MATEMATIČKI VESNIK МАТЕМАТИЧКИ ВЕСНИК 70, 4 (2018), [283–](#page-0-0)[291](#page-8-0) December 2018

research paper оригинални научни рад

ON VIABILITY RESULT FOR FIRST-ORDER FUNCTIONAL DIFFERENTIAL INCLUSIONS

Myelkebir Aitalioubrahim

Abstract. We prove the existence of solutions, in separable Banach spaces, for the following differential inclusion:

$$
\begin{cases}\n\dot{x}(t) \in F(t, T(t)x), & \text{a.e. on } [0, \tau]; \\
x(s) = \varphi(s), & \forall s \in [-a, 0]; \\
x(t) \in C(t), & \forall t \in [0, \tau];\n\end{cases}
$$

We consider weaker hypotheses on the constraint.

1. Introduction

Let E be a separable Banach space with the norm $\|\cdot\|$. For I a segment in R, we denote by $\mathcal{C}(I, E)$ the Banach space of continuous functions from I to E equipped with the norm $||x(\cdot)||_{\infty} := \sup \{||x(t)||; t \in I\}$. For a positive number a, we put $\mathcal{C}_a := \mathcal{C}([-a, 0], E)$ and for any $t \in [0, \tau], \tau > 0$, we define the operator $T(t)$ from $\mathcal{C}([-a,\tau],E)$ to \mathcal{C}_a with $(T(t)(x(.))) (s) := (T(t)x)(s) := x(t+s), s \in [-a,0].$

The goal of this paper is to prove the existence of solutions to the following functional differential inclusion:

$$
\begin{cases}\n\dot{x}(t) \in F(t, T(t)x), & \text{a.e. on } [0, \tau]; \\
x(s) = \varphi(s), & \forall s \in [-a, 0]; \\
x(t) \in C(t), & \forall t \in [0, \tau];\n\end{cases}
$$
\n(1)

where F is a closed-valued multifunction, measurable with respect to the first argument and Lipschitz continuous with respect to the second argument, C is a set-valued map and φ is a given function in \mathcal{C}_a .

In [\[5,](#page-8-1)[6\]](#page-8-2), Haddad first studied functional differential inclusions when the right-hand side is upper semicontinuous with convex and compact values. However, the space of

²⁰¹⁰ Mathematics Subject Classification: 34A60, 49J52

Keywords and phrases: Multifunction; measurability; selection; functional differential inclusion.

state constraints is finite dimensional. The infinite dimensional case was studied by many authors under convex assumption on the set-valued map. In this context, we refer to Syam [\[9\]](#page-8-3), Gavioli and Malaguti [\[4\]](#page-8-4) and the reference therein.

For the nonconvex case in separable Banach space Duc Ha has established in [\[3\]](#page-8-5) the existence of viable solutions to (1) regardless of whether C is fixed and F is a closed-valued multifunction, integrably bounded, measurable with respect to the first argument and Lipschitz continuous with respect to the second argument. The author has established a multi-valued version of Larrieu's work [\[7\]](#page-8-6). Lupulescu and Necula [\[8\]](#page-8-7) have extended Duc Ha's work to functional differential inclusions, but under the same hypotheses on F with C always fixed. They used the same kind of tangential condition. In [\[1\]](#page-8-8), we extended results which are presented in [\[3,](#page-8-5)[8\]](#page-8-7). Indeed, we have got an existence result, in a separable Banach space, for first-order functional differential inclusions, under the same hypotheses on F. The set-valued map $C: [-1,1] \to 2^E$ is lower semicontinuous with compact graph. The tangency condition is weaker than the one used in [\[3,](#page-8-5) [8\]](#page-8-7).

This work extends the last result in [\[1\]](#page-8-8). Indeed, we consider weaker growth condition for the right hand side and we suppose simply that the graph of $C : [0,1] \to 2^E$ is closed. Moreover, in this paper, we use another argument based on Brezis-Browder Theorem.

The paper is organized as follows. In Section [2,](#page-1-0) we recall some preliminary facts that we need in the sequel. In Section [3,](#page-2-0) we prove the existence of solutions for [\(1\)](#page-0-1).

2. Preliminaries and statement of the main result

For measurability purpose, E (resp. $\Omega \subset E$) is endowed with the σ -algebra $B(E)$ (resp. $B(\Omega)$) of Borel subsets for the strong topology and [0, 1] is endowed with Lebesgue measure and the σ -algebra of Lebesgue measurable subsets. For $x \in E$ and $r > 0$ let $B(x,r) := \{y \in E : ||y-x|| < r\}$ be the open ball centered at x with radius r and $\overline{B}(x, r)$ be its closure and put $B = B(0, 1)$. For $x \in E$ and for nonempty subsets A, B of E we denote $d_A(x)$ or $d(x, A)$ the real inf $\{||y - x||; y \in A\}$, $e(A, B) :=$ $\sup \{d_B(x); x \in A\}$ and $H(A, B) = \max \{e(A, B), e(B, A)\}.$ A multifunction is said to be measurable if its graph is measurable.

Let us recall the following lemmas that will be used in the sequel.

LEMMA 2.1. ([\[11\]](#page-8-9)) Let Ω be a nonempty set in E. Assume that $F : [a, b] \times \Omega \to 2^E$ is a multifunction with nonempty closed values satisfying:

- For every $x \in \Omega$, $F(\cdot, x)$ is measurable on [a, b];
- For every $t \in [a, b]$, $F(t, \cdot)$ is (Hausdorff) continuous on Ω .

Then for any measurable function $x(\cdot) : [a, b] \to \Omega$, the multifunction $F(\cdot, x(\cdot))$ is measurable on [a, b].

LEMMA 2.2. ([\[11\]](#page-8-9)) Let $G : [a, b] \rightarrow 2^E$ be a measurable multifunction and $y(\cdot): [a, b] \to \mathbb{E}$ a measurable function. Then for any positive measurable function $r(\cdot): [a, b] \to \mathbb{R}^+$, there exists a measurable selection $g(\cdot)$ of G such that for almost $all t ∈ [a, b] \|g(t) - y(t)\| ≤ d(y(t), G(t)) + r(t).$

LEMMA 2.3. ([\[2\]](#page-8-10)) Let \preceq be a given preorder on the nonempty set B and let $\phi : \mathcal{B} \to$ $\mathbb{R} \cup \{+\infty\}$ be an increasing function. Suppose that each increasing sequence in B is majorated in B. Then, for each $x_0 \in \mathcal{B}$, there exists $x_1 \in \mathcal{B}$ such that $x_0 \preceq x_1$ and $\phi(x_1) = \phi(x)$ if $x_1 \preceq x$.

The above function ϕ is supposed to be finite and bounded from above in [\[2\]](#page-8-10), but this restriction can be removed by replacing ϕ by the function $x \mapsto \arctan \phi(x)$ (see [\[10\]](#page-8-11)).

For given measurable functions $v(\cdot) : [0,1] \to E$ and $\rho(\cdot) : [0,1] \to \mathbb{R}^+$, we need the following notation

$$
S_{v,\rho}(\psi) := \left\{ f \in L^1([0,1], E) : f(s) \in F(s, \psi) \text{ and } \right\}
$$

$$
||f(s) - v(s)|| \leq d(v(s), F(s, \psi)) + \rho(s) \text{ for all } s \in [0,1] \right\},
$$

where $\psi \in \mathcal{C}_a$.

We shall use the following hypotheses throughout this paper.

- (H1) $C : [0,1] \to 2^E$ is a set-valued map with closed graph and $\mathcal{K} : [0,1] \to \mathcal{C}_a$ is a set-valued map defined by $\mathcal{K}(t) = \{ \varphi \in \mathcal{C}_a, \varphi(0) \in C(t) \};$
- (H2) $F: Gr(K) \to 2^E$ is a set-valued map with nonempty closed values satisfying
	- (i) $t \mapsto F(t, \psi)$ is measurable,
	- (ii) there exists a function $m(\cdot) \in L^1([0,1], \mathbb{R}^+)$ such that for all $t \in [0,1]$ and $\psi_1, \psi_2 \in \mathcal{K}(t)$

$$
H(F(t, \psi_1), F(t, \psi_2)) \le m(t) \|\psi_1 - \psi_2\|_{\infty},
$$

- (iii) There exist $g(\cdot), p(\cdot) \in L^1([0,1], \mathbb{R}^+)$ such that for all $t \in [0,1]$ and $\psi \in \mathcal{K}(t)$ $\|F(t, \psi)\| := \sup$ $\sup_{y \in F(t,\psi)} \|y\| \leq g(t) + p(t) \|\psi\|_{\infty}.$
- (H3) (**Tangential condition**) For each measurable function $v(\cdot) : [0, 1] \rightarrow E$, for all $\rho > 0, t \in [0, 1]$ and $\psi \in \mathcal{K}(t)$, there exists $f \in S_{v,\rho}(\psi)$ such that

$$
\liminf_{h\to 0^+}\frac{1}{h}d\bigg(\psi(0)+\int_t^{t+h}f(s)ds, C(t+h)\bigg)=0.
$$

REMARK 2.4. If F satisfies the condition $(H2)$, by Lemma [2.1](#page-1-1) and Lemma [2.2,](#page-2-2) the set $S_{v,\rho}(\psi)$ is nonempty.

In the next section, we shall prove the following result.

THEOREM 2.5. If assumptions $(H1)$ – $(H3)$ are satisfied, then there exists $\tau > 0$ such that for all $(x_0, \varphi) \in C(0) \times C_a$, $\varphi(0) = x_0$, there exists an absolutely continuous function $x(\cdot): [0, \tau] \to E$ such that $x(\cdot)$ is a solution of [\(1\)](#page-0-1).

3. Proof of the main result

Throughout the paper, fix $\varphi \in \mathcal{C}_a$ such that $\varphi(0) = x_0 \in C(0)$. Let $\tau_1, \tau_2, \tau_3 > 0$ be such that

$$
\int_0^{\tau_1} m(t) dt < 1, \quad \int_0^{\tau_2} g(t) dt < 1 \text{ and } \int_0^{\tau_3} p(t) dt < \frac{1}{2}.
$$
 (2)

Put $\tau = \inf{\tau_1, \tau_2, \tau_3, 1}$. For $\varepsilon > 0$ set $\eta(\varepsilon) := \sup \bigg\{ \rho \in]0, \varepsilon] : \bigg|$ $\int_0^{t_2}$ $(g(s) + Mp(s)) ds$

$$
|\varphi(t_1) - \varphi(t_2)| < \varepsilon, \text{ if } |t_1 - t_2| \le \rho \} \tag{3}
$$

 $<\varepsilon$ and

where $M = 4\|\varphi\|_{\infty} + 2a + 2$.

For all $0 < \varepsilon < a$ and $v(\cdot) \in L^1([0,1], E)$, set $\mathcal{B}(\varepsilon, v(\cdot))$ for the set of all 4-tuples $(f, x, \theta, u)_d$ where $d \in]0, \tau]$, $f(\cdot), u(\cdot) \in L^1([0, d], E)$, $x(\cdot) : [-a, d] \to E$ is a continuous mapping and $\theta(\cdot) : [0, d] \to [0, d]$ is a step function such that

- (i) $x(t) = x_0 + \int_0^t (u(s) + f(s)) ds$ for all $t \in [0, d]$;
- (ii) $f(t) \in F(t, T(\theta(t))x)$, $u(t) \in \varepsilon B$, $0 \le t \theta(t) \le \frac{1}{4}\eta(\frac{\varepsilon}{4})$, $x(\theta(t)) \in C(\theta(t))$ for all $t \in [0, d];$
- (iii) $x(d) \in C(d)$;
- (iv) $|| f(t) v(t) || \leq d(v(t), F(t, T(\theta(t))x) + \varepsilon$ for all $t \in [0, d];$
- (v) $||x(t) x_0 \int_0^t f(\tau) d\tau|| \leq \varepsilon t$ for all $t \in [0, d]$.

PROPOSITION 3.1. If the assumptions $(H1)-(H3)$ $(H1)-(H3)$ are satisfied, then for all $0 < \varepsilon < a$. and $v(\cdot) \in L^1([0,1], E)$, there exists at least one $(f, x, \theta, u)_{\tau} \in \mathcal{B}(\varepsilon, v(\cdot))$.

Proof. Let $0 < \varepsilon < a$ and $v(\cdot) \in L^1([0,1], E)$ be fixed. Put $x(t) = \varphi(t)$, $\forall t \in [-a, 0]$. By the tangential condition, there exist $f_0 \in S_{v,\varepsilon}(T(0)x)$ and $h_0 \in]0, \inf\{\tau, \frac{1}{4}\eta(\frac{\varepsilon}{4})\}],$ such that

$$
\frac{1}{h_0}d\bigg(x_0+\int_0^{h_0}f_0(s)\,ds,\,C(h_0)\bigg)\leq \frac{\varepsilon}{2}.
$$

Then there exists $x_1 \in C(h_0)$ such that

Set

$$
\frac{1}{h_0} \|x_1 - x_0 - \int_0^{h_0} f_0(s) ds \| \le \varepsilon.
$$

$$
u_0 = \frac{1}{h_0} \left(x_1 - x_0 - \int_0^{h_0} f_0(s) ds \right)
$$

.

Hence, we get $x_1 = x_0 + h_0 u_0 + \int_0^{h_0} f_0(s) ds$. We take $d_0 = h_0$, $u_0(s) = u_0$ and $x_0(t) = x_0 + \int_0^t (u_0(s) + f_0(s)) ds$, $\forall t \in [0, d_0]$. Then one has, for all $t \in [0, d_0]$,

$$
\left\|x_0(t) - x_0 - \int_0^t f_0(s) ds\right\| = \left\|\int_0^t u_0(s) ds\right\| \leq \varepsilon t.
$$

Set $\theta_0(t) = 0$ for all $t \in [0, d_0]$. It is clear that $(f_0, x_0, \theta_0, u_0)_{d_0} \in \mathcal{B}(\varepsilon, v(\cdot))$. Thus $\mathcal{B}(\varepsilon, v(\cdot)) \neq \emptyset$. Now, consider the following preorder:

 $(f_1, x_1, \theta_1, u_1)_{d_1} \preceq (f_2, x_2, \theta_2, u_2)_{d_2}$

 $\Leftrightarrow d_1\leq d_2,\, f_1=f_2|_{[0,d_1]},\, x_1=x_2|_{[0,d_1]},\, \theta_1=\theta_2|_{[0,d_1]},\, u_1=u_2|_{[0,d_1]}$

and let $\phi : \mathcal{B}(\varepsilon, v(\cdot)) \to \mathbb{R}$ be the function defined by $\phi((f, x, \theta, u)_d) = d$ for all $(f, x, \theta, u)_d \in \mathcal{B}(\varepsilon, v(\cdot))$. We remark that ϕ is increasing on $\mathcal{B}(\varepsilon, v(\cdot))$.

Now, if $((f_i, x_i, \theta_i, u_i)_{d_i})_{i \in \mathbb{N}}$ is an increasing sequence in $\mathcal{B}(\varepsilon, v(\cdot))$, we construct a majorant of $((f_i, x_i, \theta_i, u_i)_{d_i})$ as follows:
 $i \in \mathbb{N}$

$$
d = \lim_{i} d_i, \ f(t) = f_i(t), \ \theta(t) = \theta_i(t), \ u(t) = u_i(t), \ \forall t \in [0, d_i]
$$

and $x(t) = x_0 + \int^t$ 0 $(u(s) + f(s)) ds, \forall t \in [0, d].$

We claim that $(f, x, \theta, u)_d \in \mathcal{B}(\varepsilon, v(\cdot))$. Indeed, for all $i \in \mathbb{N}$, we have $x(d_i) = x_i(d_i) \in$ $C(d_i)$. Since the graph of C is closed, we get $x(d) \in C(d)$. The other assertions are obvious.

Next, for applying Lemma [2.3,](#page-2-5) we need the following proposition.

PROPOSITION 3.2. For all $(f, x, \theta, u)_d \in \mathcal{B}(\varepsilon, v(\cdot))$ with $d < \tau$, there exists $(\bar{f}, \bar{x}, \bar{\theta}, \bar{u})_{\bar{d}} \in$ $\mathcal{B}(\varepsilon, v(\cdot))$ such that $(f, x, \theta, u)_d \preceq (\overline{f}, \overline{x}, \overline{\theta}, \overline{u})_{\overline{d}}$ and $\phi((f, x, \theta, u)_d) < \phi((\overline{f}, \overline{x}, \overline{\theta}, \overline{u})_{\overline{d}})$.

Proof. Let $(f, x, \theta, u)_d \in \mathcal{B}(\varepsilon, v(\cdot))$ with $d < \tau$. For $x(d) \in C(d)$, by the tangential condition, there exist $\tilde{f} \in S_{v,\varepsilon}(T(d)x)$ and $h \in]0, \inf\{\tau - d, \frac{1}{4}\eta(\frac{\varepsilon}{4})\}]$, such that

$$
\frac{1}{h}d\bigg(x(d) + \int_{d}^{d+h} \tilde{f}(s) ds, C(d+h)\bigg) \le \frac{\varepsilon}{2}
$$

.

Then there exists $x_1 \in C(d+h)$ such that

$$
\frac{1}{h} \left\| x_1 - x(d) - \int_d^{d+h} \tilde{f}(s) ds \right\| \le \varepsilon.
$$
\nPut

\n
$$
u_1 = \frac{1}{h} \left(x_1 - x(d) - \int_d^{d+h} \tilde{f}(s) ds \right).
$$

Then, we have $x_1 = x(d) + hu_1 + \int_d^{d+h} \tilde{f}(s) ds$. Next, set $\bar{d} = d + h$, $\tilde{x}(t) = x(d) +$ $(t-d)u_1 + \int_d^t \tilde{f}(s) ds$, $\tilde{u}(t) = u_1$ and $\tilde{\theta}(t) = d$ for all $t \in [d, d]$. We define \bar{f} , \bar{x} and $\bar{\theta}$ as follows:

$$
\bar{f}(t) = f(t), \ \bar{x}(t) = x(t), \ \bar{\theta}(t) = \theta(t), \ \bar{u}(t) = u(t), \text{ for all } t \in [0, d]
$$

and $\bar{f}(t) = \tilde{f}(t), \ \bar{x}(t) = \tilde{x}(t), \ \bar{\theta}(t) = \tilde{\theta}(t), \ \bar{u}(t) = \tilde{u}(t), \text{ for all } t \in]d, \bar{d}].$ We can easily show that, for all $t \in [0, \overline{d}],$

$$
\bar{x}(t) = x_0 + \int_0^t (\bar{u}(s) + \bar{f}(s)) ds.
$$

Then for all $t \in [0, \bar{d}],$

$$
\left\|\bar{x}(t)-x_0-\int_0^t \bar{f}(s)\,ds\right\|\leq\varepsilon t.
$$

Finally, we conclude that $(\bar{f}, \bar{x}, \bar{\theta}, \bar{u})_{\bar{d}} \in \mathcal{B}(\varepsilon, v(\cdot)), (f, x, \theta, u)_{d} \preceq (\bar{f}, \bar{x}, \bar{\theta}, \bar{u})_{\bar{d}}$ and $\phi((f, x, \theta, u)_d) < \phi((\bar{f}, \bar{x}, \bar{\theta}, \bar{u})_{\bar{d}}).$ $(\bar{\theta}, \bar{u})_{\bar{d}}$).

Now, we are ready to complete the proof of Proposition [3.1.](#page-3-0) From Lemma [2.3,](#page-2-5) there exists $(f, x, \theta, u)_d \in \mathcal{B}(\varepsilon, v(\cdot))$ such that $\phi((f, x, \theta, u)_d) = \phi((\bar{f}, \bar{x}, \bar{\theta}, \bar{u})_{\bar{d}})$ and $(f, x, \theta, u)_d \preceq (\bar{f}, \bar{x}, \bar{\theta}, \bar{u})_{\bar{d}}$ for all $(\bar{f}, \bar{x}, \bar{\theta}, \bar{u})_{\bar{d}} \in \mathcal{B}(\varepsilon, v(\cdot))$. Moreover, if $\phi((f, x, \theta, u)_d)$ τ , by the Proposition [3.2,](#page-4-0) there exists $(\bar{f}, \bar{x}, \bar{\theta}, \bar{u})_{\bar{d}} \in \mathcal{B}(\varepsilon, v(\cdot))$ such that $(f, x, \theta, u)_d \leq$ $(\overline{f}, \overline{x}, \overline{\theta}, \overline{u})_{\overline{d}}$ and $\phi((f, x, \theta, u)_d) < \phi((\overline{f}, \overline{x}, \overline{\theta}, \overline{u})_{\overline{d}})$. Hence $\phi((f, x, \theta, u)_d) = \tau$.

Now, we are prepared to prove our Theorem [2.5.](#page-2-6) Let $(\varepsilon_n)_{n\geq 1}$ be a strictly decreasing sequence of positive scalars such that $0 < \varepsilon_n < a, n \geq 1$, and $\sum_{n=1}^{\infty} \varepsilon_n < \infty$. In view of Proposition [3.1,](#page-3-0) we can define inductively sequences $(f_n(\cdot))_{n\geq 1} \subset L^1([0,\tau],E)$, $(x_n(\cdot))_{n\geq 1} \subset \mathcal{C}([-a,\tau],E)$, and $(\theta_n(\cdot))_{n\geq 1}, \subset S([0,\tau],[0,\tau])$, where $S([0,\tau],[0,\tau])$ denotes the space of step functions from $[0, \tau]$ into $[0, \tau]$ such that

- (A1) $x_n(\cdot) \in C^1([0,\tau]), f_n(t) \in F(t, T(\theta_n(t))x_n), x_n(\theta_n(t)) \in C(\theta_n(t)), 0 \le t - \theta_n(t) \le$ $\frac{1}{4}\eta(\frac{\varepsilon_n}{4})$ for all $t \in [0, \tau[$ and $x_n \equiv \varphi$ on $[-a, 0]$;
- (A2) $x_n(0) = x_0$ and $x_n(\tau) \in C(\tau);$

Proof. By [\(A4\),](#page-5-0) for $t \in [0, \tau]$, we have

(A3)
$$
||f_{n+1}(t) - f_n(t)|| \leq d(f_n(t), F(t, T(\theta_{n+1}(t))x_{n+1}) + \varepsilon_{n+1}
$$
 for all $t \in [0, \tau]$;

(A4)
$$
\left\|x_n(t) - x_0 - \int_0^t f_n(\tau) d\tau\right\| \le \varepsilon_n t
$$
 for all $t \in [0, \tau]$.

In the sequel, we need the following propositions.

PROPOSITION 3.3. For all $n \in \mathbb{N}^*$, we have $||x_n||_{\infty} \leq M$.

$$
||x_n(t)|| \le ||x_0|| + a + \int_0^t ||f_n(s)|| ds \le ||x_0|| + a + \int_0^\tau g(s) ds + \int_0^\tau p(s) ||T(\theta_n(s))x_n||_{\infty} ds.
$$

Since

Since

$$
||T(\theta_n(s))x_n||_{\infty} = \sup_{-a \le t \le 0} ||x_n(\theta_n(s) + t)|| \le \sup_{-a \le t \le \tau} ||x_n(t)||
$$

$$
\le \sup_{-a \le t \le 0} ||x_n(t)|| + \sup_{0 \le t \le \tau} ||x_n(t)|| \le ||\varphi||_{\infty} + \sup_{0 \le t \le \tau} ||x_n(t)||,
$$

we get

$$
\sup_{0 \le t \le \tau} ||x_n(t)|| \le ||x_0|| + a + \int_0^{\tau} (g(s) + p(s)||\varphi||_{\infty}) ds + \sup_{0 \le t \le \tau} ||x_n(t)|| \int_0^{\tau} p(s) ds,
$$

ence

hence

$$
\sup_{0 \le t \le \tau} ||x_n(t)|| \le \frac{1}{1 - \int_0^{\tau} p(s) ds} (||x_0|| + a + \int_0^{\tau} (g(s) + p(s)||\varphi||_{\infty}) ds)
$$

$$
\le 2(|\varphi||_{\infty} + a + 1 + ||\varphi||_{\infty}) = M.
$$

Consequently, we obtain $||x_n||_{\infty} = \sup_{-a \leq t \leq \tau} ||x_n(t)|| \leq M$.

PROPOSITION 3.4. For all $n \in \mathbb{N}^*$ and $t \in [0, \tau]$, we have $||f_n(t)|| \leq g(t) + Mp(t)$.

Proof. Let $t \in [0, \tau]$. Since $f_n(t) \in F(t, T(\theta_n(t))x_n)$, by [\(H2\)](#page-2-1) and the above proposition, we have

$$
||f_n(t)|| \le g(t) + p(t) ||T(\theta_n(t))x_n||_{\infty} \le g(t) + p(t) ||x_n||_{\infty} \le g(t) + Mp(t).
$$

PROPOSITION 3.5. For all $n \in \mathbb{N}^*$ and $t \in [0, \tau]$, we have

$$
||T(\theta_n(t))x_n - T(\theta_{n+1}(t))x_{n+1}||_{\infty} \le ||x_n - x_{n+1}||_{\infty} + \frac{10\varepsilon_n}{4}.
$$

Proof. We have

$$
|| (T(\theta_n(t))x_n)(s) - (T(\theta_{n+1}(t))x_{n+1})(s)|| = ||x_n(\theta_n(t) + s) - x_{n+1}(\theta_{n+1}(t) + s)||
$$

\n
$$
\le ||x_n(\theta_n(t) + s) - x_{n+1}(\theta_n(t) + s)|| + ||x_{n+1}(\theta_n(t) + s) - x_{n+1}(\theta_{n+1}(t) + s)||
$$

\n
$$
\le ||x_n - x_{n+1}||_{\infty} + ||x_{n+1}(\theta_n(t) + s) - x_{n+1}(\theta_{n+1}(t) + s)||.
$$

Then $||T(\theta_n(t))x_n - T(\theta_{n+1}(t))x_{n+1}||_{\infty}$

$$
\leq \sup_{s \in [-a,0]} \|x_{n+1}(\theta_n(t) + s) - x_{n+1}(\theta_{n+1}(t) + s)\| + \|x_n - x_{n+1}\|_{\infty}.
$$

Let us denote the modulus of continuity of a function ψ defined on interval I of R by $\omega(\psi, I, \varepsilon) := \sup \{ \|\psi(t) - \psi(s)\| ; \ s, t \in I, \mid s - t \mid < \varepsilon \}, \varepsilon > 0.$

Since $t - \theta_n(t) < \frac{1}{2}\eta(\frac{\varepsilon_n}{4}), t - \theta_{n+1}(t) < \frac{1}{2}\eta(\frac{\varepsilon_{n+1}}{4})$ and $\eta(\frac{\varepsilon_{n+1}}{4}) \leq \eta(\frac{\varepsilon_n}{4}),$ it follows $|\theta_{n+1}(t) - \theta_n(t)| < \eta(\frac{\varepsilon_n}{4})$. Then we have

$$
||T(\theta_n(t))x_n - T(\theta_{n+1}(t))x_{n+1}||_{\infty} \le ||x_n - x_{n+1}||_{\infty} + \omega(x_{n+1}, [-a, \tau], \eta(\frac{\varepsilon_n}{4}))
$$

$$
\le ||x_n - x_{n+1}||_{\infty} + \omega(\varphi, [-a, 0], \eta(\frac{\varepsilon_n}{4})) + \omega(x_{n+1}, [0, \tau], \eta(\frac{\varepsilon_n}{4})).
$$

Now, let $t, t' \in [0, \tau]$ such that $0 \le t - t' < \eta(\frac{\varepsilon_n}{4})$. One has

$$
||x_{n+1}(t) - x_{n+1}(t')|| \le ||x_{n+1}(t) - x_0 - \int_0^t f_{n+1}(s) ds||
$$

+
$$
||x_{n+1}(t') - x_0 - \int_0^{t'} f_{n+1}(s) ds|| + \int_{t'}^t ||f_{n+1}(s)|| ds
$$

$$
\le \varepsilon_{n+1} t + \varepsilon_{n+1} t' + \int_{t'}^t (g(s) + Mp(s)) ds \le 2\varepsilon_{n+1} + \frac{\varepsilon_n}{4} \le \frac{9\varepsilon_n}{4}.
$$

So

$$
\omega(x_{n+1}, [0, \tau], \eta(\frac{\varepsilon_n}{4})) \le \frac{9\varepsilon_n}{4}.\tag{4}
$$

Also, for $t, t' \in [-a, 0]$ such that $|t' - t|$ | $\lt \eta(\frac{\varepsilon_n}{4})$, we get $\|\varphi(t) - \varphi(t')\| \lt \frac{\varepsilon_n}{4}$. Then $\omega(\varphi, [-a, 0], \eta(\frac{\varepsilon_n}{4})) \leq \frac{\varepsilon_n}{4}$. Consequently, we have

$$
||T(\theta_n(t))x_n - T(\theta_{n+1}(t))x_{n+1}||_{\infty} \le ||x_n - x_{n+1}||_{\infty} + \frac{10\varepsilon_n}{4}.
$$

From (A1), (A3) and Proposition 3.5, we deduce for all
$$
t \in [0, \tau[
$$

\n
$$
||f_{n+1}(t) - f_n(t)|| \le H\Big(F(t, T(\theta_n(t))x_n), F(t, T(\theta_{n+1}(t))x_{n+1})\Big) + \varepsilon_{n+1}
$$
\n
$$
\le m(t) ||T(\theta_n(t))x_n - T(\theta_{n+1}(t))x_{n+1}||_{\infty} + \varepsilon_{n+1}
$$
\n
$$
\le m(t) \Big(||x_n - x_{n+1}||_{\infty} + \frac{10\varepsilon_n}{4}\Big) + \varepsilon_{n+1}.
$$
\n(5)

Now, relations [\(2\)](#page-3-1) and [\(A4\)](#page-5-0) yield for all $t \in [0, \tau]$,

$$
||x_{n+1}(t) - x_n(t)|| \le ||x_{n+1}(t) - x_0 - \int_0^t f_{n+1}(s) ds||
$$

+
$$
\int_0^t ||f_{n+1}(s) - f_n(s)|| ds + ||x_n(t) - x_0 - \int_0^t f_n(s) ds||
$$

$$
\le \varepsilon_{n+1} t + \varepsilon_n t + ||x_n(\cdot) - x_{n+1}(\cdot)||_{\infty} \int_0^t m(s) ds + \frac{10\varepsilon_n}{4} \int_0^t m(s) ds + t\varepsilon_{n+1}
$$

$$
\le 2\varepsilon_n t + ||x_n(\cdot) - x_{n+1}(\cdot)||_{\infty} \int_0^\tau m(s) ds + \frac{10\varepsilon_n}{4} + t\varepsilon_n
$$

$$
\le \frac{11\varepsilon_n}{2} + ||x_n(\cdot) - x_{n+1}(\cdot)||_{\infty} \int_0^\tau m(s) ds.
$$

Thus,

$$
||x_n(\cdot) - x_{n+1}(\cdot)||_{\infty} \le \frac{11\varepsilon_n}{2(1-L)}
$$
\n(6)

where $L = \int_0^{\tau} m(s) ds$. Therefore we have, $||x_m(\cdot) - x_n(\cdot)||_{\infty} \le \frac{11}{2(1-L)} \sum_{i=n}^{m-1} \varepsilon_i$, for $n < m$. So the sequence $\{x_n(\cdot)\}_{n=1}^{\infty}$ is a Cauchy sequence, hence it converges uniformly on $[0, \tau]$ to a function $x(\cdot)$. Since all functions $x_n(\cdot)$ agree with φ on $[-a, 0]$, we can obviously say that $x_n(\cdot)$ converges uniformly to $x(\cdot)$ on $[-a, \tau]$, if we extend $x(\cdot)$ in such a way that $x(\cdot) \equiv \varphi$ on $[-a, 0]$. Also, by [\(4\)](#page-6-1) and the following inequality

$$
||x_n(\theta_n(t)) - x(t)|| \le ||x_n(\theta_n(t)) - x_n(t)|| + ||x_n(t) - x(t)||,
$$

we deduce that $x_n(\theta_n(\cdot))$ converges uniformly to $x(\cdot)$ on $[0, \tau]$. By construction, we have $x_n(\theta_n(t)) \in C(\theta_n(t))$ for every $t \in [0, \tau]$, and since the graph of C is closed, we get $x(t) \in C(t)$ for all $t \in [0, \tau]$. In addition, by [\(3\)](#page-3-2) and [\(4\)](#page-6-1), we have

$$
||T(\theta_n(t))x_n - T(t)x_n||_{\infty} = \sup_{-a \le s \le 0} ||x_n(\theta_n(t) + s) - x_n(t + s)|| \le \omega(x_n, [-a, \tau], \eta(\frac{\varepsilon_n}{4}))
$$

$$
\le \omega(\varphi, [-a, 0], \eta(\frac{\varepsilon_n}{4})) + \omega(x_n, [0, \tau], \eta(\frac{\varepsilon_n}{4})) \le \frac{\varepsilon_n}{4} + \frac{9\varepsilon_n}{4} = \frac{10\varepsilon_n}{2}
$$

hence $||T(\theta_n(t))x_n-T(t)x_n||_{\infty}$ converges to 0 as $n \to \infty$. Therefore, since the uniform convergence of x_n to x on $[-a, \tau]$ implies that $T(t)x_n$ converges to $T(t)x$ uniformly on $[-a, 0]$, we deduce that

$$
T(\theta_n(t))x_n
$$
 converges to $T(t)x$ in \mathcal{C}_a . (7)

Now, we return to the relation [\(5\)](#page-7-0). By the relation [\(6\)](#page-7-1) we get

$$
||f_{n+1}(t) - f_n(t)|| \le \left(m(t)\left(\frac{5}{2} + \frac{11}{2(1-L)}\right) + 1\right)\varepsilon_n.
$$

This implies (as above) that $\{f_n(t)\}_{n=1}^{\infty}$ is a Cauchy sequence and $(f_n(t))_n$ converges to $f(t)$. Further, since $||f_n(t)|| \leq g(t) + Mp(t)$, by [\(A4\)](#page-5-0) and by the dominated convergence theorem $x(t) = \lim_{n \to \infty} x_n(t) = \lim_{n \to \infty} (x_0 + \int_0^t f_n(s) ds) = x_0 + \int_0^t f(s) ds.$ Hence $\dot{x}(t) = f(t)$. Finally, observe that by [\(A1\),](#page-5-1)

$$
d(f(t), F(t, T(t)x)) \le ||f(t) - f_n(t)|| + H\bigg(F(t, T(\theta_n(t))x_n)), F(t, T(t)x)\bigg) \le ||f(t) - f_n(t)|| + m(t)||T(\theta_n(t))x_n - T(t)x||_{\infty}.
$$

Since $f_n(t)$ converges to $f(t)$ and by [\(7\)](#page-7-2) the last term converges to 0. So that $\dot{x}(t)$ $f(t) \in F(t, T(t)x)$ a.e on $[0, \tau]$. The proof is complete.

REFERENCES

- [1] M.Aitalioubrahim, A viabillity result for functional differential inclusions in Banach spaces, Miskolc Math. Notes, 13(1) (2012), 3–22.
- [2] H. Brézis, F.E. Brouder, A general principle on ordered sets in nolinear functional analysis, Advances Math. 21(3) (1976), 355–364.
- [3] T. X. Duc Ha, Existence of viable solutions for nonconvex-valued differential inclusions in Banach spaces, Portugal. Math. 52(2) (1995), 241–250.
- [4] A. Gavioli, L. Malaguti, Viable solutions of differential inclusions with memory in Banach spaces, Portugal. Math. 57(2) (2000), 203–217.
- [5] G. Haddad, Monotone trajectories of differential inclusions and functional differential inclusions with memory, Israel J. Math. 39 (1981), 83–100.
- [6] G. Haddad, Monotone trajectories for functional differential inclusions, J. Differential Equations 42 (1981), 1–24.
- [7] M. Larrieu, *Invariance d'un fermé pour un champ de vecteurs de Carathéodory*, Publications Mathématiques de Pau, 1981.
- [8] V. Lupulescu, M. Necula, A viable result for nonconvex differential inclusions with memory, Portugal. Math. 63(3) (2006), 335–349.
- [9] A. Syam, Contribution aux inclusions différentielles. Doctoral thesis, Université Montpellie II 1993.
- [10] C. Ursescu, O. Câjă, The characteristics method for a first order partial differential equation. Λn. Stiint. Univ. ΛI. I. Cuza Iasi Sect. I a Mat. 39(4)(1993), 367–396.
- [11] Q. Zhu, On the solution set of differential inclusions in Banach spaces, J. Differential Equations 93 (1991), 213–237.

(received 17.05.2017; in revised form 03.03.2018; available online 04.04.2018)

University Sultan Moulay Slimane, Faculty polydisciplinary, BP 592, Mghila, Beni Mellal, Morocco

E-mail: aitalifr@hotmail.com