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A STUDY ON ELLIPTIC PDE INVOLVING THE p-HARMONIC AND
THE p-BIHARMONIC OPERATORS WITH STEEP POTENTIAL

WELL

Ratan. Kr. Giri, Debajyoti Choudhuri and Shesadev Pradhan

Abstract. In this paper, we give an existence result pertaining to a nontrivial solution
to the problem ∆2

pu−∆pu+λV (x)|u|p−2u = f(x, u) , x ∈ RN , u ∈W 2,p(RN ), where p > 1,
λ > 0, V ∈ C(RN ,R+), f ∈ C(RN × R,R), N > 2p. We also explore the problem in the
limiting case of λ→∞.

1. Introduction

The problem we will address in this article is{
∆2
pu−∆pu+ λV (x)|u|p−2u = f(x, u) , x ∈ RN ,

u ∈W 2,p(RN ),
(1)

where ∆2
pu = ∆(|∆u|p−2∆u), ∆pu = ∇· (|∇u|p−2∇u) and λ > 0 is a parameter, with

p > 1, N > 2p. The potential function V (x) is a real valued continuous function on
RN satisfying the following conditions:

(V1) V (x) ≥ 0 on RN .

(V2) There exists b > 0 such that the set Vb = {x ∈ Rn : V (x) < b} is nonempty and
has finite Lebesgue measure in RN .

(V3) Ω = intV −1(0) is nonempty and has smooth boundary with Ω̄ = V −1(0).

This type of assumptions were introduced by Bartsch et al [1] (see also [3]), re-
ferred to as the steep well potential for the potential function V (x), in the study of a
nonlinear Schrödinger equation. Further, to study the existence of nontrivial solution
and the limiting case, λ→∞, of the problem 1, we make the following assumptions
on the nonlinear function f :
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148 Elliptic PDE involving p-harmonic and p-biharmonic operators

(F1) f ∈ C(RN × R,R) and there exists constants 1 < γ1 < γ2 < . . . < γm < p

and functions ξi ∈ L
p

p−γi (RN ,R+) such that |f(x, u)| ≤
∑m
i=1 γiξi(x)|u|γi−1,

∀ (x, u) ∈ RN × R.

(F2) There exists constants η, δ > 0, γ0 ∈ (1, p) such that |F (x, u)| ≥ η|u|γ0 for all
x ∈ Ω and for all such u such that |u| ≤ δ, where F (x, u) =

∫ u
0
f(x, s)ds.

In the recent years problems related to the kind in (1), for the case of p = 2,
the equations with biharmonic operator have been investigated. Readers may refer
to [5, 7, 9–15] and the references there in. The present work in this article draws its
motivation from W. Zhang et al [15], Ye and Tang [11] and Liu et al [5]. In all these
articles, they have considered the problem (1) for p = 2. We address the problem for
p 6= 2, N > 2p. The notion of p-biharmonic operator is introduced in the recent work
of Bhakta [2]. For p 6= 2, things seemed to become more complicated not only due to
the lack of linearity of both p-Laplacian and p-biharmonic operator but also because
of the fact that the associated energy functional is defined on a Banach space which is
not a Hilbert space. We further have to deal with lack of compact embedding, since
the domain considered here is RN . The main two results proved in this article are
the following.

Theorem 1.1. Assume the conditions (V1)-(V3), (F1), (F2) hold. Then there exists
Λ0 > 0 such that for each λ > Λ0, problem (1) has at least one non trivial solution uλ.

Theorem 1.2. Let un = uλn be a solution of the problem (1) corresponding to λ = λn.
If λn →∞, then ||un||λn ≤ c, for some c > 0 and for p ≤ q < p∗, un → ũ in Lq(RN )
up to a subsequence. Further, this ũ is a solution of the problem

∆2
pu−∆pu = f(x, u), in Ω

u = 0, on RN \ Ω.
(2)

and un → ũ in W 2,p(RN ).

The paper has been organized as follows. In Section 2, we discuss the notations
which will be used in the theorems. In Section 3, we give the proof of Theorem 1.1
and in Section 4, we prove the Theorem 2.

2. Preliminaries and Notations

We will denote a Sobolev space of order 2 as W 2,p(RN ), which is given by

W 2,p(RN ) = {u ∈ Lp(RN ) : |∇u|,∆u ∈ Lp(RN )}
endowed with the norm

||u||p
W 2,p(RN )

=

∫
RN

(|∆u|p + |∇u|p + |u|p)dx.

Let X =

{
u ∈W 2,p(RN ) :

∫
Rn

(|∆u|p + |∇u|p + V (x)|u|p)dx <∞
}
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be endowed with the norm

||u||p =

∫
Rn

(|∆u|p + |∇u|p + V (x)|u|p)dx.

For λ > 0, we set

Eλ = {u ∈W 2,p(RN ) :

∫
RN

(|∆u|p + |∇u|p + λV (x)|u|p)dx <∞}

with ||u||pλ =

∫
RN

(|∆u|p + |∇u|p + λV (x)|u|p)dx.

It is easy to verify that (Eλ, || · ||λ) is a closed in W 2,p(RN ) and ||u|| ≤ ||u||λ for any
λ ≥ 1. We will denote µ to be the Lebesgue measure on RN .

Lemma 2.1. If (V1)-(V2) hold, then there exists positive constants λ0, c0 such that
||u||W 2,p(RN ) ≤ c0||u||λ, for all u ∈ Eλ, λ ≥ λ0.

Proof. By using conditions (V1)-(V2) and the Sobolev inequality, we have

||u||W 2,p(RN ) =

∫
RN

(|∆u|p + |∇u|p + |u|p)dx

=

∫
RN

(|∆u|p + |∇u|p)dx+

∫
Vb

|u|pdx+

∫
RN\Vb

|u|pdx

≤
∫
RN

(|∆u|p + |∇u|p)dx

+ (µ(Vb))
P∗−p
p∗

(∫
RN
|u|p

∗
dx

) p
p∗

+

∫
RN\Vb

|u|pdx

≤
∫
RN

(|∆u|p + |∇u|p)dx

+ S−1
α (µ(Vb))

P∗−p
p∗

∫
RN
|∇u|pdx+

1

λb

∫
RN\Vb

λV (x)|u|pdx

≤
∫
RN

(|∆u|p + (1 + S−1
α (µ(Vb))

P∗−p
p∗ )|∇u|p)dx+

1

λb

∫
RN

V (x)|u|pdx

≤ max

{
1, 1 + S−1

α (µ(Vb))
P∗−p
p∗ ,

1

λb

}∫
RN

(|∆u|p + |∇u|p + λV (x)|u|p)dx.

where Sα denote the Sobolev constant, p∗ = Np
N−2p . Take λ0 = 1

b

(
1+S−1

α (µ(Vb))
P∗−p
p∗

) .

Then for all λ ≥ λ0, we have

max

{
1, 1 + S−1

α (µ(Vb))
P∗−p
p∗ ,

1

λb

}
= max

{
1, 1 + S−1

α (µ(Vb))
P∗−p
p∗

}
= c0 (say).

Hence for all λ ≥ λ0 and u ∈ Eλ, we have ||u||W 2,p(RN ) ≤ c0||u||λ. �

This shows that the embedding Eλ ↪→ W 2,p(RN ) is continuous. By the Sobolev
embedding results for 2p < N , the embedding W 2,p(RN ) ↪→ Lq(RN) is continuous for
q ∈ [p, p∗]. Hence there exists cq > 0 such that ||u||q ≤ cq||u||W 2,p(RN ) ≤ c0cq||u||λ,

for all λ ≥ λ0, q ∈ [p, p∗]. Moreover, Eλ ↪→ Lqloc(RN ) is compact for q ∈ [p, p∗).
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3. Existence of non trivial solutions

Let Jλ(u) =
1

p

∫
RN

(|∆u|p + |∇u|p + λV (x)|u|p)dx−
∫
RN

F (x, u)dx.

Then it can be seen that Jλ ∈ C1(Eλ,R) and its Fréchet derivative is given by

〈J ′λ(u), v〉 =

∫
RN

(|∆u|p−2∆u∆v + |∇u|p−2∇u · ∇v + λV (x)|u|p−2uv)dx

−
∫
RN

f(x, u)vdx,

for all v ∈ Eλ. Thus u ∈ Eλ is a critical point of Jλ if and only if it is a weak solution
of the problem (1). In order to prove the existence of non trivial solutions of the
problem (1) we use the following theorem.

Theorem 3.1. [6] Let B be a real Banach space and J ∈ C1(B,R) satisfy the Palais-
Smale (PS) condition. If J is bounded below, then c = inf

B
J is a critical value of J .

We now prove the following lemmas.

Lemma 3.2. Suppose that (V1)-(V3), (F1),(F2) are satisfied. Then there exists
Λ0 > 0 such that for every λ ≥ Λ0, Jλ is bounded below in Eλ.

Proof. Using the Hölder’s inequality we have,

Jλ(u) =
1

p
||u||pλ −

∫
RN

F (x, u)dx ≥ 1

p
||u||pλ −

m∑
i=1

∫
RN

ξi(x)|u|γidx

≥ 1

p
||u||pλ −

m∑
i=1

(∫
RN
|ξi(x)|

p
p−γi dx

) p−γi
p
(∫

RN
|u|pdx

) γi
p

≥ 1

p
||u||pλ −

m∑
i=1

cγip c
γi
0 ||ξ|| p

p−γi
||u||γiλ .

Since 1 < γ1 < . . . < γm < p, the above inequality implies that Jλ(u) → +∞, when
||u||λ → +∞. Consequently, there exists Λ0 = max{1, λ0} > 0 such that for every
λ ≥ Λ0, Jλ is bounded from below. �

Lemma 3.3. Assume that the conditions (V1)-(V3), (F1), (F2) are satisfied. Then
Jλ satisfies the Palais-Smale (PS) condition for every λ ≥ Λ0.

Proof. Suppose that (un) ⊂ Eλ be a sequence such that Jλ(un) is bounded and
J ′λ(un) → 0 as n → ∞. Then by Lemma 3.2, (un) is bounded below in Eλ. Thus
there exists a constant c > 0 such that for all n ∈ N, ||un||q ≤ cqc0||un||λ ≤ c, for all
u ∈ Eλ, λ ≥ λ0, p ≤ q ≤ p∗. Hence by Eberlein-Smulian theorem, passing on to a
subsequence (the subsequence is still denoted by un), we may assume that un ⇀ u0 in
Eλ. Since the inclusion Eλ ↪→ Lqloc(RN ) is compact for q ∈ [p, p∗), we have un → u0
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in Lploc(RN ). Since ξi(x) ∈ L
p

p−γi (RN ,R+), we can choose Rε > 0 such that(∫
RN\BRε

|ξi(x)|
p

p−γi dx

) p−γi
p

< ε, 1 ≤ i ≤ m. (3)

Since un → u0 in Lploc(RN ), there exists N0 ∈ N such that(∫
BRε

|un − u0|pdx

) γi
p

< ε, (4)

for n ≥ N0 and for all 1 ≤ i ≤ m. By (4) and Hölder inequality, we have,∫
BRε

|f(x, un − u0)||un − u0|dx ≤
m∑
i=1

γi

∫
BRε

|ξi(x)||un − u0|γidx

≤
m∑
i=1

γi

(∫
BRε

|ξi(x)|
p

p−γi dx

) p−γi
p
(∫

BRε

|un − u0|pdx

) γi
p

≤

(
m∑
i=1

γi||ξi|| p
p−γi

)
ε,∀n ≥ N0.

Hence it follows that∫
BRε

|f(x, un − u0)||un − u0|dx→ 0, as n→∞. (5)

On the other hand, by (3) and boundedness of (un) in Lp(RN ) we have,∫
RN\BRε

|f(x, un − u0)||un − u0|dx ≤
m∑
i=1

γi||ξi|| p
p−γi

,RN\BRε ||un − u0||γip,RN\BRε

≤ ε
m∑
i=1

γi||un − u0||γip ≤ ε
m∑
i=1

γi (||un||p + ||u0||p)γi ≤ ε
m∑
i=1

γi (c+ ||u0||p)γi .

Therefore, ∫
RN\BRε

|f(x, un − u0)||un − u0|dx→ 0, as n→∞. (6)

Combining (5) and (6), we have∫
RN
|f(x, un − u0)||un − u0|dx→ 0, as n→∞. (7)

Since un ⇀ u0 in Eλ, hence 〈J ′λ(un − u0), un − u0〉 → 0 as n→∞. But

0 ≤ ||un − u0||pλ = 〈J ′λ(un − u0), un − u0〉+

∫
RN

(f(x, un − u0))(un − u0)dx

≤ 〈J ′λ(un − u0), un − u0〉+

∫
RN
|f(x, un − u0)||un − u0|dx

By (7) and 〈J ′λ(un − u0), un − u0〉 → 0, it follows that ||un − u0||pλ → 0 as n → ∞.
This shows that un → u0 in Eλ. �
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Proof (Proof of the Theorem 1.1). By Lemmas 3.2, 3.3 and Theorem 3.1, it
follows that cλ = infEλ Jλ(u) is a critical value of Jλ, that is there exists a critical
point uλ ∈ Eλ such that Jλ(uλ) = cλ. Therefore, uλ is a solution for the problem (1)

for λ > Λ0. Now we will show that uλ 6= 0. Let u# ∈
(
W 2,p(Ω) ∩W 1,p

0 (Ω)
)
\ {0}

such that ||u#||∞ ≤ 1, where Ω is given in the condition (V3). Then by the condition
(F2), we have

Jλ(tu#) =
1

p
||tu#||pλ −

∫
RN

F (x, tu∗)dx

=
tp

p
||u#||Pλ −

∫
Ω

F (x, tu#)dx ≤ tp

p
||u#||pλ − ηt

γ0

∫
Ω

|u#|γ0dx,

∀t ∈ (0, δ), where δ is defined in (F2). Since 1 < γ0 < p, it follows that Jλ(tu#) < 0
for t > 0 small enough. Hence Jλ(uλ) = cλ < 0. Therefore, uλ is a nontrivial solution
of the problem (1). �

4. Limiting case λ→∞

We now consider the limiting case, λ → ∞, of the problem (1) on the set V −1(0).

Define W̃ (Ω) =

{
u, u ∈W 2,p(Ω) ∩W 1,p

0 (Ω)

u = 0 a.e. , in RN \ Ω.
, where Ω is given in the condition (V3).

Then W̃ (Ω) ⊂ Eλ for all λ > 0. Define c̃ = infu∈W̃ (Ω) Jλ|W̃ (Ω), where Jλ|W̃ (Ω) is a

restriction of Jλ on W̃ (Ω), that is

Jλ|W̃ (Ω) =
1

p

∫
Ω

(|∆u|p + |∇u|p) dx−
∫

Ω

F (x, u)dx,

for u ∈ W̃ (Ω)). Similar to the proof of the Theorem 1.1, it can be seen that c̃ < 0 is
achieved and cλ ≤ c̃ < 0 for all λ > Λ0.

Proof (Proof of the Theorem 1.2). For any sequence λn → ∞, let un = uλn be
the critical points of Jλn . Thus we have,

cλn = Jλn(un) ≤ c̃ < 0. (8)

Also in the Lemma 3.2, we have seen that

Jλn(un) ≥ 1

p
||un||pλn −

m∑
i=1

cγip c
γi
0 ||ξi|| p

p−γi
||un||γiλn .

Therefore, (8) and the above inequality implies that

||un||λn ≤ c, (9)

where the constant c > 0 is independent of λn. Therefore, passing on to a subsequence
we may assume that un ⇀ ũ in Eλ. This implies that un → ũ in Lqloc(RN ) for
p ≤ q < p∗. Then by Fatou’s lemma we have,∫

RN
V (x)|ũ|pdx ≤ lim

n→∞
inf

∫
RN

V (x)|un|pdx ≤ lim
n→∞

inf
||un||pλn
λn

= 0,
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which implies that ũ = 0 a.e. in RN \V −1(0). Since Ω = intV −1(0) and Ω has smooth
boundary, hence ũ ∈ W̃ (Ω). Now for any ϕ ∈ C∞0 (Ω), since

〈
J ′λn(un), ϕ

〉
= 0, it

follows that∫
Ω

(
|∆ũ|p−2∆ũ∆ϕ+ |∇ũ|p−2∇u · ∇ϕ

)
dx−

∫
Ω

f(x, ũ)ϕdx = 0,

which implies that ũ is a weak solution of the problem (2), where we have used the
density of C∞0 (Ω) in W̃ (Ω).
Next we show that un → ũ in Lq(RN ). If not, then by Lions Vanishing lemma [4, 8],
there exists δ > 0, ρ > 0 and sequence {xn} ∈ RN with |xn| → ∞ such that∫

Bρ(xn)

|un − ũ|pdx ≥ δ.

Since |xn| → ∞, hence µ (Bρ(xn) ∩ Vb) → 0 as n → ∞. Therefore, by Hölder
inequality, we have∫

Bρ(xn)∩Vb
|un − ũ|pdx ≤ µ (Bρ(xn) ∩ Vb)

p∗−p
p∗

(∫
RN
|un − ũ|p

∗
dx

) p
p∗

→ 0,

as n→∞. Consequently

||un||pλn ≥ λnb
∫
Bρ(xn)∩{x∈RN :V (x)≥b}

|un|pdx

= λnb

∫
Bρ(xn)∩{x∈RN :V (x)≥b}

|un − ũ|pdx, [as ũ = 0 a.e. in RN \ V −1(0)]

= λnb

(∫
Bρ(xn)

|un − ũ|pdx−
∫
Bρ(xn)∩Vb

|un − ũ|pdx+ o(1)

)
n→∞−→ ∞,

which contradicts to (9). Therefore, un → ũ in Lq(RN ) for p ≤ q < p∗.
Next, we show that un → ũ in W 2,p(RN ). Since un ⇀ ũ in Eλ and Eλ compactly
embedded in Lqloc(RN ), hence by the similar method as in Lemma 3.3, it follows that∫

RN
|f(x, un − ũ)||un − ũ|dx→ 0, as n→∞. (10)

Since un ⇀ ũ in Eλ, hence 〈J ′λ(un − ũ), un − ũ〉 → 0 as n→∞. But

||un − ũ||pλ = 〈J ′λ(un − ũ), un − ũ〉+

∫
RN

(f(x, un − ũ))(un − ũ)dx

≤ 〈J ′λ(un − ũ), un − ũ〉+

∫
RN
|f(x, un − ũ)||un − ũ|dx

Therefore, by (10) and the above inequality, it follows that ||un− ũ||λ → 0 as n→∞.
Again, by the Lemma 2.1, ||un − ũ||W 2,p(RN ) ≤ c0||un − ũ||λ, hence we have un → ũ

in W 2,p(RN ).

From (8), we have

1

p

∫
Ω

(|∆ũ|p + |∇ũ|p) dx−
∫

Ω

F (x, ũ)dx ≤ c̃ < 0,

which implies that ũ 6= 0. This completes the theorem. �
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