graded ideal of $G(R)$ if $I = \bigoplus_{g \in G} (I \cap R_g)$. Moreover, R_e is a subring of $G(R)$ and $1 \in R_e$.

Let R be a G-graded ring and M be an R-module. Then M is called a graded R module (G-graded R-module) if there exists a family of subgroups $\{M_q\}_{q\in G}$ of M such that $M = \bigoplus_{g \in G} M_g$ (as abelian groups) and $R_g M_h \subseteq M_{gh}$ for all $g, h \in G$. Here, R_gM_h denotes the additive subgroup of M consisting of all finite sums of elements $r_g m_h$ with $r_g \in R_g$ and $m_h \in M_h$. We write $h(M) = \bigcup_{g \in G} M_g$ and the elements of $h(M)$ are called *homogeneous*. If $M = \bigoplus_{g \in G} M_g$ is a graded R-module, then for

²⁰¹⁰ Mathematics Subject Classification: 13A02, 16W50

Keywords and phrases: Graded multiplication modules; graded prime submodules; graded 2-absorbing submodules; graded classical submodules; graded classical 2-absorbing submodules.

F. Soheilnia, A. Yousefian Darani 365

all $g \in G$ the subgroup M_g of M is an R_e -module. Let $M = \bigoplus_{g \in G} M_g$ be a graded R-module and N be a submodule of M. Then N is called a graded submodule of M if $N = \bigoplus_{g \in G} N_g$ where $N_g = N \cap M_g$ for $g \in G$. In this case, N_g is called the g-component of N, (cf. [\[10\]](#page-12-1)). Moreover, M/N becomes a graded R-module with g-component $(M/N)_g = (M_g + N)/N$ for $g \in G$. Let R be a G-graded ring and M, N be graded R-modules. Then $(N :_R M) = \{r \in h(R) \mid rM \subseteq N\}$ is a graded ideal of $G(R)$ and for every element $a \in h(R)$ and $m \in h(M)$, IN, aN and Rm are graded submodules of M and Ra is a graded ideal, (cf. [\[3,](#page-12-2)4]). The annihilator of an element m of M which is $ann(m) = (0 :_R m) = \{r \in h(R) \mid rm = 0\}$. A graded R-module M is said to be a *cancellation graded module* of $G(R)$ if for all graded ideals I and J of $G(R)$ such that $IM = JM$, it follows that $I = J$. A graded R-module M is *faithful,* if for every element $r \in h(R)$ such that $rM = 0$, it follows that $r = 0$. graded R-module M is called *graded multiplication* ($Gr\text{-}multiplication$) R-module, if for every graded submodule N of M, there exists a graded ideal I of $G(R)$ such that $N = IM$. In this case, we can easily show that if M is a Gr-multiplication R-module, then $N = (N :_R M)M$ for every graded submodule N of M. Let M be a Grmultiplication R-module, $N = IM$ and $K = JM$ are graded submodules of M where I and J are graded ideals of $G(R)$. The product of N and K is denoted by NK and is defined by $(IJ)M$. Then the product of N and K is independent of presentations of N and K , by [\[8,](#page-12-4) Theorem 4]. Moreover, we can define the product of two elements $m, m' \in h(M)$ — if $Rm = IM$ and $Rm' = JM$, then $mm' = (IM)(JM) = (IJ)M$, $(cf. [8, 11]).$ $(cf. [8, 11]).$ $(cf. [8, 11]).$ $(cf. [8, 11]).$

A graded ideal I of $G(R)$ is said to be a *graded prime* $(G\text{-}prime)$ (resp. *graded* weakly prime) ideal, if $I \neq R$ and whenever $a, b \in h(R)$ with $ab \in I$ (resp. $0 \neq ab \in I$), then either $a \in I$ or $b \in I$. The graded radical of I, which is denoted by $Gr(I)$, is the set of all $x \in R$ such that for each $g \in G$ there exists $n_g > 0$ with $x_g^{n_g} \in I$. Note that, if r is a homogeneous element of $G(R)$, then $r \in Gr(I)$ if and only if $r^n \in I$ for some $n \in \mathbb{N}$. It is easy to see that if I is a graded ideal of $G(R)$, then $Gr(I)$ is a graded ideal of $G(R)$, [\[12,](#page-12-6) Proposition 2.3]. If I is a graded ideal of $G(R)$, then $Gr(I)$ is the intersection of all G-prime ideals of $G(R)$ containing I, [\[12,](#page-12-6) Proposition 2.5]. Furthermore, a graded ideal I of $G(R)$ is said to be a *graded primary* (*G-primary*) (resp. graded weakly primary) ideal, if $I \neq R$ and whenever $a, b \in h(R)$ such that $ab \in I$ ($0 \neq ab \in I$), then either $a \in I$ or $b \in Gr(I)$. If $Gr(I)$ is a G-prime ideal, then I is called a graded P-primary $(G-P\text{-}primary)$ ideal. M is a graded maximal (G-maximal) ideal of G-graded ring R, if $M \neq R$ and there is no graded ideal I of $G(R)$ such that $M \subset I \subset R$.

Graded prime submodules on G-graded commutative rings have been introduced and studied in $[3, 4, 8]$ $[3, 4, 8]$ $[3, 4, 8]$. Let R be a G-graded ring and M be a graded R-module. A proper graded submodule N of M is called *graded prime submodule* of M , if whenever $a \in h(R)$ and $m \in h(M)$ with $am \in N$, then either $a \in (N :_R M)$ or $m \in N$. In this paper, we generalize the concept of 2-absorbing ideals in [\[5\]](#page-12-7) to the concept of graded 2-absorbing submodules. Refer that the concept of graded 2-absorbing submodule is a characterization of 2-absorbing submodule which has been explained by A. Yousefian Darani and F. Soheilnia in [\[15,](#page-12-8) [16\]](#page-12-9). Later, K. Al-Zoubi and R. Abu-Dawwas in [\[1\]](#page-12-10),

extended the concept of graded 2-absorbing submodules. They defined that a graded proper submodule N of M is said to be a *graded 2-absorbing submodule*, if whenever $a, b \in h(R)$ and $m \in h(M)$ with $abm \in N$, then either $ab \in (N :_{R} M)$ or $am \in N$ or $bm \in N$. The concept of graded 2-absorbing $(G(2)$ -absorbing) ideal is defined in [\[13\]](#page-12-11). Let R be a G -graded ring and I be a graded ideal of $G(R)$. Then I is said to be a graded 2-absorbing (G(2)-absorbing) ideal if $I \neq G(R)$ and whenever $a, b, c \in h(R)$ with $abc \in I$, then either $ab \in I$ or $bc \in I$ or $ac \in I$.

The graded classical prime and primary submodules have been introduced and studied in [\[2\]](#page-12-12) while the concept of classical prime and classical primary submodule were described by Behboodi in [\[7\]](#page-12-13), M. Baziar and M. Behboodi in [\[6\]](#page-12-14). Let R be a Ggraded ring and M be a graded R -module. A proper graded submodule N of M is said to be a graded classical prime (resp. graded classical primary) submodule, if whenever $a, b \in h(R)$ and $m \in h(M)$ with $abm \in N$, then either $am \in N$ or $bm \in N$ (resp., $bⁿm \in N$ for some positive integer n). Recently, some researchers in [\[9\]](#page-12-15) have explained and expanded the concept of classical 2-absorbing submodule over commutative rings. Let M be a R-module over commutative ring R and N be a proper submodule. A submodule N of M is called a classical 2-absorbing submodule, if whenever $a, b, c \in R$ and $m \in M$ such that $abcm \in N$, then either $abm \in N$ or $bcm \in N$ or $acm \in N$. Here we introduce the concept of graded classical 2-absorbing submodules of M over Ggraded commutative rings. Let R be a G -graded commutative ring, M be a graded R module and N be a graded proper submodule of M . We say that N is a *classical graded* 2-absorbing submodule, if whenever $a, b, c \in h(R)$ and $m \in h(M)$ with $abcm \in N$, then either $abm \in N$ or $bcm \in N$ or $acm \in N$. We show more results about graded 2-absorbing submodules which are generalizations of Gr -multiplication R -modules over G-graded commutative rings in Section [2.](#page-2-0) In Section [3,](#page-8-0) we show more results on graded classical 2-absorbing submodules that are generalizations of graded prime submodules and graded 2-absorbing submodules of graded R-modules over G-graded rings.

2. Properties of graded 2-absorbing submodules

Let R be a G-graded ring and M be a graded R-module. A graded proper submodule N of M is called graded 2-absorbing submodule, if whenever $a, b \in h(R)$ and $m \in$ $h(M)$ such that $abm \in N$, then either $ab \in (N :_R M)$ or $am \in N$ or $bm \in N$. We say that $N_r = (N :_M r) = \{m \in h(M) \mid m \subseteq N\}$ is a graded 2-absorbing submodule of M , (cf. [\[14\]](#page-12-16)). To start with, we show a result on graded 2-absorbing submodules.

THEOREM 2.1. Let R be a G-graded commutative ring, M be a graded R-module and N be a graded proper submodule of M . Suppose that N is a graded 2-absorbing submodule. Then the following statements hold:

(i) For all elements $a, b \in h(R)$ and $m \in h(M)$, ab $\notin (N :_R M)$ implies that $(N :_R$ $abm = (N :_R am) \cup (N :_R bm)$. Moreover, $(N :_R abm) = (N :_R am)$ or $(N :_R am)$ $abm = (N :_R bm);$

(ii) For all elements $a, b \in h(R)$, $ab \notin (N :_R M)$ implies that $(N :_M ab) = (N :_M a)$ or $(N :_M ab) = (N :_M b);$

(iii) For every element $a \in h(R)$ and graded submodule K of M, $aK \nsubseteq N$ implies that $(N:_{R} aK) = (N:_{R} K)$ or $(N:_{R} aK) = ((N:_{M} a):_{R} M);$

(iv) For every element $a \in h(R)$, every element $m \in h(M)$ and every graded ideal I of $G(R)$, aIm $\subseteq N$ implies that Ia $\subseteq (N :_R M)$ or am $\in N$ or Im $\subseteq N$;

(v) For every graded ideal I, J of $G(R)$ and every element $m \in h(M)$, IJ $m \subseteq N$ implies that $IJ \subseteq (N :_R M)$ or $Im \subseteq N$ or $Jm \subseteq N$;

(vi) For every element $a, b \in h(R)$ and every graded submodule K of M with $abK \subseteq N$ implies that ab $\in (N :_R M)$ or a $K \subseteq N$ or b $K \subseteq N$;

(vii) For every element $a \in h(R)$, every graded ideal I of $G(R)$ and graded submodule K of M, aIK \subseteq N implies that aI \subseteq $(N:_{R} M)$ or aK \subseteq N or IK \subseteq N;

(viii) For every graded ideal I of $G(R)$ and graded submodule K of M, IK $\nsubseteq N$, implies that $(N:_{R} I K) = (N:_{R} K)$ or $(N:_{R} I K) = ((N:_{M} I):_{R} M);$

(ix) For every graded ideal I, J of $G(R)$ and graded submodule K of M, IJK $\subseteq N$ implies that $IJ \subseteq (N :_R M)$ or $IK \subseteq N$ or $JK \subseteq N$.

Proof. [\(i\)](#page-2-1) Assume that $a, b \in h(R)$ and $m \in h(M)$ with $ab \notin (N :_{R} M)$. Let $x \in (N :_R abm)$ and so $xabm \in N$. Since N is a graded 2-absorbing submodule and $ab \notin (N :_R M)$, we conclude that $xam \in N$ (so $x \in (N :_R am)$) or $xbm \in N$ $(\text{so } x \in (N :_R bm))$. Then $(N :_R abm) = (N :_R am) \cup (N :_R bm)$. Clearly, $(N:_{R}abm) = (N:_{R}am)$ or $(N:_{R}abm) = (N:_{R}bm).$

[\(ii\)](#page-3-0) Assume that $a, b \in h(R)$ with $ab \notin (N :_R M)$. Let $m \in (N :_M ab)$ be such that $abm \in N$. Since N is a graded 2-absorbing submodule and $ab \notin (N :_R M)$, we conclude that $am \in N$ (so $m \in (N :_M a)$) or $bm \in N$ (so $m \in (N :_M b)$). Then $(N :_M ab) = (N :_M a)$ or $(N :_M ab) = (N :_M b)$.

[\(iii\)](#page-3-1) Assume that $a \in h(R)$ and K is a graded submodule of M such that $aK \nsubseteq N$. Suppose that $m \in (N :_R aK)$. Then $amK \subseteq N$ and so $K \subseteq (N :_R am)$. If $am \in (N:_{R} M)$, then $m \in ((N:_{R} M):_{M} a)$. We can suppose that $am \notin (N:_{R} M)$. Then it follows from [\(ii\)](#page-3-0) that $(N :_R a_m) \subseteq (N :_R m)$ or $(N :_R a_m) \subseteq (N :_M a)$. If $(N:_R am) \subseteq (N:_R m)$, then $K \subseteq (N:_M a)$ and so $aK \subseteq N$, which is a contradiction. Thus $(N :_R a_m) \subseteq (N :_M a)$ and hence $K \subseteq (N :_R m)$. Then $Km \subseteq N$ and so $m \in$ $(N:_{R} K)$. Hence $(N:_{R} aK) \subseteq (N:_{R} K) \cup ((N:_{M} a):_{R} M)$. The converse inclusion is obvious. Therefore, $(N :_R aK) = (N :_R K)$ or $(N :_R aK) = ((N :_M a) :_R M)$.

[\(iv\)](#page-3-2) Assume that for $a \in h(R)$, $m \in h(M)$ and a graded ideal I of $G(R)$, $aIm \subseteq N$, $Ia \nsubseteq (N :_R M)$ and $am \notin N$ hold. There exists $b \in I \cap h(R)$ such that $ab \notin (N :_R M)$. Since $bam \in N$, N is a graded 2-absorbing submodule of M, $ab \notin (N :_{R} M)$ and am $\notin N$, we get that $bm \in N$. Now suppose that there exists $i \in I$ such that $(b + i)$ am ∈ N. Then $(b + i)a \in (N :_R M)$ or $(b + i)m \in N$. If $(b + i)a \in N$, then $im \in N$. If $(b + i)m \in (N :_R M)$, then $ia \notin (N :_R M)$. Since $iam \in N$ and N is a graded 2-absorbing submodule of M, we obtain that $im \in N$. Therefore $Im \subset N$, as required.

[\(v\)](#page-3-3) Assume that $I J m \subseteq N$ for some graded ideals I, J of $G(R)$ and $m \in h(M)$ with $Im \nsubseteq N$ and $Jm \nsubseteq N$. Then there exist $a \in I \setminus h(R)$ and $b \in I \setminus h(R)$ such that am $\notin N$ and bm $\notin N$. Since $aJm \subseteq N$, am $\notin N$ and $Jm \not\subseteq N$, [\(iv\)](#page-3-2) implies

 $aJ \subseteq (N :_R M)$. Then $(I \setminus (N :_R m))J \subseteq (N :_R M)$. Now, since $Ibm \subseteq N$, $bm \notin N$ and Im $\nsubseteq N$, from [\(iv\)](#page-3-2) we conclude that $Ib \subseteq (N :_R M)$, thus $I(J \setminus (N :_R m)) \subseteq$ $(N:_{R} M)$. Hence there exist $i \in I \cap h(R)$ and $j \in J \cap h(R)$ such that $aj \in (N:_{R} M)$ or $ib \in (N :_R M)$. Since $(a + i) \in I$ and $(b + j) \in J$, we have $(a + i)(b + j)m \in N$. Then $(a + i)(b + j) \in (N :_R M)$ or $(a + i)m \in N$ or $(b + j)m \in N$. Since N is a graded 2-absorbing submodule of M, if $(a+i)(b+j) = ab + aj + ib + ij \in (N :_R M)$, then $ij \in (N :_R M)$. If $(a + i)m \in N$, then $im \notin N$ and thus $i \in I \setminus (N :_R m)$ and so $ij \in (N :_R M)$. Similarly, if $(b + j)m \in N$, then $ij \in (N :_R M)$. Therefore $IJ \subseteq (N :_R M).$

[\(vi\)](#page-3-4) Assume that $abK \in N$ for some graded submodule K of M and $a, b \in h(R)$ with $ab \notin (N :_R M)$. Then $K \subseteq (N :_M ab)$. Since $ab \notin (N :_R M)$, it follows from [\(ii\)](#page-3-0) that $K \subseteq (N :_M ab) = (N :_M a)$ or $K \subseteq (N :_M ab) = (N :_M b)$. Hence either $aK \subseteq N$ or $bK \subseteq N$.

[\(vii\)](#page-3-5) Assume that $aIK \subseteq N$ for some graded ideal I of $G(R)$, graded submodule K of M and $a \in h(R)$ such that $aI \nsubseteq (N :_R M)$. Then there exists $i \in I$ such that (so $IK \subseteq N$). $ai \notin (N :_{R} M)$. Since $aiK \subseteq N$ and $ai \notin (N :_{R} M)$, then either $aK \subseteq N$ or $iK \subseteq N$

[\(viii\)](#page-3-6) Assume that I is a graded ideal and K is a graded submodule of M such that IK $\notin N$. Suppose that $a \in (N :_R I K)$. Then $aIK \subseteq N$ and so [\(vii\)](#page-3-5) implies $aI \subseteq (N :_R M)$ or $aK \subseteq N$. Thus $aIM \subseteq N$ (so $a \in ((N :_M I) :_R M)$) or $a \in (N :_R K)$. Hence $(N :_R IK) \subseteq (N :_R K) \cup ((N :_M I) :_R M)$. The converse inclusion is obvious, hence $(N :_R I K) = (N :_R K)$ or $(N :_R I K) = ((N :_M I) :_R M)$. [\(ix\)](#page-3-7) Assume that $IJK \subseteq N$ for some graded ideals I, J of $G(R)$ and graded submodule K of M with $IJ \nsubseteq (N :_R M)$. Then there exist $a \in I \cap h(R)$ and $b \in J \cap h(R)$ such that neither $aK \in N$ nor $bK \in N$. Since $abK \in N$ and neither $aK \in N$ nor $bK \in N$, from [\(vi\)](#page-3-4) we get that $ab \in (N :_R M)$. Since $IJ \nsubseteq (N :_R M)$, we obtain that $rs \notin (N :_R M)$ for some $r \in I \cap h(R)$ and $s \in J \cap h(R)$. Since $rsK \subseteq N$ and $rs \notin (N :_R M)$, it follows from [\(vi\)](#page-3-4) that $rK \subseteq N$ or $sK \subseteq N$. Let us consider three cases:

Case 1. Let $rK \subseteq N$ but $sK \nsubseteq N$. Since $asK \subseteq N$ but neither $aK \subseteq N$ nor $sK \subseteq N$, we conclude from [\(vi\)](#page-3-4) that $as \in (N :_R M)$. Since $aK \nsubseteq N$ but $rK \subseteq N$, we conclude that $(a + r)K \nsubseteq N$. Now since $(a + r)sK \subseteq N$ but neither $(a + r)K \subseteq N$ nor $sK \subseteq N$, [\(vi\)](#page-3-4) implies $(a + r)s = as + rs \in (N :_R M)$. Then $rs \in (N :_R M)$, which is a contradiction.

Case 2. Let $rK \nsubseteq N$ but $sK \subseteq N$. Hence the proof is the same as in **[Case 1.](#page-4-0)**

Case 3. Let $rK \subseteq N$ and $sK \subseteq N$. Firstly, we consider that $rK \subseteq N$. Since $rK \subseteq N$ and $aK \nsubseteq N$, we have $(a+r)K \nsubseteq N$. Now since $(a+r)bK \subseteq N$ but neither $(a + r)K \subseteq N$ nor $bK \subseteq N$, it follows from [\(vi\)](#page-3-4) that $(a + r)b = ab + rb \in (N :_R M)$. Then $rb \in (N :_R M)$. Now we consider that $sK \subseteq N$. Since $sK \subseteq N$ and $bK \nsubseteq N$, we have $(b+s)K \nsubseteq N$. Now since $a(b+s)K \subseteq N$ but neither $aK \subseteq N$ nor $(b+s)K \subseteq N$, from [\(vi\)](#page-3-4) we have $a(b + s) = ab + as \in (N :_R M)$. Then $as \in (N :_R M)$. Now since $(a + r)(b + s)K \subseteq N$ but neither $(a + r)K \subseteq N$ nor $(b + s)K \subseteq N$, we can conclude that $(a + r)(b + s) = ab + as + rb + rs \in (N :_R M)$ and then $rs \in (N :_R M)$, which is a contradiction. Hence $IK \subseteq N$ or $JK \subseteq N$, as needed. \Box

THEOREM 2.2. Let R be a G-graded commutative ring, M be a graded R-module

and N be a graded submodule of M. If N is a graded 2-absorbing submodule of M , then $(N :_{R} M)$ is a graded 2-absorbing ideal. The converse is true if M is a Grmultiplication R-module.

Proof. Assume that N is a graded 2-absorbing submodule. Let $abc \in (N :_R M)$ for some $a, b, c \in h(R)$. Then $abcM \subseteq N$; and put $cM = K$ such that K is a graded submodule of M. Hence $abK \subseteq N$ and so, by Theorem [2.1](#page-2-2) [\(vi\),](#page-3-4) either $ab \in (N :_R M)$ or $aK \subseteq N$ (so $acM \subseteq N$) or $bK \subseteq N$ (so $bcM \subseteq N$). Then $ab \in (N :_R M)$ or $bc \in (N :_R M)$ or $ac \in (N :_R M)$, as needed.

Conversely, suppose that $abm \in N$ for some $a, b \in h(R)$ and $m \in h(M)$ with $ab \notin (N :_R M)$. Since M is a Gr-multiplication R-module, there exists a graded ideal I of $G(R)$ such that $m = IM$. Then $abIM \subseteq N$ and so $abI \subseteq (N :_R M)$. Since $(N :_R M)$ is a graded 2-absorbing ideal and $ab \notin (N :_R M)$, we claim that $aI \subseteq$ $(N:_{R} M)$ or $bI \subseteq (N:_{R} M)$. Otherwise, neither $aI \subseteq (N:_{R} M)$ nor $bI \subseteq (N:_{R} M)$. Then there exists $i_1, i_2 \in I \cap h(R)$ such that $ai_1 \notin (N :_R M)$ and $bi_2 \notin (N :_R M)$. Since $abi_1 \in (N :_R M)$ but $ab \notin (N :_R M)$, $ai_1 \notin (N :_R M)$ and $(N :_R M)$ is a graded 2-absorbing ideal, we have $bi_1 \in (N :_R M)$. Similarly for the next term, since $abi_2 \in (N :_{R} M)$ but $ab \notin (N :_{R} M)$, $bi_2 \notin (N :_{R} M)$ and $(N :_{R} M)$ is a graded 2-absorbing ideal, we have $ai_2 \in (N :_R M)$. Now since $ab(i_1 + i_2) \in (N :_R M)$, $ab \notin (N :_{R} M)$ and $(N :_{R} M)$ is a graded 2-absorbing ideal, we conclude that $a(i_1 + i_2) \in (N :_R M)$ or $b(i_1 + i_2) \in (N :_R M)$. If $a(i_1 + i_2) = ai_1 + ai_2 \in (N :_R M)$, then $ai_1 \in (N :_R M)$, which is a contradiction. If $b(i_1 + i_2) = bi_1 + bi_2 \in (N :_R M)$, then $bi_2 \in (N :_R M)$, which is a contradiction. Thus $aI \subseteq (N :_R M)$ (so $aIM \subseteq N$) or $bI \subseteq (N :_R M)$ (so $bIM \subseteq N$). Hence $ab \in (N :_R M)$ or $am \in N$ or $bm \in N$. Therefore $(N:_{R} M)$ is a graded 2-absorbing ideal of R.

PROPOSITION 2.3. Let R be a G -graded commutative ring, M be a graded R-module and N be a graded proper submodule of M. If $(N :_R M)$ is a graded 2-absorbing ideal, then $Gr(N :_R M)$ is a graded 2-absorbing ideal.

Proof. Assume that $abc \in Gr(N :_R M)$ for some $a, b, c \in h(R)$ with $ab \notin Gr(N :_R M)$ and $bc \notin Gr(N :_{R} M)$. Then there exists a positive integer n such that $(abc)^{n} =$ $a^n b^n c^n \in Gr(N :_R M)$ with $a^n b^n \notin (N :_R M)$ and $b^n c^n \notin (N :_R M)$. Since $(N :_R M)$ is a graded 2-absorbing ideal, we have $a^n c^n \in (N :_R M)$. Then $ac \in Gr(N :_R M)$.

The *graded radical* of a graded submodule N of a graded R-module M , which is denoted by $Gr_M(N)$, is defined to be the intersection of all graded prime submodules of M containing N. If N is not contained in any graded prime submodule of M , then $Gr_M(N) = M$.

THEOREM 2.4. Let R be a G-graded commutative ring, M be a Gr-multiplication R module and N be a graded submodule of M. If N is a graded 2-absorbing submodule of M, then $Gr_M(N)$ is a graded 2-absorbing submodule of M.

Proof. Since N is a graded 2-absorbing submodule, by Theorem [2.2,](#page-4-1) $(N :_{R} M)$ is a graded 2-absorbing ideal of $G(R)$. Then $Gr(N:_{R} M)$ is a graded 2-absorbing ideal of $G(R)$, by Proposition [2.3.](#page-5-0) By [\[14,](#page-12-16) Lemma 2], $Gr(N :_{R} M) = (Gr_{M}(N) :_{R} M)$.

Hence $(Gr_M(N):_R M)$ is a graded 2-absorbing ideal of $G(R)$. By Theorem [2.2,](#page-4-1) since M is a Gr-multiplication R-module, we get that $Gr_M(N)$ is a graded 2-absorbing submodule of M.

PROPOSITION 2.5. Let R be a G-graded commutative ring and M be a Gr-multiplication R-module. Suppose that N and K are distinct graded prime submodules of M . Then the following statements hold:

(i) $(N:_{R} M) \cap (K:_{R} M)$ is a graded 2-absorbing ideal of $G(R)$;

(ii) $N \cap K$ is a graded 2-absorbing submodule of M.

Proof. [\(i\)](#page-6-0) Since N and K are graded prime submodules of M, by [\[4,](#page-12-3) Proposition 2.5], $(N:_{R} M)$ and $(K:_{R} M)$ are graded prime ideals of $G(R)$. Then $(N:_{R} M) \cap (K:_{R} M)$ is a graded 2-absorbing ideal of $G(R)$, by [\[13,](#page-12-11) Theorem 2.5].

[\(ii\)](#page-6-1) Since N and K are graded prime submodules of M, by [\[4,](#page-12-3) Proposition 2.5], $(N:_{R} M)$ and $(K:_{R} M)$ are graded prime ideals of $G(R)$. Then [\(i\)](#page-6-0) implies that $(N :_R M) \cap (K :_R M) = (N \cap K :_R M)$ is a graded 2-absorbing ideal, and hence $N \cap K$ is a graded 2-absorbing submodule by Theorem 2.2 $N \cap K$ is a graded 2-absorbing submodule by Theorem [2.2.](#page-4-1)

THEOREM 2.6. Let R be a G -graded commutative ring and M be a graded R -module. Suppose that N_1, \ldots, N_k are graded submodules of M. If N_1, \ldots, N_k are graded 2absorbing submodules of M, then $\bigcap_{i=1}^k N_i$ is a graded 2-absorbing submodule of M.

Proof. Let $a, b \in h(R)$ and $m \in h(M)$ such that $abm \in \bigcap_{i=1}^{k} N_i$ with $ab \notin (\bigcap_{i=1}^{k} N_i : R_i \cup \{b\})$ $M) = \bigcap_{i=1}^{k} (N_i :_R M)$. Then there exists i such that $ab \notin (N_i :_R M)$. Since $abm \in N_i$, $ab \notin (N_i :_R M)$ and N_i is a graded 2-absorbing submodule of M, we conclude that $am \in N_i$ or $bm \in N_i$. Then $am \in \bigcap_{i=1}^k N_i$ or $bm \in \bigcap_{i=1}^k N_i$. Therefore $\bigcap_{i=1}^k N_i$ is graded 2-absorbing.

THEOREM 2.7. Let R be a G -graded commutative ring, M be a graded R-module and N be a graded submodule of M . Suppose that N is a graded 2-absorbing submodule and $Gr(N :_R M) = P$ such that P is a graded prime ideal of $G(R)$. Then the following statements hold:

(i) If $m \in h(M) \setminus N$, then $Gr(N :_R m)$ is a graded prime ideal of $G(R)$ containing P; (ii) If $m, m' \in h(M) \setminus N$, then either $Gr(N :_R m) \subseteq Gr(N :_R m')$ or $Gr(N :_R m') \subseteq$ $Gr(N:_{R}m).$

Proof. [\(i\)](#page-6-2) Assume that $a, b \in h(R)$ such that $ab \in Gr(N :_R m)$. Then there exists some positive integer *n* such that $a^n b^n m \in N$. Since N is a graded 2-absorbing submodule of M, we conclude that $a^n b^n \in (N :_R M)$ or $a^n m \in N$ or $b^n m \in N$. If both these conditions hold, then we are done. Suppose that $a^n b^n \in (N :_R M)$. Since $a = \sum_{g \in G} a_g$ and $b = \sum_{g \in G} b_g$, and it is $a^n b^n = \sum_{g \in G} a_g^n b_g^n \in (N :_R M)$ for some smallest positive integer $n > 0$. Thus $ab \in Gr(N :_{R} M) = P$. Since P is a graded prime ideal, we have $a \in P$ or $b \in P$. Since $P = Gr(N :_R M) \subseteq Gr(N :_R m)$, we conclude that $a \in Gr(N :_{R} m)$ or $b \in Gr(N :_{R} m)$, as needed.

[\(ii\)](#page-6-3) Assume that $Gr(N :_R m) \nsubseteq Gr(N :_R m')$. Let $a \in Gr(N :_R m)$ and $b \in Gr(N :_R m')$ m') \subset $Gr(N : R \, m)$. Then there exists a smallest positive integer $n > 0$ such that $a_g^nm \in N$, $b_g^nm' \in N$ and $b_g^nm \notin N$ for $g \in G$. If $a_g^n(m+m') \in N$, then $a_g^n m' \in N$

for $g \in G$ and so $a^n m' = \sum_{g \in G} a_g^n m' \in N$. Thus $a \in Gr(N :_R m')$. Suppose that $a_g^n(m+m') \notin N$. Since N is a graded 2-absorbing submodule, $a_g^n b_g^n(m+m') \in N$ but $a_g^n(m+m') \notin N$ and $b_g^n(m+m') \notin N$, then $a^n b^n = \sum_{g \in G} a_g^n b_g^n \in (N :_R M)$ and so $ab \in Gr(N :_{R} M)$. Then $ab \in P$ where P is a graded prime ideal. Thus $a \in P$ or $b \in P$. If $b \in P$, then $bⁿm \in N$, which is a contradiction. If $a \in P$, then $a \in Gr(N :_{R} m')$, as needed.

THEOREM 2.8. Let R be a G -graded commutative ring, M be a graded R -module and N be a graded submodule of M. Suppose that N is a graded 2-absorbing submodule and $Gr(N :_R M) = P \cap Q$ such that P and Q are graded prime ideals of $G(R)$. Then the following statements hold:

(i) If $m \in h(M) \setminus N$ and $P \subseteq Gr(N :_R m)$, then $Gr(N :_R m)$ is a graded prime ideal of $G(R)$;

(ii) If $m, m' \in h(M) \setminus N$ and $P \subseteq Gr(N :_R m) \cap Gr(N :_R m')$, then either $Gr(N :_R m')$ $m) \subseteq Gr(N:_{R} m')$ or $Gr(N:_{R} m') \subseteq Gr(N:_{R} m)$.

Proof. The proof is similar to the proof of Theorem [2.7.](#page-6-4)

Let R be a G-graded ring, M be a graded R-module and N be a graded submodule of M. Recall that $(N :_M I) = \{m \in h(M) \mid mI \subseteq N\}$ and $(N :_M I^{\infty})$ are graded submodules of graded R-module M.

LEMMA 2.9. Let R be a G -graded commutative ring, M be a graded R -module and N be a graded submodule of M. Then $((N :_M I) :_R M) = ((N :_R M) :_M I)$.

THEOREM 2.10. Let R be a G-graded commutative ring, M be a graded R-module and N be a graded submodule of M. If N is a graded 2-absorbing submodule of M, then $(N :_M I)$ is a graded 2-absorbing submodule of M.

Proof. Assume that $abm \in (N :_M I)$ for some $a, b \in h(R)$ and $m \in h(M)$. Then *Iabm* ∈ N and hence, by Theorem [2.1](#page-2-2) [\(iv\),](#page-3-2) $Im ⊆ N$ or $abm ∈ N$ or $Iab ⊆ (N :_R N)$. If $Im \subseteq N$, then we are done by definition. If $Iab \in (N :_R M)$, then by Lemma [2.9,](#page-7-0) $ab \in ((N :_R M) :_M I) = ((N :_M I) :_R M)$. If $abm \in N$, then $ab \in (N :_R M)$ or am ∈ N or bm ∈ N. Since N is a graded 2-absorbing submodule, hence $Iab \subseteq (N : R)$ M) (so $ab \in ((N :_M I) :_R M)$) or $Iam \in N$ (so $am \in (N :_M I)$) or $Ibm \in N$ (so $bm \in (N : M I)$. Therefore $(N : M I)$ is a graded 2-absorbing submodule.

COROLLARY 2.11. Let N be a graded submodule of graded R-module M. If N is a graded 2-absorbing submodule, then N_r is a graded 2-absorbing submodule for every $r \in h(R) \setminus (N :_M r)$. Moreover, $(N :_M I^n) = (N :_M I^{n+1})$ for all $n \geq 2$.

Proof. Assume that $abm \in N_r = (N :_M r)$ for some $a, b \in h(R)$, $m \in h(M)$ and $r \in h(R) \setminus (N : M r)$. Then $ab(rm) \in N$. Since N is a graded 2-absorbing submodule, we conclude that $ab \in (N :_R M)$ or $a(rm) \in N$ or $b(rm) \in N$. If both these conditions hold, then we are done. If $ab \in (N :_R M) \subseteq (N_r :_R M)$, then $ab \in$ $(N_r :_R M)$. Therefore N_r is a graded 2-absorbing submodule of M for every $r \in$ $h(R) \setminus (N :_M r)$. Now suppose that $m \in (N :_M I^3)$ for $m \in h(M)$. Then $I^3m \subseteq N$. By Theorem [2.1](#page-2-2) [\(v\),](#page-3-3) $I^2m \subseteq N$ or $Im \subseteq N$ or $I^3 \subseteq (N :_R M)$. If the first two

conditions hold, then we are done. If $I^3 \subseteq (N :_R M)$, then $I^2 \subseteq (N :_R M)$. Since $(N:_{R} M)$ is a graded 2-absorbing ideal, by Theorem [2.2,](#page-4-1) then $(N:_{M} I^{3}) \subseteq (N:_{M} I^{2})$. The converse inclusion is obvious, so $(N :_M I^n) = (N :_M I^{n+1})$ for all $n \geq 2$.

THEOREM 2.12. Let R be a G -graded commutative ring, M be a graded R -module and N be a graded submodule of M. Suppose that $Gr(N :_R M)$ is a graded prime ideal with $Gr(N :_R M) \neq (N :_R M)$. If $(N_r :_R M)$ is a graded prime ideal such that $r \in Gr(N:_{R} M) \setminus (N:_{R} M)$, then $(N:_{R} M)$ is a graded 2-absorbing ideal of $G(R)$.

Proof. Assume that $rst \in (N :_R M)$ for some $r, s, t \in h(R)$ with $st \notin (N :_R M)$. Since $Gr(N :_R M)$ is a graded prime ideal, we may assume that $r \in Gr(N :_R M)$. If $r \in (N :_R M)$, then we are done. So we can suppose that $r \notin (N :_R M)$, and then $r \in Gr(N:_{R} M) \setminus (N:_{R} M)$. Since $(N_{r}:_{R} M)$ is a graded prime ideal and $rst \in (N_r :_R M)$, we conclude that $s \in (N_r :_R M)$ or $t \in (N_r :_R M)$. Hence $rs \in (N :_R M)$ or $rt \in (N :_R M)$.

THEOREM 2.13. Let R be a G -graded commutative ring, M be a graded R -module and N be a graded submodule of M. Suppose that $Gr(N : R m)$ is a graded prime ideal with $Gr(N :_{R} m) \neq (N :_{R} m)$ for all $m \in h(M) \setminus N$. If N_r is a graded prime submodule for $r \in Gr(N :_{R} m) \setminus (N :_{R} m)$, then N is a graded 2-absorbing submodule of M.

Proof. Assume that $r, s \in h(R)$ and $m \in h(M)$ such that $rsm \in N$. Then $rs \in (N :_R)$ m). Since $Gr(N :_{R} m)$ is a graded prime ideal, we may suppose that $r \in Gr(N :_{R} m)$. If $r \in (N :_R m)$, then we are done. Let $r \notin (N :_R m)$. Then $r \in Gr(N :_R m) \setminus (N :_R$ m). Since N_r is a graded prime submodule and sm $\in (N :_M r) = N_r$, we have $s \in (N_r :_R M)$ or $m \in N_r$ and so $rs \in (N :_R M)$ or $rm \in N$. Hence N is a graded 2-absorbing submodule of M.

THEOREM 2.14. Let R be a G -graded commutative ring, M be a graded R-module and N be a submodule of M . Then the following statements are equivalent: (i) N is a graded 2-absorbing submodule;

(ii) For every graded ideal I, J of $G(R)$ and every graded submodule K of M with $(K + IL) \cap S \neq \emptyset$, $(K + JL) \cap S \neq \emptyset$ and $(K + IJM) \cap S \neq \emptyset$ such that $S = M \setminus N$,

implies that $(K + IJL) \cap S \neq \emptyset$.

Proof. [\(i\)](#page-8-1) \Rightarrow [\(ii\)](#page-8-2) Let N be a graded 2-absorbing submodule. Suppose that I, J are graded ideals of $G(R)$ and K, L are graded submodules of M such that $(K+IL)\cap S \neq$ \emptyset , $(K+JL)\cap S\neq\emptyset$ and $(K+IJM)\cap S\neq\emptyset$. If $(K+IJL)\cap S=\emptyset$, then $(K+IJL)\subseteq N$ and so $IJL \subseteq N$. Since N is a graded 2-absorbing submodule, we conclude that *IL* \subseteq *N* or *JL* \subseteq *N* or *IJM* \subseteq *N*, by Theorem [2.1](#page-2-2) [\(ix\).](#page-3-7) Then $(K + IL) ∩ S = ∅$ or $(K + JL) \cap S = \emptyset$ or $(K + IJM) \cap S = \emptyset$, which are contradictions. Hence $(K + IJL) \cap S \neq \emptyset$, as needed.

[\(ii\)](#page-8-2) \Rightarrow [\(i\)](#page-8-1) Suppose that $IJL \subseteq N$ for some graded ideals I, J of $G(R)$ and some graded submodule L of M. We may assume that neither $IL \subseteq N$ nor $JL \subseteq N$ nor IJM ⊂ N. Then $(K + IL)$ \cap S \neq Ø, $(K + JL)$ \cap S \neq Ø and $(K + IJM)$ \cap S \neq Ø and hence $(K + IJL) \cap S \neq \emptyset$, which is a contradiction. Therefore N is a graded 2-absorbing submodule of M .

3. Graded classical 2-absorbing submodules

In this section we will define the concept of graded classical 2-absorbing submodules as a generalization of graded classical prime submodules. Also, we show a number of results of graded classical 2-absorbing submodules.

DEFINITION 3.1. Let R be a G-graded ring and M be a graded R-module. A proper graded submodule N of M is called a graded classical 2-absorbing submodule, if whenever $a, b, c \in h(R)$ and $m \in h(M)$ with $abcm \in N$, then either $abm \in N$ or $bcm \in N$ or $acm \in N$. It is denoted as ${}^{gr}\mathcal{C}l(2)$ -absorbing submodule.

LEMMA 3.2. Let R be a G -graded ring and M be a graded R -module. Then the following statements hold:

(i) Every graded classical prime submodule is a graded 2-absorbing submodule and a ${}^{gr}Cl(2)$ -absorbing submodule;

(ii) If N is a graded classical prime submodule, then $(N :_{R} M)$ is a graded prime ideal, [\[2,](#page-12-12) Lemma 3.1].

In what follows, we show the basic theorem on ${}^{gr}Cl(2)$ -absorbing submodules.

THEOREM 3.3. Let R be a G -graded ring, M be a graded R -module and N be a proper graded submodule of M. Suppose that N is a ${}^{gr}Cl(2)$ -absorbing submodule. Then the following statements hold:

(i) For all elements $a, b, c \in h(R)$ either $(N :_M abc) = (N :_M ab)$ or $(N :_M abc) =$ $(N :_M bc)$ or $(N :_M abc) = (N :_M ac);$

(ii) For all elements $a, b, c \in h(R)$ and every graded submodule K of M, abc $K \subseteq N$ implies that abK \subseteq N or bcK \subseteq N or acK \subseteq N;

(iii) For all elements $a, b \in h(R)$ and every graded submodule K of M, abK $\nsubseteq N$ implies that $(N :_R abK) = (N :_R aK)$ or $(N :_R abK) = (N :_R bK)$;

(iv) For all elements $a, b \in h(R)$, every graded ideal I of $G(R)$ and every graded submodule K of M, abIK $\subseteq N$ implies that abK $\subseteq N$ or aIK $\subseteq N$ or bIK $\subseteq N$;

(v) For every element $a \in h(R)$, every graded ideal I of $G(R)$ and every graded submodule K of M, aIK $\nsubseteq N$ implies that $(N :_R aIK) = (N :_R aK)$ or $(N :_R aK)$ aIK) = $(N:_{R}IK)$;

(vi) For every element $a \in h(R)$, every graded ideal I, J of $G(R)$ and every graded submodule K of M, aIJK $\subseteq N$ implies that aIK $\subseteq N$ or aJK $\subseteq N$ or IJK $\subseteq N$;

(vii) For every graded ideal I, J of $G(R)$ and every graded submodule K of M, IJK \nsubseteq N implies that $(N:_{R} IJK) = (N:_{R} IK)$ or $(N:_{R} IJK) = (N:_{R} JK);$

(viii) For every graded ideal I, J, P of $G(R)$ and every graded submodule K of M, $IJPK \subseteq N$ implies that $IJK \subseteq N$ or $JPK \subseteq N$ or $IPK \subseteq N$.

Proof. [\(i\)](#page-9-0) Assume that $abcm \in N$ for some $m \in h(M)$. Since N is a ${}^{gr}Cl(2)$ -absorbing submodule, we have $abm \in N$ or $bcm \in N$ or $acm \in N$. Then either $m \in (N :_M ab)$ or $m \in (N :_M bc)$ or $m \in (N :_M ac)$ and hence $(N :_M abc) = (N :_M ab)$ or $(N :_M abc) = (N :_M bc)$ or $(N :_M abc) = (N :_M ac)$.

[\(ii\)](#page-9-1) Assume that $abcK \subseteq N$ for some $a, b, c \in h(R)$ and some graded submodule K of M. Then $K \subseteq (N :_M abc)$ and so either $K \subseteq (N :_M ab)$ or $K \subseteq (N :_M bc)$ or

 $K \subseteq (N :_{M} ac)$, it follows from [\(i\).](#page-9-0) Hence either $abK \subseteq N$ or $bcK \subseteq N$ or $acK \subseteq N$, as needed.

[\(iii\)](#page-9-2) Assume that K is a graded submodule of M and $a, b \in h(R)$ are such that $abK \nsubseteq$ N. Let $x \in (N :_R abK)$ for some $x \in h(R)$ and thus $xabK \subseteq N$. Since $abK \nsubseteq N$, we have $xaK \subseteq N$ or $xbK \subseteq N$, what follows from [\(ii\).](#page-9-1) Then either $x \in (N :_R aK)$ or $x \in (N :_R bK)$ and hence $(N :_R abK) = (N :_R aK)$ or $(N :_R abK) = (N :_R bK)$. [\(iv\)](#page-9-3) Assume that $abIK \subseteq N$ for some $a, b \in h(R)$, some graded ideal I and some

graded submodule K of M; thus $I \subseteq (N :_R abK)$. If $abK \subseteq N$, then we are done, what follows from [\(iii\).](#page-9-2) If $abK \nsubseteq N$, then $I \subseteq (N :_R aK)$ or $I \subseteq (N :_R bK)$, what follows from [\(iii\).](#page-9-2) Hence either $aIK \subseteq N$ or $bIK \subseteq N$, as required.

The proof of the remaining parts is similar to the previous ones, so we omit it. \Box

THEOREM 3.4. Let R be a G-graded ring, M be a graded R-module and N be a proper graded submodule of M. Then N is a ${}^{gr}Cl(2)$ -absorbing submodule of M if and only if for every graded submodule K of M such that $K \nsubseteq N$, $(N :_R K)$ is a graded 2-absorbing ideal.

Proof. Assume that N is a ${}^{gr}Cl(2)$ -absorbing submodule of M. Let $a, b, c \in h(R)$ be such that $abc \in (N :_R K)$. Then $abcK \subseteq N$ and so $abK \subseteq N$ or $bcK \subseteq N$ or $acK \subseteq N$, by Theorem [3.3](#page-9-4) [\(ii\).](#page-9-1) Hence either $ab \in (N :_R K)$ or $bc \in (N :_R K)$ or $ac \in$ $(N :_{R} K)$. Therefore $(N :_{R} K)$ is a graded 2-absorbing ideal of $G(R)$. Conversely, suppose that $abcL \subseteq N$ for some $a, b, c \in h(R)$ and some graded submodule L of M. If $L \subseteq N$, then we are done. If $L \nsubseteq N$, then $abc \in (N :_R L)$. Since $(N :_R L)$ is a graded 2-absorbing ideal, we conclude that $ab \in (N :_R L)$ or $bc \in (N :_R L)$ or $ac \in (N :_R L)$. Then either $abm \in N$ or $bcm \in N$ or $acm \in N$ for some $m \in h(M) \cap L$, as needed. \Box

COROLLARY 3.5. Let R be a G-graded ring, M be a graded R-module and N be a proper graded submodule of M. If N is a ${}^{gr}Cl(2)$ -absorbing submodule of M, then $(N:_{R} M)$ is a graded 2-absorbing ideal of $G(R)$. Moreover, for every $m \in h(M) \setminus N$, $(N:_{R} m)$ is a graded 2-absorbing ideal of $G(R)$.

THEOREM 3.6. Let R be a G-graded ring, M be a graded R-module and N be a graded proper submodule of M. If N is a graded 2-absorbing submodule of M, then N is a ${}^{gr}Cl(2)$ -absorbing submodule. The converse is true if M is a Gr-multiplication R-module.

Proof. Assume that N is a graded 2-absorbing submodule. Let $a, b, c \in h(R)$ and $m \in h(M)$ be such that $abcm \in N$. Since N is a graded 2-absorbing submodule, we conclude that $ab \in (N :_R M)$ or $bcm \in N$ or $acm \in N$. If both cases are true, then we are done. If the first case holds, then $abm \in N$ and so N is ${}^{gr}Cl(2)$ -absorbing. Conversely, suppose that N is a ${}^{gr}Cl(2)$ -absorbing submodule of M. Then $(N :_R M)$ is a graded 2-absorbing ideal of $G(R)$, by Corollary [3.5.](#page-10-0) Since M is a Gr-multiplication R-module, by Theorem [2.2,](#page-4-1) N is a graded 2-absorbing submodule. \Box

THEOREM 3.7. Let R be a G-graded ring, M be a graded R-module and N be a proper graded submodule of M. Suppose that N is a ${}^{gr}Cl(2)$ -absorbing submodule. Then the following statements hold:

(i) For all elements $a, b, c \in h(R)$ either $(N :_M abc) = (N :_M ab)$ or $(N :_M abc) =$ $(N : _M bc)$ or $(N : _M abc) = (N : _M ac);$

(ii) For all elements $a, b \in h(R)$ and $m \in h(M)$, abm $\nsubseteq N$ implies that $(N :_R abm)$ = $(N:_{R}am)$ or $(N:_{R}abm) = (N:_{R}bm)$;

(iii) For all elements $a, b \in h(R)$, $m \in h(M)$ and every graded ideal I of $G(R)$, $abIm \subseteq N$ implies that $abm \subseteq N$ or $aIm \subseteq N$ or $bIm \subseteq N$;

(iv) For all elements $a \in h(R)$, $m \in h(M)$ and every graded ideal I of $G(R)$, aIm \nsubseteq N implies that $(N:_{R} aIm) = (N:_{R} am)$ or $(N:_{R} aIm) = (N:_{R} Im);$

(v) For all elements $a \in h(R)$, $m \in h(M)$ and all graded ideals I, J of $G(R)$, aIJm \subseteq N implies that aIm $\subseteq N$ or aJm $\subseteq N$ or IJm $\subseteq N$;

(vi) For all graded ideals I, J of $G(R)$ and every element of submodule $m \in h(M)$, $I Jm \nsubseteq N$ implies that $(N :_R I Jm) = (N :_R Im)$ or $(N :_R I Jm) = (N :_R Jm)$;

(vii) For all graded ideals I, J, P of $G(R)$ and every element $m \in h(M)$, IJP $m \subseteq N$ implies that $IJm \subseteq N$ or $JPm \subseteq N$ or $IPm \subseteq N$.

Proof. The complete proof is similar to the proof of Theorem [3.3.](#page-9-4)

THEOREM 3.8. Let R be a G-graded ring, M be a Gr-multiplication R-module and N be a graded submodule of M. Then the following statements are equivalent: (i) N is a ${}^{gr}Cl(2)$ -absorbing submodule;

(ii) For all graded submodules N_1, N_2 and N_3 of M and every element $m \in h(M)$, $N_1N_2N_3m \in N$ implies that $N_1N_2m \subseteq N$ or $N_2N_3m \subseteq N$ or $N_1N_3m \subseteq N$.

Proof. [\(i\)](#page-11-0) \Rightarrow [\(ii\)](#page-11-1) Suppose that $N_1N_2N_3m \in N$ for some graded submodules N_1, N_2 and N_3 of M and some $m \in h(M)$. Since M is a Gr-multiplication R-module, there exist graded ideals I_1, I_2 and I_3 of $G(R)$ such that $N_1 = I_1M$, $N_2 = I_2M$ and $N_3 = I_3M$. Then $I_1I_2I_3m \in N$ and so, by Theorem [3.7](#page-10-1) [\(vii\),](#page-11-2) either $I_1I_2m \subseteq N$ or $I_2I_3m \subseteq N$ or $I_1I_3m\subseteq N$. Hence either $N_1N_2m\subseteq N$ or $N_2N_3m\subseteq N$ or $N_1N_3m\subseteq N$.

[\(ii\)](#page-11-1) \Rightarrow [\(i\)](#page-11-0) Assume that $I_1I_2I_3m \in N$ for some graded ideals I_1, I_2 and I_3 of $G(R)$ and some $m \in h(M)$. Since M is a Gr-multiplication R-module, we obtain that $I_1M = N_1, N_2 = I_2M$ and $N_3 = I_3M$. Then the conclusion follows from [\(ii\).](#page-11-1)

THEOREM 3.9. Let R be a G -graded ring, M be a graded R -module and N be a submodule of M. Then the following statements are equivalent:

(i) N is a ${}^{gr}Cl(2)$ -absorbing submodule;

(ii) For all graded ideals I, J, P of $G(R)$ and all graded submodules K, L of M , with $(K + IJL) \cap S \neq \emptyset$, $(K + JPL) \cap S \neq \emptyset$ and $(K + IPL) \cap S \neq \emptyset$, $S = M \setminus N$, implies that $(K + IJPL) \cap S \neq \emptyset$.

Proof. [\(i\)](#page-11-3) \Rightarrow [\(ii\)](#page-11-4) Assume that N is a ^{gr}Cl(2)-absorbing submodule. Suppose that I, J, P are graded ideals and K, L are graded submodules such that $(K+IJL) \cap S \neq \emptyset$, $(K + JPL) \cap S \neq \emptyset$ and $(K + IPL) \cap S \neq \emptyset$. Let $(K + IJPM) \cap S = \emptyset$. Then $K + IJPL \subseteq N$ and so $K \subseteq N$ and $IJPL \subseteq N$. Since N is a ${}^{gr}Cl(2)$ -absorbing submodule, Theorem [3.3](#page-9-4) [\(viii\)](#page-9-5) implies that $IJL \subseteq N$ or $JPL \subseteq N$ or $IPL \subseteq N$. Suppose that $IJL \subseteq N$, then $(K + IJL) \cap S = \emptyset$, which is a contradiction. In the next two cases we can obtain a contradiction in a similar way.

[\(ii\)](#page-11-4) \Rightarrow [\(i\)](#page-11-3) Suppose that $IJPL \subseteq N$ for some graded ideals I, J, P of $G(R)$ and some graded submodules K, L of M. If neither $IJL \subseteq N$ nor $JPL \subseteq N$ nor $IPL \subseteq N$,

then $I J L \cap S \neq \emptyset$, $J P L \cap S \neq \emptyset$ and $I P L \cap S \neq \emptyset$ and thus $I J P L \cap S \neq \emptyset$, which is a contradiction. Hence either $IJL \subseteq N$ or $JPL \subseteq N$ or $IPL \subseteq N$. Therefore N is a $\mathcal{G}^{gr}\mathcal{C}l(2)$ -absorbing submodule.

ACKNOWLEDGEMENT. The authors would like to thank the referees for their valuable comments and suggestions on the earlier version of the manuscript which improved it a lot.

REFERENCES

- [1] K. Al-Zoubi, R. Abu-Dawwas, On graded 2-absorbing and weakly graded 2-absorbing submodules, J. Math. Sciences: Advances and Applications., 28 (2014), 45–60.
- [2] K. AL-Zoubi, M. Jaradat, R. Abu-Dawwas, On graded classical prime and graded prime submodules, Bull. Iranian Math. Soc., 41 (1) (2015), 217–225.
- [3] S. E. Atani, *On graded prime submodules*, Chiang Mai J. Sci., 33 (1) (2006), 3-7.
- [4] S. E. Atani, F. Farzalipour, On graded secondary modules, Turk. J. Math., 31 (2007), 371–378. [5] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75 (2007),
- 417–429.
- [6] M. Baziar, M. Behboodi, Classical primary submodules and decomposition theory of modules, J. Algebra Appl., 8 (3) (2009), 351–369.
- [7] M. Behboodi, A generalization of Baer's lower nilradical for modules, J. Algebra Appl., 6 (2) (2007), 337–353.
- [8] K. Hakan Oral, Ü. Tekir, A. G. Ağargün, On graded prime and primary submodules, Turk. J. Math., 35 (2011), 159–167.
- [9] H. Mostafanasab, E. Yetkin, Ü. Tekir, K.S.H. Oral, Classical 2-absorbing submodules of modules over commutative rings, Eur. J. Pure Appl. Math., 8 (3) (2015), 417–430.
- [10] C. Nastasescu, F. Van Oystaeyen, Graded Ring Theory, Mathematical Library 28, North Holand, Amsterdam, 1982.
- [11] S. Park, Some properties of Gr-multiplication modules, Korean J. Math., 20 (3) (2012), 315– 321.
- [12] M. Refai, M. Hailat, S. Obiedat, Graded radicals and graded prime spectra, Far East J. Math. Sci., part I (2000), 59–73.
- [13] F. Soheilnia, A. Yousefian Darani, On graded 2-absorbing primary and graded weakly 2 absorbing primary ideals, Kyugpook Math. J., 57 (2017), 559–580.
- [14] F. Soheilnia, A. Yousefian Darani, On graded 2-absorbing primary submodules of multiplication modules, Preprint.
- [15] A. Yousefian Darani, F. Soheilnia, On 2-absorbing and weakly 2-absorbing submodules, Thai J. Math., 9 (2011), 577–584.
- [16] A. Yousefian Darani, F. Soheilnia, On n-absorbing submodules, Math. Commun., 17 (2012), 547–557.

(received 25.12.2017; in revised form 09.06.2018; available online 28.07.2018)

Department of Mathematics, Imam Khomeini International University, Qazvin, Iran E-mail: soheilnia@gmail.com

Department of Mathematics and Applications, University of Mohaghegh Ardabili, 5619911367, Ardabil, Iran

E-mail: yousefian@uma.ac.ir