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EXISTENCE AND UNIQUENESS RESULTS FOR THREE-POINT
NONLINEAR FRACTIONAL (ARBITRARY ORDER) BOUNDARY

VALUE PROBLEM

Sachin Kumar, Ramesh Kumar Vats, Hemant Kumar Nashine

Abstract. We present here a new type of three-point nonlinear fractional boundary
value problem of arbitrary order of the form

cDqu(t) = f(t, u(t)), t ∈ [0, 1],

u(η) = u′(0) = u′′(0) = · · · = un−2(0) = 0, Ipu(1) = 0, 0 < η < 1,

where n − 1 < q ≤ n, n ∈ N, n ≥ 3 and cDq denotes the Caputo fractional derivative
of order q, Ip is the Riemann-Liouville fractional integral of order p, f : [0, 1] × R → R
is a continuous function and ηn−1 6= Γ(n)

(p+n−1)(p+n−2)...(p+1)
. We give new existence and

uniqueness results using Banach contraction principle, Krasnoselskii, Scheafer’s fixed point
theorem and Leray-Schauder degree theory. To justify the results, we give some illustrative
examples.

1. Introduction

Boundary value problems for differential equations of integer and non-integer order
have been addressed by several researchers. Differential equations of non-integer order
play important role to describe physical phenomena more accurately than the classical
integer order differential equation. The need for fractional order differential equations
stems in part from the fact that many phenomena cannot be modelled by differential
equations with integer derivatives. Some of the areas of present-day applications of
fractional calculus include Fluid Flow, Rheology, Dynamical Processes in self-similar
and porous structures, Diffusive Transport akin to diffusion, Electrical Networks,
Probability and Statistics, Control Theory of Dynamical Systems, Viscoelasticity,
Electrochemistry of Corrosion, Chemical Physics, Optics and Signal Processing, and
so on (see [4–7] and references therein).
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Existence of solutions to fractional differential equations have received consider-
able interest in recent years. There are several papers dealing with the existence and
uniqueness of solution to initial and boundary value problems of fractional order dif-
ferential equation. Using well known fixed point theorems, like Schauder’s fixed point
theorem, Leray-Schauder Theorem, and the Banach contraction mapping principle,
several results for linear and nonlinear equations have been obtained in the litera-
ture on fractional differential and integral equations (see, e.g., [1–7] and references
therein).

In 2011, Ahmed et al. [1] studied the following boundary value problem of frac-
tional order differential equations with three-point integral boundary conditions

cDqx(t) = f(t, x(t)), 0 < t < 1, 1 < q ≤ 2,

x(0) = 0, x(1) = α

∫ η

0

x(s) ds, 0 < η < 1,

where cDq denotes the Caputo fractional derivative of order q, and existence and
uniqueness results were proved.

In 2012, motivated by [1], Sudsutad et al. [5] discussed the existence and unique-
ness of the following boundary value problem with three-point fractional integral
boundary conditions

cDqx(t) = f(t, x(t)), t ∈ [0, 1], q ∈ (1, 2],

x(0) = 0, α[Ipx](η) = x(1), 0 < η < 1.

The results of [5] were complemented in [3] and extended to cover the multivalued
case.

Further, Tariboon et al. [6] considered the value x(η) for some η ∈ (0, T ), in-
stead of the value x(0), which appeared in all the above mentioned boundary value
problems. They proved existence and uniqueness results using Leray-Schauder’s non-
linear alternative for the following boundary value problem with fractional integral
boundary conditions

cDqx(t) = f(t, x(t)), 0 < t < T, q ∈ (1, 2],

x(η) = 0, Ipx(T ) = 0.

Motivated by above mentioned works, this paper deals with the existence and unique-
ness of solutions for the following three-point nonlinear fractional boundary value
problem of arbitrary order{

cDqu(t) = f(t, u(t)), 0 < t < 1;

u(η) = u′(0) = u′′(0) = · · · = un−2(0) = 0, Ipu(1) = 0,
(1)

where n−1 < q ≤ n, n ∈ N, n ≥ 3 and cDq denotes the Caputo fractional derivative of
order q, Ip is the Riemann-Liouville fractional integral of order p, f : [0, 1]×R→ R is a

continuous function and ηn−1 6= Γ(n)
(p+n−1)(p+n−2)...(p+1) . The novelty of this boundary

value problem lies in the fact that we have the arbitrary order of Caputo fractional
derivative. We denote X = C([0, 1],R) as the Banach space of all continuous functions
from [0, 1] into R with the norm ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}.

This paper is organized as follows: Section 2 is preliminary while Section 3 contains
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an auxiliary result that is used to get some existence and uniqueness results in Section
4. In the final Section 5, we illustrate some examples for validation of our results.

2. Preliminaries

In this section, we introduce notation, definitions of fractional calculus and prove a
lemma before stating our main results.

Definition 2.1. For a continuous function f : [0,∞)→ R, the Caputo derivative of
fractional order q is defined as

cDqf(t) =
1

Γ(n− q)

∫ t

0

(t− s)n−q−1f (n)(s) ds, n = [q] + 1

provided that f (n)(t) exists, where [q] denotes the integer part of the real number q.

Definition 2.2. The Riemann-Liouville fractional integral of order q for a continuous
function f(t) is defined as

Iqf(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s) ds, q > 0,

provided that such integral exists.

Lemma 2.3. ([2]) Let q > 0, then Iq cDqu(t) = u(t)+ c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,
for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, where n is the smallest integer greater than or
equal to q.

3. Auxiliary result

Here we present a supporting result for the existence result of the next section.

Lemma 3.1. Let ηn−1 6= Γ(n)
(p+n−1)(p+n−2)...(p+1) , n − 1 < q ≤ n, 0 < η < 1. Then for

y ∈ C([0, 1],R), the problem{
cDqu(t) = y(t), 0 < t < 1;

u(η) = u′(0) = u′′(0) = · · · = un−2(0) = 0, Ipu(1) = 0,
(2)

is equivalent to the integral equation

u(t) =
1

Γ(q)

∫ t

0

(t− s)q−1y(s) ds− 1

Γ(q)

∫ η

0

(η − s)q−1y(s) ds (3)

+
(ηn−1 − tn−1)Q

Γ(p+ q)

∫ 1

0

(1− s)p+q−1y(s) ds− Q(ηn−1 − tn−1)

Γ(p+ 1)Γ(q)

∫ η

0

(η − s)q−1y(s) ds

where

Q =
Γ(p+ n)

Γ(n)− ηn−1(p+ n− 1)(p+ n− 2) . . . (p+ 1)
. (4)
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Proof. In view of Lemma 2.3, we may reduce (2) to an equivalent integral equation

u(t) =
1

Γ(q)

∫ t

0

(t− s)q−1y(s) ds− c0 − c1t− c2t2 − · · · − cn−1t
n−1 (5)

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1.

From u′(0) = 0, it follows c1 = 0. Also, u′′(0) = 0 ⇒ c2 = 0. Continuing in this
way, we have un−2(0) = 0⇒ cn−2 = 0. Thus (5) becomes

u(t) =
1

Γ(q)

∫ t

0

(t− s)q−1y(s) ds− c0 − cn−1t
n−1.

u(η) = 0⇒ 1

Γ(q)

∫ η

0

(η − s)q−1y(s) ds− c0 − cn−1η
n−1 = 0. (6)

Now

Ip[u(t)] =
1

Γ(p)

∫ t

0

(t− s)p−1[Iqy(s)− c0 − cn−1s
n−1] ds

= IpIqy(t)− c0t
p

Γ(p+ 1)
− cn−1t

p+n−1Γ(n)

Γ(p+ n)

=
1

Γ(p+ q)

∫ t

0

(t− s)p+q−1y(s) ds− c0t
p

Γ(p+ 1)
− cn−1t

p+n−1Γ(n)

Γ(p+ n)
.

Ip[u(1)] = 0⇒ 1

Γ(p+ q)

∫ 1

0

(1− s)p+q−1y(s) ds− c0
Γ(p+ 1)

− cn−1Γ(n)

Γ(p+ n)
= 0. (7)

On solving (6) and (7) for c0, cn−1, we have:

cn−1 =
Q

Γ(p+ q)

∫ 1

0

(1− s)p+q−1y(s) ds− Q

Γ(p+ 1)Γ(q)

∫ η

0

(η − s)q−1y(s) ds

and c0 =
1

Γ(q)

∫ η

0

(η − s)q−1y(s) ds− ηn−1Q

Γ(p+ q)

∫ 1

0

(1− s)p+q−1y(s) ds

+
ηn−1Q

Γ(p+ 1)Γ(q)

∫ η

0

(η − s)q−1y(s) ds

where Q is defined in (4). On putting the values of ci in (5), we obtain the solution (3).
�

The converse of the above lemma follows from Definition 2.2 and Lemma 2.3.

In view of Lemma 3.1, the BVP (1) can be written as a fixed point problem. For
this, we consider the operator P : C([0, 1],R)→ C([0, 1],R) that is defined by

P (u)(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s)) ds− 1

Γ(q)

∫ η

0

(η − s)q−1f(s, u(s)) ds

+
(ηn−1 − tn−1)Q

Γ(p+ q)

∫ 1

0

(1− s)p+q−1f(s, u(s)) ds

− Q(ηn−1 − tn−1)

Γ(p+ 1)Γ(q)

∫ η

0

(η − s)q−1f(s, u(s)) ds. (8)
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To simplify and to our convenience, we put

Λ =
2

Γ(q + 1)
+

|Q|
Γ(p+ 1)Γ(q + 1)

+
|Q|

Γ(p+ q + 1)
. (9)

4. Main results

In this section, we develop four different types of results for existence and uniqueness
of the proposed nonlinear fractional differential equation (1). To complete the results,
we use Banach contraction principle, Krasnoselskii, Scheafer’s fixed point theorem and
Leray-Schauder degree theorem.

The first result is based on Banach contraction principle.

Theorem 4.1. (A) Assume that there exists a constant L > 0 such that |f(t, u) −
f(t, v)| ≤ L|u− v| for each t ∈ [0, 1], and all u, v ∈ R, and

(B) LΛ < 1, where Λ is defined by (9), then the BVP (1) has a unique solution
on [0, 1].

Proof. Obviously, fixed points of the operator P defined by (8) are solutions of the
problem (1). We shall prove that P is a contraction.

Let u, v ∈ C([0, 1],R), then for each t ∈ [0, 1], we have

|P (u)(t)−P (v)(t)| ≤ 1

Γ(q)

∫ t

0

(t− s)q−1|f(s, u(s))− f(s, v(s))| ds

+
1

Γ(q)

∫ η

0

(η − s)q−1|f(s, u(s))− f(s, v(s))| ds

+
|Q|

Γ(p+ q)

∫ 1

0

(1− s)p+q−1|f(s, u(s))− f(s, v(s))| ds

+
|Q|

Γ(p+ 1)Γ(q)

∫ η

0

(η − s)q−1|f(s, u(s))− f(s, v(s))| ds

≤L‖u− v‖
[

1

Γ(q)

∫ t

0

(t− s)q−1 ds+
1

Γ(q)

∫ η

0

(η − s)q−1 ds

+
|Q|

Γ(p+ 1)Γ(q)

∫ η

0

(η − s)q−1 ds+
|Q|

Γ(p+ q)

∫ 1

0

(1− s)p+q−1 ds

]
≤L‖u− v‖

[
1

Γ(q + 1)
+

1

Γ(q + 1)
+

|Q|
Γ(p+ 1)Γ(q + 1)

+
|Q|

Γ(p+ q + 1)

]
.

Thus ‖P (u)− P (v)‖ ≤ LΛ‖u− v‖. As LΛ < 1, P is a contraction, which satisfies all
the conditions of Banach Contraction Principle. Hence, P has a fixed point which is
a solution of the problem (1). �

We prove the following result by using Krasnoselskii’s fixed point theorem

Theorem 4.2. Let f : [0, 1] × R → R be a continuous function and assume that the
hypothesis (A) of Theorem 4.1 and the following hypotheses hold



S. Kumar, R. K. Vats, H. K. Nashine 319

(C) |f(t, u)| ≤ φ(t) for all (t, u) ∈ [0, 1]× R and φ ∈ C([0, 1],R+);

(D)

L

[
|Q|

Γ(p+ 1)Γ(q + 1)
+

|Q|
Γ(p+ q + 1)

]
< 1. (10)

Then the boundary value problem (1) has at least one solution defined on [0, 1].

Proof. Suppose supt∈[0,1] |φ(t)| = ‖φ‖; we fix ε ≥ ‖φ‖Λ and consider Bε = {u ∈
C([0, 1],R) : ‖u‖ ≤ ε}. We define the operators F1 and F2 on Bε as:

(F1u)(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s)) ds− 1

Γ(q)

∫ η

0

(η − s)q−1f(s, u(s)) ds, t ∈ [0, 1].

(F2u)(t) =
(ηn−1 − tn−1)Q

Γ(p+ q)

∫ 1

0

(1− s)p+q−1f(s, u(s)) ds

− Q(ηn−1 − tn−1)

Γ(p+ 1)Γ(q)

∫ η

0

(η − s)q−1f(s, u(s)) ds, t ∈ [0, 1].

For u, v ∈ Bε, we have:

‖F1u+ F2v‖ ≤
‖φ‖
Γ(q)

∫ t

0

(t− s)q−1 ds+
‖φ‖
Γ(q)

∫ η

0

(η − s)q−1 ds

+
‖φ‖ |ηn−1 − tn−1| |Q|

Γ(p+ q)

∫ 1

0

(1− s)p+q−1 ds

+
‖φ‖ |Q| |ηn−1 − tn−1|

Γ(p+ 1)Γ(q)

∫ η

0

(η − s)q−1 ds

≤ 2 ‖φ‖
Γ(q + 1)

+
‖φ‖ |Q|

Γ(p+ 1)Γ(q)
+
‖φ‖ |Q|
Γ(p+ q)

≤ ε.

Thus u, v ∈ Bε ⇒ F1u+ F2v ∈ Bε. From (A) and (10), F2 is a contraction mapping.
From the continuity of f , one obtains that the operator F1 is continuous. Also F1 is
uniformly bounded on Bε as

‖F1u‖ ≤
2 ‖φ‖

Γ(q + 1)
.

Now, we will prove that the operator F1 is compact. Define

sup
(t,u)∈[0,1]×Bε

|f(t, u)| = fs.

Then, we have

|(F1u)(t1)− (F1u)(t2)| =
∣∣∣∣ 1

Γ(q)

∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
f(s, u(s)) ds

+

∫ t2

t1

(t2 − s)q−1f(s, u(s)) ds

∣∣∣∣
≤ fs

Γ(q + 1)
|2(t2 − t1)q + tq1 − t

q
2|
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which is independent of u and tends to zero as t1 → t2. Thus F1 is equicontinuous.
Hence by Arzelá-Ascoli theorem, F1 is compact on Bε. Thus all the assumption of

Krasnoselskii’s fixed point theorem are satisfied. So the conclusion of Krasnoselskii’s
fixed point theorem implies that the boundary value problem (1) has at least one
solution defined on [0, 1]. �

The next result is based on Schaefer’s fixed point theorem.

Theorem 4.3. Assume that the function f : [0, 1] × R → R is continuous and the
following assumption holds.

(E) There exists a constant µ > 0 such that |f(t, u)| ≤ µ for each t ∈ [0, 1] and
u ∈ R.

Then the BVP (1) has at least one solution on [0, 1].

Proof. We divide the proof into four steps.
Step I. Continuity of P .
Let {un} be a sequence such that un → u in C([0, 1],R). Then for each t ∈ [0, 1]

|P (un)(t)−P (u)(t)| ≤ 1

Γ(q)

∫ t

0

(t− s)q−1|f(s, un(s))− f(s, u(s))| ds

+
1

Γ(q)

∫ η

0

(η − s)q−1|f(s, un(s))− f(s, u(s))| ds

+
|Q|

Γ(p+ q)

∫ 1

0

(1− s)p+q−1|f(s, un(s))− f(s, u(s))| ds

+
|Q|

Γ(p+ 1)Γ(q)

∫ η

0

(η − s)q−1|f(s, un(s))− f(s, u(s))| ds

≤ 1

Γ(q)

∫ t

0

(t− s)q−1 sup
s∈[0,1]

|f(s, un(s))− f(s, u(s))| ds

+
1

Γ(q)

∫ η

0

(η − s)q−1 sup
s∈[0,1]

|f(s, un(s))− f(s, u(s))| ds

+
|Q|

Γ(p+ q)

∫ 1

0

(1− s)p+q−1 sup
s∈[0,1]

|f(s, un(s))− f(s, u(s))| ds

+
|Q|

Γ(p+ 1)Γ(q)

∫ η

0

(η − s)q−1 sup
s∈[0,1]

|f(s, un(s))− f(s, u(s))| ds.

Since f is continuous function, then ‖P (un) − P (u)‖ → 0 as n → ∞. This means
that P is continuous.

Step II. P maps bounded sets into bounded sets in C([0, 1],R).
So, let us prove that for any ε > 0, there exists a positive constant M such that for
each u ∈ Bε = {u ∈ C([0, 1],R) : ‖u‖ ≤ ε}, we have ‖P (u)‖ ≤ M . Now, for any
u ∈ Bε, by using (8) and (E), we have:

|P (u)(t)| ≤ 1

Γ(q)

∫ t

0

(t− s)q−1|f(s, u(s))| ds+
1

Γ(q)

∫ η

0

(η − s)q−1|f(s, u(s))| ds
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+
|Q|

Γ(p+ q)

∫ 1

0

(1− s)p+q−1|f(s, u(s))| ds+
|Q|

Γ(p+ 1)Γ(q)

∫ η

0

(η − s)q−1|f(s, u(s))| ds

≤ µ

Γ(q)

∫ t

0

(t− s)q−1 ds+
µ

Γ(q)

∫ η

0

(η − s)q−1 ds+
µ|Q|

Γ(p+ q)

∫ 1

0

(1− s)p+q−1 ds

+
µ|Q|

Γ(p+ 1)Γ(q)

∫ η

0

(η − s)q−1 ds ≤ Λµ.

Thus, ‖P (u)‖ ≤ Λµ := M which implies that P maps bounded sets into bounded sets
in C([0, 1],R).

Step III. P (Bε) is equicontinuous with Bε defined as in step II.
Let 0 ≤ t1 < t2 ≤ 1 and u ∈ Bε. Using (8) and (E), we have:

|P (u)(t2)− P (u)(t1)| ≤ µ

Γ(q)

∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
ds

+
µ

Γ(q)

∫ t2

t1

(t2 − s)q−1 ds+
µ|Q| |tn−1

1 − tn−1
2 |

Γ(p+ 1)Γ(q)

∫ η

0

(η − s)q−1 ds

+
µ|tn−1

1 − tn−1
2 | |Q|

Γ(p+ q)

∫ 1

0

(1− s)p+q−1 ds

≤ µ

Γ(q + 1)
[(t2 − t1)q + (tq2 − t

q
1)] +

µ(t2 − t1)q

Γ(q + 1)

+
µ|Q| |tn−1

1 − tn−1
2 |

Γ(p+ q + 1)
+
µ|Q| |tn−1

1 − tn−1
2 |

Γ(p+ 1)Γ(q + 1)
.

As t1 → t2, the right-hand side of the above inequality tends to zero. As a consequence
of Steps I to III together with the Arzelá-Ascoli theorem, we get that P : C([0, 1],R)→
C([0, 1],R) is completely continuous.

Step IV. We show that the set

Θ = {u ∈ C([0, 1],R) : u = θP (u) for some 0 < θ < 1}
is bounded.

Let u ∈ Θ. Then u(t) = θP (u)(t) for some 0 < θ < 1. Now, for each t ∈ [0, 1],
using (8) and (E), we have

|u(t)| =|θP (u)(t)| ≤ θµ

Γ(q)

∫ t

0

(t− s)q−1 ds+
θµ

Γ(q)

∫ η

0

(η − s)q−1 ds

+
θµ|Q| |ηn−1 − tn−1|

Γ(p+ q)

∫ 1

0

(1− s)p+q−1 ds

+
θµ|Q| |ηn−1 − tn−1|

Γ(p+ 1)Γ(q)

∫ η

0

(η − s)q−1 ds

≤ µ

Γ(q + 1)
+

µ

Γ(q + 1)
+

µ|Q|
Γ(p+ q + 1)

+
µ|Q|

Γ(p+ 1)Γ(q + 1)
.

Hence, we get ‖u‖ ≤ Λµ := N .
This implies that the set Θ is bounded. By Schaefer’s fixed point theorem, P has a
fixed point which is a solution of the problem (1). �
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Our final existence result is based on Leray-Schauder degree theory.

Theorem 4.4. Let f : [0, 1]× R→ R be a continuous function. Assume that

(F) there exist constant 0 < k < 1
Λ where Λ is given by (9) and M > 0 such that

|f(t, u)| ≤ k|u|+M , ∀t ∈ [0, 1], u ∈ C[0, 1].

Then the boundary value problem (1) has at least one solution.

Proof. Let us consider the fixed point problem

Pu = u (11)

where P is defined by (8). In view of the fixed point problem (11) we just need to
prove the existence of at least one solution u ∈ C[0, 1] satisfying (11). Define a ball
Br ⊂ C[0, 1] with radius r > 0 as

Br =
{
u ∈ C[0, 1] : max

t∈[0,1]
|u(t)| < r

}
,

where r will be fixed later. Then, it is sufficient to show that F : Br → C[0, 1] satisfies

u 6= λPu, ∀u ∈ ∂Br, ∀λ ∈ [0, 1]. (12)

Let us define

G(λ, u) = λPu, ∀u ∈ C(R), λ ∈ [0, 1].

Then, by Arzelá-Ascoli Theorem, gλ(u) = u − G(λ, u) = u − λPu is completely
continuous. If (12) is true, then the following Leray-Schauder degrees are well defined
and by the homotopy invariance of topological degree, it follows that

deg(gλ, Br, 0) = deg(I − λP,Br, 0) = deg(g1, Br, 0)

= deg(g0, Br, 0) = deg(I,Br, 0) = 1 6= 0, 0 ∈ Br
where I denotes the unit operator. By the nonzero property of Leray-Schauder degree,
g1(t) = u− λPu = 0 for at least one u ∈ Br. In order to prove (12), we assume that
u = λPu, λ ∈ [0, 1]. Then for u ∈ ∂Br and t ∈ [0, 1] we have

|u(t)| =|λ(Pu)(t)|

≤ 1

Γ(q)

∫ t

0

(t− s)q−1|f(s, u(s))| ds+
1

Γ(q)

∫ η

0

(η − s)q−1|f(s, u(s))| ds

+
|Q|

Γ(p+ q)

∫ 1

0

(1− s)p+q−1|f(s, u(s))| ds

+
|Q|

Γ(p+ 1)Γ(q)

∫ η

0

(η − s)q−1|f(s, u(s))| ds

≤(k‖u‖+M)

[
1

Γ(q)

∫ t

0

(t− s)q−1 ds+
1

Γ(q)

∫ η

0

(η − s)q−1 ds

+
|Q|

Γ(p+ q)

∫ 1

0

(1− s)p+q−1 ds+
|Q|

Γ(p+ 1)Γ(q)

∫ η

0

(η − s)q−1 ds

]
≤(k‖u‖+M)Λ
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which, taking norm (supt∈[0,1] |u(t)| = ‖u‖) and solving for ‖u‖, yields

‖u‖ ≤ MΛ

1− kΛ
.

On taking r = MΛ
1−kΛ + 1, (12) holds. This completes the proof. �

5. Examples

In this section, we discuss some examples to illustrate our results (Theorem 4.1–
Theorem 4.4).

Example 5.1. Consider the first type of fractional differential equation

cD
9
2u(t) =

1

(t+ 7)2

|u(t)|
1 + |u(t)|

, t ∈ [0, 1] (13)

with three-point boundary value conditions

u(
1

10
) = 0, u′(0) = 0, I

7
2u(1) = 0. (14)

Here q = 9
2 ⇒ n = 5, η = 1

10 , p = 7
2 , ηn−1 = η4 = 1

10000 6=
Γ(n)

(p+n−1)(p+n−2)...(p+1) 6=
4

(p+1)(p+2)(p+3)(p+4) = 64
19305 = 0.003315 and f(t, u(t)) = 1

(t+10)2
|u(t)|

1+|u(t)| . As |f(t, u)−
f(t, v)| ≤ 1

49 |u− v|, (A) is satisfied with L = 1
49 . Further,

|Q| = Γ(p+ 5)

|Γ(5)− η4(p+ 4)(p+ 3)(p+ 2)(p+ 1)|
=

2027025
√
π

993.112
= 3617.73

and thus

LΛ = L

[
2

Γ(q + 1)
+

|Q|
Γ(p+ 1)Γ(q + 1)

+
|Q|

Γ(p+ q + 1)

]
=

1

49

[
64

945
√
π

+
3617.73× 29

99225π
+

3617.73

7!

]
=

1

49
[0.0382 + 5.9420 + 0.7178] ≈ 0.1366 < 1.

Hence all the conditions of Theorem 4.1 are satisfied, and therefore the boundary
value problem (13)-(14) has a unique solution on [0, 1].

Example 5.2. Consider the following fractional differential equation

cD
5
2u(t) =

1

(t+ 8)2
sinu, t ∈ [0, 1] (15)

with three-point boundary value conditions

u(
1

4
) = 0, u′(0) = 0, I

1
2u(1) = 0. (16)

Here η = 1
4 , q = 5

2 , p = 1
2 , ηn−1 = η2 = 1

16 6=
Γ(n)

(p+n−1)(p+n−2)...(p+1) = 2
(p+1)(p+2) =

8
15 , f(t, u) = 1

(t+8)2 sinu. Clearly, |f(t, u) − f(t, v)| ≤ 1
64 | sinu − sin v| ≤ 1

64 |u − v|.
Thus (A) is satisfied with L = 1

64 > 0. Also, |f(t, u)| ≤ 17
16 = φ(t) ,i.e., (C) is satisfied.
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Here

|Q| = Γ(p+ 3)

|Γ(3)− η2(p+ 2)(p+ 1)|
=

120
√
π

113

and thus

L

{
|Q|

Γ(p+ 1)Γ(q + 1)
+

|Q|
Γ(p+ q + 1)

}
=

1

64

[
120× 16

113× 15×
√
π

+
120
√
π

113× 6

]
= 0.0148 < 1.

Hence, all the conditions of Theorem 4.2 are satisfied and consequently the boundary
value problem (15)-(16) has at least one solution on [0, 1].

Example 5.3. Consider the following three-point fractional integral boundary value
problem

cD
9
4u(t) =

8t2

9
+
e−2t cos t

10 + sinu
, t ∈ [0, 1] (17)

with

u(
1

3
) = 0, u′(0) = 0, I

4
5u(1) = 0. (18)

Here η = 1
3 , q = 9

4 , p = 4
5 , ηn−1 = η2 = 1

9 6=
Γ(n)

(p+n−1)(p+n−2)...(p+1) = 2
(p+1)(p+2) = 25

43 ,

f(t, u) = 8t2

9 + e−2t cos t
10+sinu . Clearly, |f(t, u)| ≤ 8

9 + 1
9 = 1 = µ.

Thus, all the conditions of Theorem 4.3 are satisfied and hence the boundary value
problem (17)-(18) has at least one solution on [0, 1].

Example 5.4. Consider the following fractional differential equation

cD
5
2u(t) =

1

100π
sin(2πu)

|u(t)|
4(1 + |u(t)|)

+
3

4
, t ∈ [0, 1] (19)

with three-point boundary value conditions

u(
1

2
) = 0, u′(0) = 0, I

3
2u(1) = 0. (20)

Here q = 5
2 ⇒ n = 3, η = 1

2 , p = 3
2 , ηn−1 = η2 = 1

4 6=
Γ(n)

(p+n−1)(p+n−2)...(p+1) =
2

(p+2)(p+1) = 8
35 and f(t, u(t)) = 1

100π sin(2πu) |u(t)|
4(1+|u(t)|) + 3

4 . As |f(t, u)| ≤ 1
50 |u|+ 1,

therefore (F) is satisfied with k = 1
50 and M = 1. Further,

|Q| = Γ(p+ 3)

|Γ(3)− η2(p+ 2)(p+ 1)|
=

105
√
π

3

k =
1

50
≤ 1

Λ
= L

[
2

Γ(q + 1)
+

|Q|
Γ(p+ 1)Γ(q + 1)

+
|Q|

Γ(p+ q + 1)

]
=

[
16

15
√
π

+
35× 25

45
√
π

+
105
√
π

3× 24

]−1

≈ 0.034946.

Hence all the conditions of Theorem 4.4 are satisfied, therefore the boundary value
problem (19)-(20) has at least one solution on [0, 1].
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