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NEW CONGRUENCES FOR OVERCUBIC PARTITION FUNCTION

C. Shivashankar and M. S. Mahadeva Naika

Abstract. In 2010, Byungchan Kim introduced a new class of partition function a(n),
the number of overcubic partitions of n and established a(3n + 2) ≡ 0 (mod 3). Our goal
is to consider this function from an arithmetic point of view in the spirit of Ramanujan’s
congruences for the unrestricted partition function p(n). We prove a number of results for
a(n), for example, for α ≥ 0 and n ≥ 0, a(8n + 5) ≡ 0 (mod 16), a(8n + 7) ≡ 0 (mod 32),
a(8 · 32α+2n+ 32α+2) ≡ 3αa(8n+ 1) (mod 8).

1. Introduction

In 2010, Byungchan Kim [6] introduced the overcubic partitions of the number n,
partitions of n in which odd parts come in two colours, one of which can occur at
most once and in which the even parts come in four colours, two of which can occur
at most once each. Let the number of overcubic partitions of n be a(n). For example,
there are 6 such partitions of 2: 21, 22, 23, 24, 11 + 11, 11 + 12.

The generating function for overcubic partition function a(n) is given by
∞∑
n=0

a(n)qn =
(−q; q)∞(−q2; q2)∞

(q; q)∞(q2; q2)∞
=

f4
f21 f2

. (1)

Here and throughout this paper fk :=
∏∞
i=1(1− qki) = (qk; qk)∞, for any positive k.

Using theory of modular forms, Kim proved
∞∑
n=0

a(3n+ 2)qn = 6
(q3; q3)6∞(q4; q4)3∞
(q; q)8∞(q2; q2)3∞

.

This implies a(3n + 2) ≡ 0 (mod 6). Using elementary generating function meth-
ods, Hirschhorn [5] proved Kim’s generating function result. Clearly, this generating
function result implies that a(3n+ 2) ≡ 0 (mod 6) for all n ≥ 0.

Recently, Sellers [10] proved number of arithmetic properties satisfied by a(n) by
employing elementary generating function methods. For example, he showed that
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56 New congruences for overcubic partition function

for n > 1, a(n) ≡ 0 (mod 2) and for n ≥ 0, j ≥ 0, a(2j(8n + 5)) ≡ 0 (mod 8)
and a(2j(8n + 7)) ≡ 0 (mod 8). For more details on cubic and overcubic partition
functions, one can see [2, 3, 7, 8].

Motivated by works of the above authors, our aim in this paper is to establish some
new congruences modulo powers of 2 for overcubic partition function a(n) by using
some elementary generating function and dissection formulas due to some authors.
Our main results can be stated as follows.

Theorem 1.1. For all n ≥ 0,

a(8n+ 5) ≡ 0 (mod 16), (2)

a(8n+ 7) ≡ 0 (mod 32). (3)

Theorem 1.2. For any prime p ≥ 5, (−2p ) = −1, α ≥ 0, i = 1, 2, ..., p− 1 and n ≥ 0,

a(8p2α+2n+ 8p2α+1i+ 4p2α+2) ≡ 0 (mod 8), (4)

a(8p2α+2n+ 8p2α+1i+ p2α+2) ≡ 0 (mod 16), (5)

a(4p2α+2n+ 4p2α+1i+ 2p2α+2) ≡ 0 (mod 16), (6)

a(8p2α+2n+ 8p2α+1i+ 3p2α+2) ≡ 0 (mod 16). (7)

Theorem 1.3. For any α ≥ 0, n ≥ 0,

a(8 · 32α+2n+ 32α+2) ≡ 3αa(8n+ 1) (mod 8), (8)

a(8 · 32α+2n+ 33 · 32α) ≡ 0 (mod 8), (9)

a(8 · 32α+2n+ 57 · 32α) ≡ 0 (mod 8). (10)

2. Preliminary results

To prove our main results, we need the following dissection formulas.
We define Ramanujan’s general theta function f(a, b) for |ab| < 1 as

f(a, b) :=

∞∑
n=−∞

an(n+1)/2bn(n−1)/2.

The special cases of f(a, b) are

ϕ(q) := f(q, q) =

∞∑
n=−∞

qn
2

= (−q; q2)2∞(q2; q2)∞ =
f52
f21 f

2
4

, (11)

ψ(q) := f(q, q3) =

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

=
f22
f1
, (12)

and f(−q) := f(−q,−q2) =

∞∑
n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞ = f1,

where the product representations arise from Jacobi’s triple product identity [1, p. 35,
Entry 19] f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.



C. Shivashankar, M. S. Mahadeva Naika 57

Lemma 2.1. The following 2-dissections hold

1

f21
=

f58
f52 f

2
16

+ 2q
f24 f

2
16

f52 f8
, (13)

1

f41
=

f144
f142 f48

+ 4q
f24 f

4
8

f102
. (14)

Lemma 2.1 is a consequence of dissection formulas of Ramanujan, collected in
Berndt’s book [1].

Lemma 2.2. [1, Entry 25(i) and (ii), p. 40]

ϕ(q) = ϕ(q4) + 2qψ(q8). (15)

Lemma 2.3. [1, p. 49]) For any prime p,

ϕ(q) = ϕ(qp
2

) +

p−1∑
r=0

qr
2

f
(
qp(p−2r), qp(p+2r)

)
. (16)

Lemma 2.4. [4, Theorem 2.1.] For any odd prime p,

ψ(q) =

p−3
2∑

k=0

q
k2+k

2 f

(
q
p2+(2k+1)p

2 , q
p2−(2k+1)p

2

)
+ q

p2−1
8 ψ(qp

2

). (17)

Furthermore, k
2+k
2 6≡ p2−1

8 (mod p) for 0 ≤ k ≤ p−3
2 .

Lemma 2.5. [9, Theorem 1.] If
∞∑
n=0

b1(n)qn = ϕ(q)ψ(q) then

∞∑
n=0

b1 (3n+ 1) qn = 4ψ(q)ψ(q2)− ψ(q3)ϕ(q3). (18)

3. Proof of main results

Lemma 3.1. We have
∞∑
n=0

a(4n)qn =
f192

f181 f4f28
+ 8q

f92 f4f
2
8

f141
, (19)

∞∑
n=0

a(4n+ 2)qn = 2
f212 f28
f181 f74

+ 4
f72 f

7
4

f141 f28
, (20)

∞∑
n=0

a(4n+ 1)qn = 2
f132 f34
f161 f28

+ 16q
f32 f

5
4 f

2
8

f121
, (21)

∞∑
n=0

a(4n+ 3)qn = 4
f152 f28
f161 f34

+ 8
f2f

11
4

f121 f28
. (22)
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Proof. Substituting (13) into (1),
∞∑
n=0

a(n)qn =
f4
f2

1

f21
=

f4f
5
8

f62 f
2
16

+ 2q
f34 f

2
16

f62 f8
,

which yields

∞∑
n=0

a(2n)qn =
f2f

5
4

f61 f
2
8

(23)

and

∞∑
n=0

a(2n+ 1)qn = 2
f32 f

2
8

f61 f4
. (24)

Combining (13) and (14), we see that

1

f21

1

f41
=

1

f61
=

f144 f8
f192 f216

+ 4q
f24 f

9
8

f152 f216
+ 2q

f164 f216
f192 f58

+ 8q2
f44 f

3
8 f

2
16

f152
. (25)

Substituting (25) into (23) and (24), we find that
∞∑
n=0

a(2n)qn =
f194

f182 f8f216
+ 4q

f74 f
7
8

f142 f216
+ 2q

f214 f216
f182 f78

+ 8q2
f94 f8f

2
16

f142
(26)

and

∞∑
n=0

a(2n+ 1)qn = 2
f134 f38
f162 f216

+ 8q
f4f

11
8

f122 f216
+ 4q

f154 f216
f162 f38

+ 16q2
f34 f

5
8 f

2
16

f122
. (27)

Lemma 3.1 follows from (26) and (27). This completes the proof. �

Theorem 3.2. For α ≥ 0, n ≥ 0, we have

a(24+αn) ≡ a(23n) (mod 8), (28)
∞∑
n=0

a(8n+ 4)qn ≡ 2ϕ(q)ψ(q4) (mod 8). (29)

Proof. Following (19), we have
∞∑
n=0

a(4n)qn ≡ f192
f181 f4f28

(mod 8). (30)

By binomial theorem, it is easy to see that

f2m ≡ f2m (mod 2), f22m ≡ f4m (mod 22), f42m ≡ f8m (mod 23). (31)

Utilizing (31) in (30), we deduce that
∞∑
n=0

a(4n)qn ≡ f192
f181 f4f28

≡ f112
f21 f4f

2
8

(mod 8). (32)

But
f112

f21 f4f
2
8

≡ f52
f21 f

2
4

f54
f22 f

2
8

≡ ϕ(q)ϕ(q2) (mod 8). (33)

In view of (32) and (33), we have
∞∑
n=0

a(4n)qn ≡ ϕ(q)ϕ(q2) (mod 8). (34)
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Employing (15) into the above equation, we see that
∞∑
n=0

a(4n)qn ≡ ϕ(q2)ϕ(q4) + 2qϕ(q2)ψ(q8) (mod 8), (35)

which implies

∞∑
n=0

a(8n)qn ≡ ϕ(q)ϕ(q2) (mod 8). (36)

Congruence (28) follows from (34), (36) and by induction on α. Equating odd powers
of q from both sides of (35), we arrive at (29). �

Proof (of Theorem 1.1). In the view of (21), we deduce that
∞∑
n=0

a(4n+ 1)qn ≡ 2
f132 f34
f161 f28

≡ 2
f52 f

3
4

f28
(mod 16). (37)

Congruence (2) follows from (37). Extracting the terms involving q2n from both sides
of (37), we obtain

∞∑
n=0

a(8n+ 1)qn ≡ 2
f51 f

3
2

f24
(mod 16). (38)

But
f51 f

3
2

f24
≡ f52
f21 f

2
4

f22
f1
≡ ϕ(q)ψ(q) (mod 8). (39)

Combining (38) and (39), we see that
∞∑
n=0

a(8n+ 1)qn ≡ 2ϕ(q)ψ(q) (mod 16). (40)

Applying (31) into (22), we obtain
∞∑
n=0

a(4n+ 3)qn ≡ 4
f72 f

2
8

f34
+ 8

f74
f52

(mod 32). (41)

Congruence (3) follows from (41). Again, equating even powers of q from both sides
of (41), we get

∞∑
n=0

a(8n+ 3)qn ≡ 4
f71 f

2
4

f32
+ 8

f72
f51

(mod 32). (42)

But
f71 f

2
4

f32
≡ f22
f1

f24
f2
≡ ψ(q)ψ(q2) (mod 4) (43)

and
f72
f51
≡ f22
f1

f24
f2
≡ ψ(q)ψ(q2) (mod 2). (44)

In view of (42), (43) and (44), we deduce that
∞∑
n=0

a(8n+ 3)qn ≡ 12ψ(q)ψ(q2) (mod 16). (45)

�
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Proof (of Theorem 1.2). Define
∞∑
n=0

a(n)qn = ϕ(q)ψ(q4). (46)

In view of (29) and (46), for n ≥ 0,

a(8n+ 4) ≡ 2a(n) (mod 8). (47)

Now, we consider the congruence equation

r2 + 4 · k
2 + k

2
≡ 4p2 − 4

8
(mod p), (48)

which is equivalent to (2r)2 + 2 · (2k + 1)2 ≡ 0 (mod p), where 0 ≤ k, r ≤ p − 1 and
p is a prime such that (−2p ) = −1. Since (−2p ) = −1 for p ≡ 5 or 7 (mod 8), the

congruence relation (48) holds if and only if r = 0 and k = p−1
2 . Therefore, if we

substitute (16) and (17) into (47) and then extracting the terms in which the powers

of q are pn+ p2−1
2 , we arrive at
∞∑
n=0

a

(
pn+

p2 − 1

2

)
qpn+

p2−1
2 = q

p2−1
2 ϕ(qp

2

)ψ(q4p
2

). (49)

Dividing by q
p2−1

2 both sides of (49) and then replacing qp by q, we find that
∞∑
n=0

a

(
pn+

p2 − 1

2

)
qn = ϕ(qp)ψ(q4p),

implying

∞∑
n=0

a

(
p2n+

p2 − 1

2

)
qn = ϕ(q)ψ(q4) (50)

and for n ≥ 0, a

(
p2n+ pi+

p2 − 1

2

)
= 0, (51)

where i is an integer and 1 ≤ i ≤ p − 1. Combining (46) and (50), for n ≥ 0, we

have a
(
p2n+ p2−1

2

)
= a(n). From here, by mathematical induction, we deduce that

for n ≥ 0 and α ≥ 0 a
(
p2αn+ p2α−1

2

)
= a(n). Replacing n by p2n + pi + p2−1

2 and

using (51), we deduce that for n ≥ 0, α ≥ 0, a
(
p2α+2n+ p2α+1i+ p2α+2−1

2

)
= 0.

Congruence (4) follows from here and from (47).

Now, we prove (5). Define
∞∑
n=0

b(n)qn = ϕ(q)ψ(q). (52)

Combining (40) and (52), for n ≥ 0,

a(8n+ 1) ≡ 2b(n) (mod 16). (53)

Now, we consider the congruence equation

r2 +
k2 + k

2
≡ p2 − 1

8
(mod p), (54)
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which is equivalent to 2 · (2r)2 + (2k + 1)2 ≡ 0 (mod p), where 0 ≤ k, r ≤ p − 1 and
p is a prime such that (−2p ) = −1. Since (−2p ) = −1 for p ≡ 5 or 7 (mod 8), the

congruence relation (54) holds if and only if r = 0 and k = p−1
2 . Therefore, if we

substitute (16) and (17) into (52) and then extracting the terms in which the powers

of q are pn+ p2−1
8 , we arrive at
∞∑
n=0

b

(
pn+

p2 − 1

8

)
qpn+

p2−1
8 = q

p2−1
8 ϕ(qp

2

)ψ(qp
2

). (55)

Dividing by q
p2−1

8 both sides of (55) and then replacing qp by q, we find that
∞∑
n=0

b

(
pn+

p2 − 1

8

)
qn = ϕ(qp)ψ(qp),

which implies that

∞∑
n=0

b

(
p2n+

p2 − 1

8

)
qn = ϕ(q)ψ(q) (56)

and for n ≥ 0, b

(
p2n+ pi+

p2 − 1

8

)
= 0, (57)

where i is an integer and 1 ≤ i ≤ p− 1. Combining (52) and (56), for n ≥ 0, we have

b
(
p2n+ p2−1

8

)
= b(n). From here, by mathematical induction, we deduce that for

n ≥ 0 and α ≥ 0, b
(
p2αn+ p2α−1

8

)
= b(n). Replacing n by p2n+pi+ p2−1

8 and using

(57), we deduce that for n ≥ 0, α ≥ 0,

b

(
p2α+2n+ p2α+1i+

p2α+2 − 1

8

)
= 0. (58)

Congruence (5) follows from (53) and (58).

Next, we prove (6). By (11), (12) and (31), it is easy to see that

2
f212 f28
f181 f74

≡ 2ϕ(q)ψ(q4) (mod 16) (59)

and 4
f72 f

7
4

f141 f28
≡ 4ϕ(q)ψ(q4) (mod 16). (60)

Let c(n) be defined by
∞∑
n=0

c(n)qn = ϕ(q)ψ(q4). (61)

Combining (20), (59), (60) and (61), for n ≥ 0, a(4n+ 2) ≡ 6c(n) (mod 16) holds.

The remaining part of the proof is exactly similar to the proof of congruence (4),
hence we omit the details.

Finally, to conclude this section, we give a proof of (7). Define
∞∑
n=0

d(n)qn = ψ(q)ψ(q2). (62)
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Combining (45) and (62), for n ≥ 0,

a(8n+ 3) ≡ 12d(n) (mod 16). (63)

Now, we consider the congruence equation

k2 + k

2
+ 2 · m

2 +m

2
≡ 3p2 − 3

8
(mod p), (64)

which is equivalent to 2 · (2k + 1)2 + (2m+ 1)2 ≡ 0 (mod p), where 0 ≤ k,m ≤ p− 1
and p is a prime such that (−2p ) = −1. Since (−2p ) = −1 for p ≡ 5 or 7 (mod 8),

the congruence relation (64) holds if and only if both k = m = p−1
2 . Therefore, if

we substitute (17) into (62) and then extract the terms in which the powers of q are

pn+ 3p2−3
8 , we arrive at

∞∑
n=0

d

(
pn+

3p2 − 3

8

)
qpn+

3p2−3
8 = q

3p2−3
8 ψ(qp

2

)ψ(q2p
2

). (65)

Dividing by q
3p2−3

8 both sides of (65) and then replacing qp by q, we find that
∞∑
n=0

d

(
pn+

3p2 − 3

8

)
qn = ψ(qp)ψ(q2p),

which implies

∞∑
n=0

d

(
p2n+

3p2 − 3

8

)
qn = ψ(q)ψ(q2) (66)

and for n ≥ 0, d

(
p2n+ pi+

3p2 − 3

8

)
= 0, (67)

where i is an integer and 1 ≤ i ≤ p− 1. Combining (62) and (66), for n ≥ 0, we get

d

(
p2n+

3p2 − 3

8

)
= d(n). (68)

By (68) and mathematical induction, we deduce that for n ≥ 0 and α ≥ 0,

d

(
p2αn+

3p2α − 3

8

)
= d(n). (69)

Replacing n by p2n+pi+ 3p2−3
8 in (69) and using (67), we deduce that for n ≥ 0, α ≥ 0,

d

(
p2α+2n+ p2α+1i+

3p2α+2 − 3

8

)
= 0. (70)

Congruence (7) follows from (63) and (70). This completes the proof. �

Proof (of Theorem 1.3). If
∞∑
n=0

b1(n)qn = ϕ(q)ψ(q), then (40) can be expressed as

∞∑
n=0

a(8n+ 1)qn ≡ 2

∞∑
n=0

b1(n)qn (mod 16), (71)

which yields

∞∑
n=0

a(24n+ 9)qn ≡ 2

∞∑
n=0

b1(3n+ 1)qn (mod 16). (72)
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Invoking (18) and (72), we find that
∞∑
n=0

a(24n+ 9)qn ≡ 8ψ(q)ψ(q2)− 2ψ(q3)ϕ(q3) (mod 16), (73)

which implies

∞∑
n=0

a(24n+ 9)qn ≡ 6ψ(q3)ϕ(q3) (mod 8), (74)

which yields a(72n+ 9) ≡ 3a(8n+ 1) (mod 8), (75)

a(72n+ 33) ≡ 0 (mod 8) (76)

and a(72n+ 57) ≡ 0 (mod 8). (77)

From (75) and by induction on α, we arrive at (8). Substituting (76) and (77) into
(8), we arrive at (9) and (10). �
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