
MATEMATIČKI VESNIK

MATEMATIQKI VESNIK

70, 2 (2018), 155–160

June 2018

research paper

originalni nauqni rad

A NOTE ON SOME OPERATORS ACTING ON CENTRAL MORREY
SPACES

Martha Guzmán-Partida

Abstract. We prove boundedness of maximal commutators and convolution operators
with generalized Poisson kernels on central Morrey spaces.

1. Introduction

Central Morrey-Campanato spaces have been extensively studied during the last
years. We may highlight the contributions made by Chen and Lau [3], Garćıa-
Cuerva [4], Guliyev [7], Guliyev and Aliyev [8], Lu and Yang [12], and many others.

In this note, we will be mainly interested to prove, on central Morrey spaces,
some results related to continuity of maximal commutators and certain convolution
operators with kernels that generalize the classical Poisson kernel for the upper half-
space Rn+1

+ . In order to prove the continuity of maximal commutators we will lean
on results proved by Komori-Furuya et al. in [9]. Concerning the boundedness of the
generalized Poisson transform, called Weinstein transform, basically, we will employ
properties of the kernel involved, which has been recently studied by J. Wittsten
in [15]. We finally obtain as a corollary the continuity of the Weinstein transform on
weighted versions of local Morrey spaces.

We will use standard notation along this work, and as usual, we shall denote by
the letter C a constant that could be changing line by line.

2. Preliminaries

The Morrey spaces were introduced by C. Morrey in [14]. Here, we will consider cen-
tral versions of these spaces. They are defined as follows ( [1,3,4,12]): for 1 < p <∞
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156 A note on some operators acting on central Morrey spaces

and λ ∈ R, a function f ∈ Lploc (Rn) belongs to the central Morrey space Bp,λ if
‖f‖Bp,λ <∞, where

‖f‖Bp,λ := sup
r>0

(
1

|Br (0)|1+pλ

∫
Br(0)

|f (x)|p dx

)1/p

.

It is well known that
(
Bp,λ, ‖·‖Bp,λ

)
are Banach spaces. We will restrict to the

case −1/p ≤ λ, since Bp,λ reduces to zero for λ < −1/p. Moreover, if λ < µ then
Bp,λ is properly contained in Bp,µ. Also, for λ = −1/p, Bp,−1/p = Lp.

An alternative way to describe the spaces Bp,λ is the following ( [1,3,4]): f ∈ Bp,λ
if and only if

sup
k∈Z

2−nk/p(1+pλ) ‖fχCk‖p <∞, (1)

where Ck =
{
x ∈ Rn : 2k−1 < |x| ≤ 2k

}
. The quantity in (1) defines an equivalent

norm in Bp,λ.
Clearly, for −1/p < λ < 0, the classical Morrey spaces Lp,λ on Rn defined by

means of the condition

‖f‖Lp,λ := sup
r>0, a∈Rn

(
1

|Br (a)|1+pλ

∫
Br(a)

|f (x)|p dx

)1/p

are included in Bp,λ, however, this inclusion is proper as the following example shows.
Let us consider n = 1, although appropriate modifications will work for arbi-

trary n. Define ϕ (x) =
∞∑

k=−∞
2k(

1
p(1+pλ)

− 1
p )χCk (x). Since for every k ∈ Z we have

2−k/p(1+pλ)2k(
1

p(1+pλ)
− 1
p )2k/p = 1, it is immediate that (1) is finite, which shows that

ϕ ∈ Bp,λ. However, given k ∈ N, k ≥ 2, let I be an interval whose length is 2k−1 and
it is completely contained in Ck. In this way

1

|I|1+pλ

∫
I

|ϕ (x)|p dx =
1

|I|1+pλ
2k(

1
p(1+pλ)

− 1
p )p |I| (2)

= 2(k−1)(−pλ)2k(
1

1+pλ−1) = 2pλ2k(−pλ+ 1
1+pλ−1),

and noticing that −pλ+ 1
1+pλ − 1 > 0 since −1/p < λ < 0, we see that the integrals

in the left-hand side of (2) grow without bound as k →∞. This shows that ϕ /∈ Lp,λ.
It is also possible to identify the preduals of the spaces Bp,λ, in a similar fashion

as the case of Morrey spaces. For 1 ≤ p < r ≤ ∞, a function b : Rn → R is called a

(p, r)-central block, if there exists t > 0 such that supp b ⊂ Bt (0) and ‖b‖r ≤ t
n( 1

r−
1
p ).

If we define

h0
p,r :=

{
f =

∞∑
j=1

βjbj :bj is a (p, r)-central block and ‖f‖h0
p,r

<∞
}

, (3)

where ‖f‖h0
p,r

= inf

∞∑
j=1

|βj | , (4)

we obtain a Banach space normed by (4). Moreover, the convergence of the series in
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(3) is in Lp and absolutely a.e.

With the same proof given in [11] (see also [10]) we can obtain the following result.

Proposition 2.1. For 1 ≤ p < r′ < ∞, − 1
r < λ < 0, 1

r + 1
r′ = 1 and p = 1

1+λ we

have
(
h0
p,r′

)∗ ' Br,λ.
3. Maximal commutators

In [9], Komori-Furuya et al. studied the continuity of several classical operators on
Morrey-Campanato type spaces. In particular, they considered the fractional maximal
operator Mα, for 0 ≤ α < n, which is defined as

Mαf (x) := sup
x∈Q

1

|Q|1−
α
n

∫
Q

|f (y)| dy,

where Q is a cube with sides parallel to the coordinate axes (instead of cubes, we could
also consider balls). Notice that for α = 0, we recover the classical Hardy-Littlewood
maximal function. They proved the following results:

Theorem 3.1. ( [9], Theorem 7) For 1 < p < ∞, 0 ≤ σ ≤ n
p ,

σ
n −

1
p ≤ ν ≤ 0, the

Hardy-Littlewood maximal operator is continuous from Bp,ν to Bp,v.

It is interesting to observe that Theorem 3.1 generalizes the case ν = 0 proved
in [4] and [3].

Theorem 3.2. ( [9, Theorem 7]) For 0 < α < n, σ ≥ 0, 1 < p ≤ n
σ+α ,

σ
n −

1
p ≤

ν ≤ −αn , 1 < q ≤
(

nν−σ
nν−σ+α

)
p, the fractional maximal operator Mα is continuous from

Bp,ν to Bq,ν+α/n.

Now, we shall use Theorem 3.2 in order to examine the action of the maximal
commutator with a Lipschitz function in the spaces Bp,λ. Maximal commutators with
a given function have played an important role in the study of continuity properties of
some classical operators. We highlight the work done by Garćıa-Cuerva et al. in [5].

Given b ∈ L1
loc, the maximal commutator of the Hardy-Littlewood maximal oper-

ator M with b is defined as

Cb (f) (x) = sup
x∈Q

1

|Q|

∫
Q

|b (x)− b (y)| |f (y)| dy.

If we allow an appropriate smoothness condition on the function b, let us say, that b
is a Lipschitz function, that is, for every x, y ∈ Rn

|b (x)− b (y)| ≤ C |x− y|β (5)

where C is a positive constant, and β ∈ (0, 1), we can proceed as follows:

Cb (f) (x) = sup
x∈Q

1

|Q|1−
β
n+ β

n

∫
Q

|b (x)− b (y)| |f (y)| dy
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≤ C ‖b‖Λβ sup
x∈Q

|Q|
β
n

|Q|1−
β
n |Q|

β
n

∫
Q

|f (y)| dy

≤ C ‖b‖Λβ Mβf (x) , (6)

where ‖b‖Λβ denotes the Lipschitz norm of b, i.e., the infimum of the constants C

satisfying (5).

Now, if we choose σ ≥ 0, 1 < p ≤ n
σ+β , σ

n −
1
p ≤ ν ≤ −

β
n , 1 < q ≤

(
nν−σ

nν−σ+β

)
p, by

estimate (6) and Theorem 3.2 we obtain the continuity of Cb : Bp,ν → Bq,ν+β/n and
‖Cb‖Bp,ν→Bq,ν+β/n ≤ C ‖b‖Λβ . Thus, we have proved

Proposition 3.3. For 0 < β < 1, b ∈ Λβ, σ ≥ 0, 1 < p ≤ n
σ+β ,

σ
n −

1
p ≤ ν ≤ −βn ,

and 1 < q ≤
(

nν−σ
nν−σ+β

)
p, the maximal commutator Cb is continuous from Bp,ν to

Bq,ν+β/n with norm ‖Cb‖Bp,ν→Bq,ν+β/n ≤ C ‖b‖Λβ .

4. Weinstein transform

Recently, J. Wittsten [15] has studied boundary values of convolutions of weighted
distributions with the kernels Kα, α > −1, defined by

Kα (x, t) :=
Γ ((α+ n+ 1) /2)

Γ ((α+ 1) /2)πn/2
tα+1

(|x|2 + t2)(α+n+1)/2
, for (x, t) ∈ Rn+1

+ .

These kernels are related to the elliptic partial differential equation

Dαu := t−α
(
∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
n

+
∂2u

∂t2
− α

t

∂u

∂t

)
= 0, (7)

with α > −1. Solutions to (7) are called generalized axially symmetric potentials.
Notice that when α = 0 we recover the Laplace equation.

In the paper [15], it was proven that ‖Kα,t‖1 = 1, where Kα,t (x) := Kα (x, t), that

Kα is a solution to the equation (7) in Rn+1
+ , and Kα,t → δ0 in S ′ as t→ 0.

In this section, we will examine the behavior of the family of kernels Kα,t when
they act by convolution in the central Morrey spaces Bp, 1 < p <∞.

For θ > n, we have the inclusion Bp ⊂ Lp
((

1 + |x|2
)−θ/2

dx

)
, as it has been

proved in [1, Corollary 2.5]. If we denote by Λα the convolution operator with the

kernel Kα,t, this operator preserves the space L1

((
1 + |x|2

)−(α+n+1)/2

dx

)
(see [15]

and also [2, Remark 3.2]). However, we can say more, as the following result shows.

Proposition 4.1. The operator Λα is bounded from Lp
((

1 + |x|2
)−(α+n+1)/2

dx

)
to itself for 1 ≤ p <∞.
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Proof. Let us denote wα (x) = (1 + |x|2)(α+n+1)/2. Using Jensen’s inequality, Tonelli
theorem and radiality of Kα,t we obtain

‖Λα (f)‖p
Lp(w−1

α dx)
=

∫
Rn

∣∣∣∣∫
Rn
Kα,t (x− y) f (y) dy

∣∣∣∣p w−1
α (x) dx

≤
∫
Rn

∫
Rn
|f (y)|p

(
Kα,t ∗ w−1

α

)
(y) dy.

The next step is to estimate Kα,t ∗ w−1
α (y). According to [15, pp. 912–913],

Kα,t ∗ w−1
α (y) ≤ Cα,nw−1

α (y), where Cα,n is a constant only depending on n and α.

Therefore, ‖Λα (f)‖p
Lp(w−1

α dx)
≤ Cα,n

∫
Rn
|f (y)|p w−1

α (y) dy = Cα,n ‖f‖pLp(w−1
α dx)

.

This concludes the proof. �

Remark 4.2. It is also true that for f ∈ Lp
(
w−1
α dx

)
, 1 ≤ p <∞, we have Kα,t ∗f →

f in Lp
(
w−1
α dx

)
as t → 0. The proof of this assertion is basically the same as that

given in [15, Theorem 4.3], (see also [2, Theorem 3.6]).

Now, we will prove the desired continuity.

Theorem 4.3. The Weinstein transform Λα is bounded from Bp into itself,
1 < p <∞.

Proof. As in the case of the Poisson kernel, we can obtain the following estimate
(see [6, pp. 154 and 177]) for each t > 0

|Kα,t ∗ f(x)| ≤ Cn,α
{∫
|y−x|≤t

tα+1 |f (y)|(
t2 + |y − x|2

)(α+n+1)/2
dy

+

∞∑
k=0

∫
2kt<|y−x|≤2k+1t

tα+1 |f (y)|(
t2 + |y − x|2

)(α+n+1)/2
dy

}

≤ Cn,α
{

1

tn

∫
|y−x|≤t

|f (y)| dy +

∞∑
k=0

1

(2kt)
n

∫
|y−x|≤2k+1t

|f (y)| dy
}

≤ Cn,αMf(x). (8)

Using the fact that M : Bp → Bp is a continuous operator (Theorem 3.1), we
obtain the boundedness of the operator Λα from Bp to Bp. �

We can improve the previous result using weighted versions of the central Morrey
spaces Bp. These are defined as follows.

Let w be a weight on Rn, that is, w ∈ L1
loc and 0 < w <∞ a.e. on Rn. We will de-

note by Bp (w) the space Bp (w) :=
{
f ∈ Lploc,w : ‖f‖Bp(w) <∞

}
, where Lploc,w is the

space of functions locally in Lp (w) and ‖f‖Bp(w) = supk∈Z w (Ck)
−1/p ‖fχCk‖Lp(w).

Matsuoka has proved in [13]:

Proposition 4.4. ( [13]) Let 1 < p < ∞ and w ∈ Ap. Then, the Hardy-Littlewood
maximal operator M is bounded from Bp (w) into Bp (w).
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Here, the set Ap denotes the classical family of weights w satisfying the condition(
1

|B|

∫
B

w (x) dx

)(
1

|B|

∫
B

w (x)
−1/(p−1)

dx

)p−1

≤ C

for every ball B and some positive constant C.
In view of Proposition 4.4 and estimate (8) we can obtain

Corollary 4.5. If w ∈ Ap then the Weinstein transform Λα is bounded from Bp (w)
into Bp (w).
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