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EXISTENCE OF ONE WEAK SOLUTION FOR p(x)-BIHARMONIC
EQUATIONS INVOLVING A CONCAVE-CONVEX NONLINEARITY

Rabil Ayazoglu (Mashiyev), Gülizar Alisoy and Ismail Ekincioglu

Abstract. In the present paper, using variational approach and the theory of the vari-
able exponent Lebesgue spaces, the existence of nontrivial weak solutions to a fourth order
elliptic equation involving a p(x)-biharmonic operator and a concave-convex nonlinearity the
Navier boundary conditions is obtained.

1. Introduction and preliminary results

In this paper, we are concerned with the existence of weak solutions for the follow-
ing nonlinear elliptic Navier boundary value problem involving the p(x)-biharmonic
operator{

∆2
p(x)u+ a(x) |u|p(x)−2

u = λb(x) |u|α(x)−2
u− λc(x) |u|β(x)−2

u in Ω,

u = ∆u = 0 on ∂Ω,
(2)

where Ω ⊂ RN , with N ≥ 1, is a bounded domain with smooth boundary, p ∈ C(Ω)
with p(x) > 1, x ∈ Ω, a, b, c, α, β ∈ C(Ω) are nonnegative functions, λ is a positive

parameter and ∆2
p(x)u = ∆

(
|∆u|p(x)−2

∆u
)

is the so-called p(x)-biharmonic operator.
The nonlinear differential equations and variational problems involving the

p(x)-growth conditions appear in a variety of scientific research areas, such as model-
ing of dynamical phenomena which arise from the study of electrorheological fluids or
elastic mechanics, thermorheological viscous flows of non-Newtonian fluids and in the
mathematical description of the processes filtration of an ideal barotropic gas through
a porous medium. For the detailed application background see [4, 19, 22, 28–30], and
for some recent works on this subject see [7, 9, 23–25, 27]. Moreover, we point out
that elliptic equations involving the p(x)-biharmonic equations are not trivial gener-
alizations of similar problems studied in the constant case since the p(x)-biharmonic
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operator is not homogeneous and, thus, some techniques which can be applied in the
case of the p(x)-biharmonic operators fail in that new situation, such as the Lagrange
Multiplier Theorem.

Recently, in [2], the authors studied the following problem{
∆2
p(x)u = λ |u|α(x)−2

u in Ω,

u = ∆u = 0 on ∂Ω,
(3)

under the assumption p(x) = α(x). In particular, by the Ljusternik-Schnirelmann
principle on C1-manifolds, the authors proved, among other things, the existence of
a sequence of eigenvalues and that sup Λ = +∞, where Λ is the set of all nonnegative
eigenvalues. In [3], the authors studied the problem (3) when p(x) 6= α(x). Using
the Mountain Pass Lemma and Ekeland’s variational principle, the authors further
established several existence criteria for eigenvalues. In [14], by applying variational
arguments, the author studied the existence of at least one weak solution of the
problem (2) in the case of 1 < β− ≤ β+ < α− ≤ α+ < p−, for λ > 0 large enough.
In [15], the existence of at least one weak solution was obtained for the problem{

∆2
p(x)u+ a(x) |u|p(x)−2

u = λω(x)f(u) in Ω,

u = ∆u = 0 on ∂Ω,

for λ > 0 sufficiently small, where Ω ⊂ RN with N ≥ 1 is a bounded domain with
smooth boundary, p ∈ C(Ω) with p(x) > N on Ω, a ∈ C(Ω) is positive, f ∈ C(R)
satisfy certain conditions and ω ∈ Lr(x)(Ω) for some r ∈ C(Ω). In recent years
many authors have looked for multiple solutions of elliptic equations involving p(x)-
biharmonic type operators (see, for instance, [1, 11,12,14,15,17,18]).

Note that when p(x) = p is a positive constant, several variations of problem
(3) have also been investigated in the literature (see, e.g. [5, 10, 13]). Also, in [13],
the authors studied the combined effect of concave and convex nonlinearities on the
number of nontrivial solutions for the p-biharmonic equation of the form{

∆2
pu = λ |u|q−2

u+ λf(x) |u|r−2
u in Ω,

u = ∆u = 0 on ∂Ω,

where Ω is a bounded domain in RN ,

1 < r < p < q < p∗ =

{ Np
N−2p if p < N

2

∞ if p ≥ N
2

,

λ > 0 and f : Ω→ R is a continuous function which changes sign in Ω.

In the present paper, considering four different ordering cases of the functions α, β
and p, which makes problem (2) involving a concave-convex nonlinearity, we obtain
four results for problem (2). Since each case has specific challenges, we do not use
a unique straightforward technique. In this context, the presentation of the current
paper is unique. We believe that the present paper will make a contribution to the
related literature because considering a number of different cases for the functions
α, β and p is very important for the representation of the various physical situations
described by the model equation (2). Motivated by the ideas introduced in [22–26],
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the goal of this article is to study the existence of weak solutions of the problem (2)
involving a concave-convex nonlinearities.

Now, we proceed with some definitions and basic properties of variable spaces
Lp(x)(Ω) and W k,p(x)(Ω), where Ω ⊂ RN is a bounded domain with smooth boundary.
For further reading, we refer to the papers [8, 16,20] and references therein.

Set C+

(
Ω
)

=
{
h : h ∈ C

(
Ω
)
, h(x) > 1, x ∈ Ω

}
, and define

h− = min
x∈Ω

h (x) and h+ = max
x∈Ω

h (x) , ∀h ∈ C+

(
Ω
)
.

For any p ∈ C+

(
Ω
)
, we define the variable exponent Lebesgue space by

Lp(x) (Ω) =

{
u : Ω→ R is measurable,

∫
Ω

|u (x)|p(x)
dx <∞

}
,

under the norm

|u|p(x) = inf

{
η > 0 :

∫
Ω

∣∣∣∣u (x)

η

∣∣∣∣p(x)

dx ≤ 1

}
,

which makes
(
Lp(x) (Ω) , |·|p(x)

)
a Banach space.

The variable exponent Sobolev space W k,p(x) (Ω) is defined by

W k,p(x) (Ω) = {u ∈ Lp(x) (Ω) : Dγu ∈ Lp(x) (Ω) , |γ| ≤ k},

where γ = (γ1, γ2, ..., γN ) is a multi-index, |γ| =
∑N
i=1 γi, and Dγu = ∂|γ|u

∂γ1x1···∂γN xN .

Then, the space
(
W k,p(x) (Ω) , ‖·‖k,p(x)

)
, equipped with the norm

‖u‖k,p(x) =
∑
|γ|≤k

|Dγu|p(x) ,

is a separable and reflexive Banach space, provided 1 < p− ≤ p+ <∞. We denote by

W
k,p(x)
0 (Ω) the closure of C∞0 (Ω) in W k,p(x) (Ω).

Throughout this paper, we let X = W
1,p(x)
0 (Ω)∩W 2,p(x) (Ω). Define a norm ‖.‖X

of X by

‖u‖X := ‖u‖1,p(x) + ‖u‖2,p(x) .

Moreover, it is well known that if 1 < p− ≤ p+ < ∞, the space (X, ‖·‖X) is a
separable and reflexive Banach space, ‖u‖X and |∆u|p(x) are two equivalent norms

on X (see [8, 16]).
Let

‖u‖a = inf

{
η > 0 :

∫
Ω

(∣∣∣∣∆u (x)

η

∣∣∣∣p(x)

+ a(x)

∣∣∣∣u (x)

η

∣∣∣∣p(x)
)
dx ≤ 1

}
for all u ∈ X. In view of a− ≥ 0, it is easy to see that ‖u‖a is equivalent to the norms
‖u‖X and |∆u|p(x) in X. In this paper, for the convenience, we will use the norm ‖·‖a
on the space X.

For any x ∈ Ω, let

p∗(x) =

{
Np(x)
N−2p(x) if p(x) < N

2 ,

∞ if p(x) ≥ N
2 .
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Proposition 1.1. [1,8,16] Let Λp(x),a (u) =
∫

Ω

(
|∆u (x)|p(x)

+ a(x) |u (x)|p(x))
dx for

any u ∈ X. Then, we have

i) ‖u‖a ≤ 1 =⇒ ‖u‖p
+

a ≤ Λp(x),a (u) ≤ ‖u‖p
−

a ;

ii) ‖u‖a ≥ 1 =⇒ ‖u‖p
−

a ≤ Λp(x),a (u) ≤ ‖u‖p
+

a .

Proposition 1.2. [2,8,16] Assume that q ∈ C+(Ω) satisfy q(x) < p∗(x) on Ω. Then,
there exists a continuous and compact embedding X ↪→ Lq(x)(Ω).

Let us proceed with the settling of the problem (2) in the variational structure.
A function u ∈ X is said to be a weak solution of (2) if∫

Ω

(
|∆u|p(x)−2

∆u∆v + a(x) |u|p(x)−2
uv
)
dx

− λ
∫

Ω

(
b(x) |u|α(x)−2

uv − c(x) |u|β(x)−2
uv
)
dx = 0,

for all u ∈ X.

The energy functional Iλ : X → R corresponding to the problem (2) is defined as

Iλ(u) =

∫
Ω

1

p(x)

(
|∆u|p(x)

+ a(x) |u|p(x)
)
dx− λ

∫
Ω

(
b(x)

α (x)
|u|α(x) − c(x)

β (x)
|u|β(x)

)
dx.

At this point, let us define the functionals Iλ,Φ : X → R by

Φ(u) =

∫
Ω

1

p(x)

(
|∆u|p(x)

+ a(x) |u|p(x)
)
dx,

Iλ(u) = Φ(u)− λ
∫

Ω

(
b(x)

α (x)
|u|α(x) − c(x)

β (x)
|u|β(x)

)
dx.

Proposition 1.3. [1] Φ is sequentially weakly lower semicontinuous, Φ ∈ C1(X,R),
and its Gâteaux derivative Φ′(u) at u ∈ X is given by

〈Φ′(u), v〉 =

∫
Ω

(
|∆u|p(x)−2

∆u∆v + a(x) |u|p(x)−2
uv
)
dx, for all v ∈ X.

Using the previous proposition, the following result can be obtained easily.

Proposition 1.4. The functional Iλ is well-defined, Iλ ∈ C1(X,R), and its Gâteaux
derivative I ′λ(u) at u ∈ X is given by

〈I ′λ(u), v〉 =

∫
Ω

(
|∆u|p(x)−2

∆u∆v + a(x) |u|p(x)−2
uv
)
dx

− λ
∫

Ω

(
b(x) |u|α(x)−2

uv − c(x) |u|β(x)−2
uv
)
dx,

for all v ∈ X.
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2. Main results

In this paper, we obtain four different results for the problem (2). For each result,
the functions α, β ∈ C+

(
Ω
)

and p ∈ C+

(
Ω
)

have different ordering cases. Therefore,
we split up the results of the present paper into the four natural parts. Moreover, in
the rest of the paper, we always assume that a− ≥ 0, b−, c− > 0.

Theorem 2.1. Suppose that p (x) < min
{
N
2 ,

Np(x)
N−2p(x)

}
, and the following holds:

1 < α− ≤ α+< β− ≤ β+< p− on Ω. (4)

Then for all λ ∈ (0,∞), problem (2) has at least one nontrivial weak solution.

In order to prove Theorem 2.1 we first show that for any a1, a2 > 0 and 0 < k < m
the following inequality holds:

a1t
k − a2t

m ≤ a1

(
a1

a2

) k
m−k

,∀t ≥ 0. (5)

Indeed, since the function [0,∞) 3 t 7→ tθ is increasing for any θ > 0 it follows that

a1 − a2t
m−k < 0, ∀t >

(
a1

a2

) 1
m−k

,

and tk
(
a1 − a2t

m−k) ≤ a1t
k < a1

(
a1

a2

) k
m−k

, ∀t ∈

[
0,

(
a1

a2

) 1
m−k

]
.

The above inequalities show that (5) holds true.
We now proceed with the following auxiliary results.

Lemma 2.2. For any λ ∈ (0,∞), we have

i) Iλ is bounded from below and coercive on X.

ii) Iλ is sequentially weakly lower semicontinuous on X.

Proof. i) For any u ∈ X with ‖u‖a > 1,

Iλ(u) ≥ 1

p+

∫
Ω

(
|∆u|p(x)

+ a(x) |u|p(x)
)
dx− λ

∫
Ω

(
b+

α−
|u|α(x) − c−

β+
|u|β(x)

)
dx.

Applying (5) to the second term of the above inequality, we get

λ

(
b+

α−
|u|α(x) − c−

β+
|u|β(x)

)
≤ λb+

α−

(
b+β+

α−c−

) α(x)
β(x)−α(x)

≤ λb+

α−
max


(
b+β+

α−c−

) α−
β+−α−

,

(
b+β+

α−c−

) α+

β−−α+

 := K,

where K is a positive constant independent of u and x. Now we obtain that

Iλ(u) ≥ 1

p+
‖u‖p

−

a − |Ω|K.
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Hence, Iλ is bounded from below and coercive, that is, i) is proved.
ii) Let {un} ⊂ X be a sequence such that un ⇀ u ∈ X. By Proposition 1.3, Φ is

sequentially weakly lower semicontinuous. Then,

Φ(u) ≤ lim inf
n→∞

Φ(un). (6)

Moreover, by Proposition 1.2, X is compactly embedded to Lα(x)(Ω) and Lβ(x)(Ω):

un → u in Lα(x)(Ω) and un → u in Lβ(x)(Ω). (7)

Then, from (6) and(7) it reads

Iλ(u) ≤ lim inf
n→∞

Φ(un)− λ lim
n→∞

∫
Ω

(
b(x)

α (x)
|un|α(x) − c(x)

β (x)
|un|β(x)

)
dx

≤ lim inf
n→∞

(
Φ(un)− λ

∫
Ω

(
b(x)

α (x)
|un|α(x) − c(x)

β (x)
|un|β(x)

)
dx

)
,

that is, Iλ(u) ≤ lim inf
n→∞

Iλ(un). Thus, Iλ is sequentially weakly lower semicontinuous.

�

Lemma 2.3. For any λ ∈ (0,∞) it holds infu∈X Iλ(u) < 0.

Proof. If we consider the condition (4), it reads

lim inf
t→0

b−

α+ |t|α(x) − c+

β− |t|
β(x)

|t|p
− = +∞

uniformly in x ∈ Ω. Then, for any H > 0 there exists δ > 0 such that∣∣∣∣ inf
x∈Ω

(
b−

α+
|t|α(x) − c+

β−
|t|β(x)

)∣∣∣∣ > H |t|p
−

for every 0 < |t| ≤ δ.

Take a nonzero nonnegative function ϑ ∈ C∞0 (Ω) with infx∈Ω ϑ (x) > 0, λ ∈ (0,∞),
and put

H >
‖ϑ‖p

−

a

λ
∫

Ω
|ϑ|p

−
dx
.

Moreover, choose ε > 0 such that ε supx∈Ω ϑ(x) < δ, and let u0 = εϑ. Then, for any
λ ∈ (0,∞) we have

Iλ(εϑ) ≤ 1

p−

∫
Ω

(
|∆εϑ|p(x)

+ a(x) |εϑ|p(x)
)
dx

− λ
(
b−

α+

∫
Ω

|εϑ|α(x)
dx− c+

β−

∫
Ω

|εϑ|β(x)
dx

)
≤ εp

−

p−
‖ϑ‖p

−

a −Hε
p−
∫

Ω

|ϑ|p
−
dx < εp

−
(

1

p−
− 1

)
‖ϑ‖p

−

a .

So, we get infu∈X Iλ(u) < 0, which completes the proof. �

Proof (of Theorem 2.1). From Lemma 2.2, it follows that for any λ ∈ (0,∞), Iλ has
a global minimizer u ∈ X such that I ′λ(u) = 0 (see [21]). Then, u is a weak solution
of the problem (2). Moreover, since Iλ(0) = 0 and Iλ(u) < 0 (Lemma 2.3), u 6= 0, i.e.
u is a nontrivial solution. �
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Remark 2.4. Due to the results obtained above, we know that for any λ ∈ (0,∞)
the problem (2) has at least one nontrivial solution. Therefore, it is straightforward
to show that (2) has both positive and negative solutions. Indeed, set

Ψλ (x, t) := λ
(
b(x) |t|α(x)−2

u− c(x) |t|β(x)−2
u
)
,

and define Ψ+
λ : Ω× R→ R by

Ψ+
λ (x, t) =

{
Ψλ (x, t) if t ≥ 0,

0 if t < 0.

Then, applying the similar arguments, it can be shown that the following problem{
∆2
p(x)u+ a(x) |u|p(x)−2

u = Ψ+
λ (x, t) in Ω,

u = ∆u = 0 on ∂Ω,

has a nontrivial solution u, which is a critical point of the corresponding functional

I+
λ . Therefore,

〈
I+
λ (u) , u

〉
=
∫

Ω

(
|∆u|p(x)

+ a(x) |u|p(x)
)
dx −

∫
Ω

Ψ+
λ (x, u)u dx = 0

holds, provided u ≥ 0. This implies that u is a solution of (2) as well. Then, for
any nonempty compact subset Ω1 ⊂ Ω, there exists a positive constant c such that
u (x) ≥ c > 0, i.e. x ∈ Ω1 (the strong maximum principle), and hence u is a positive
solution of (2). The existence of a negative solution of (2) can be obtained similarly.

Theorem 2.5. Suppose that β (x) < min
{
N
2 ,

Np(x)
N−2p(x)

}
, and the following holds:

1 < α−≤ α+< p− ≤ p+< β−, on Ω. (8)

Then there exists λ∗ > 0 such that for any λ ∈ (0, λ∗) the problem (2) has at least
one nontrivial weak solution.

Under the condition (8), we cannot show (in a straightforward fashion) that any
Palais-Smale (PS) sequence is bounded in X. Thus, we will look for a weak solution
of (2) as a local minimizer of the functional Iλ using Ekeland’s variational principle
(see [6]). We need the following auxiliary results.

Lemma 2.6. There exists λ∗ > 0 such that for any λ ∈ (0, λ∗) there exist ρ, δ > 0
such that Iλ (u) ≥ δ for any u ∈ X with ‖u‖a = ρ.

Proof. By using the condition (8) and the compact embedding X ↪→ Lα(x)(Ω), we
have

|u|α(x) ≤ C3 ‖u‖a , C3 > 0, (9)

Let ‖u‖a = ρ < 1. Then by (9)

Iλ(u) ≥ 1

p+

∫
Ω

(
|∆u|p(x)

+ a (x) |u|p(x)
)
dx− λb+

α−

∫
Ω

|u|α(x)
dx+

λc−

β+

∫
Ω

|u|β(x)
dx

≥ 1

p+
‖u‖p

+

a −
λb+Cα

−

3

α−
‖u‖α

−

a ≥

(
1

p+
‖u‖p

+−α−
a − λb+Cα

−

3

α−

)
‖u‖α

−

a

=

(
1

p+
ρp

+−α− − λb+Cα
−

3

α−

)
ρα
−
. (10)
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Let λ∗ = α−

2b+Cα
−

3 p+
ρp

+−α− . Then for any u ∈ X with ‖u‖a = ρ, there exists δ = ρp
+

2p+

such that Iλ (u) ≥ δ > 0. �

Lemma 2.7. There exists ϕ ∈ X such that ϕ ≥ 0, ϕ 6= 0 and Iλ (tϕ) < 0 for t > 0
small enough.

Proof. Let ϕ ∈ C∞0 (Ω) , ϕ ≥ 0, ϕ 6= 0 and t ∈ (0, 1). Since α+< p−< β−, it reads

Iλ(tϕ) ≤ tp
−

p−

∫
Ω

(
|∆ϕ|p(x)

+ a (x) |ϕ|p(x)
)
dx

− λb+tα
+

α−

∫
Ω

|ϕ|α(x)
dx+

λc−tβ
−

β+

∫
Ω

|ϕ|β(x)
dx

≤ tp
−
(

1

p−
Λp(x),a (ϕ) +

λc−

β+
Λβ(x) (ϕ)

)
− tα

+

(
λb+

α−
Λα(x) (ϕ)

)
< 0,

for t < ε1/(p
−−α+) with

0 < ε < min

{
1,

λb+

α− Λα(x) (ϕ)
1
p−Λp(x),a (ϕ) + λc−

β+ Λβ(x) (ϕ)

}
,

from which we conclude that Iλ (tϕ) < 0, where Λr(x) (·) :=
∫

Ω
|·|r(x)

dx. �

Lemma 2.8. Let (un) ⊂ X be a bounded sequence such that Iλ(un) is bounded and
I ′λ(un)→ 0 in X−1. Then, (un) is relatively compact.

Thus, we will look for a weak solution of (2) as a local minimizer of the functional
Iλ using Ekeland’s variational principle. We begin by proving the following auxiliary
results.

Proof. By Lemma 2.6 it follows that on the boundary of the ball centered at the origin
and of radius ρ in X, denoted by Bρ (0), we have inf

∂Bρ(0)
Iλ > 0.

On the other hand, by Lemma 2.7 there exits ϕ ∈ X such that Iλ (tϕ) < 0 for all
t > 0 small enough. Moreover, since relation (10) holds for all u ∈ X, i.e.

Iλ (u) ≥ 1

p+
‖u‖p

+

a −
λb+Cα

−

3

α−
‖u‖α

−

a ,

it follows that −∞ < c := inf
Bρ(0)

Iλ < 0. So, we have 0 < ε < inf
∂Bρ(0)

Iλ − inf
Bρ(0)

Iλ.

Applying Ekeland’s variational principle to the functional Iλ : Bρ (0) → R, we can

find uε ∈ Bρ (0) such that uε ∈ Bρ (0).

Now, let us define Jλ : Bρ (0) → R by Jλ (u) := Iλ (u) + ε ‖u− uε‖. It is clear
that uε is a minimum point of Jλ, and this implies that ‖I ′λ (uε)‖X−1 ≤ ε. So, we
deduce that there exists a (PS)-sequence (un) ⊂ Bρ (0) such that

Iλ (un)→ c and I ′λ (un)→ 0 in X−1. (11)

Since the sequence (un) ⊂ X is bounded and X is reflexive, up to a subsequence, we
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get un ⇀ u in X. So, by (11) we have 〈I ′λ (un) , un − u〉 → 0. Therefore, we have

〈I ′λ (un) , un − u〉 =

∫
Ω

(
|∆un|p(x)−2

∆un∆ (un − u) + a(x) |un|p(x)−2
un (un − u)

)
dx

−λ
∫

Ω

(
b(x) |un|α(x)−2

un (un − u)− c(x) |un|β(x)−2
un (un − u)

)
dx→ 0.

Since un ⇀ u in X, by compact embedding, we have un → u in Lα(x)(Ω) and un → u
in Lβ(x)(Ω). Therefore,∫

Ω

(
b(x) |un|α(x)−2

un (un − u)− c(x) |un|β(x)−2
un (un − u)

)
dx→ 0.

So, we conclude that

〈Φ′(un), un − u〉 =∫
Ω

(
|∆un|p(x)−2

∆un∆ (un − u) + a(x) |un|p(x)−2
un (un − u)

)
dx→ 0.

Since the functional Φ is of (S+) type (see [1, Proposition 2.5]), we obtain that un → u
in X. The proof is completed. �

Proof (of Theorem 2.5). Since Iλ ∈ C1 (X,R), by the relation (11) it follows that
Iλ (u) = c and I ′λ (u) = 0. Thus, u ∈ X is a nontrivial weak solution for (2). �

Theorem 2.9. Suppose that α (x) < min
{
N
2 ,

Np(x)
N−2p(x)

}
and the following holds:

1 < β− ≤ β+< p− ≤ p+
< q < α− on Ω. (12)

Then for any λ ∈ (0,∞) the problem (2) has at least one nontrivial weak solution.

We will apply Mountain Pass Theorem (see, e.g. [21, 31]). To this end, we need
the following lemma.

Lemma 2.10. i) There exist γ > 0, δ > 0 such that Iλ (u) ≥ δ for any u ∈ X with
‖u‖a = γ.

ii) There exists u ∈ X such that ‖u‖a > γ, Iλ (u) < 0.

Proof. i) By using the condition (12) and the compact embedding X ↪→ Lα(x)(Ω), we
have |u|α(x) ≤ C4 ‖u‖a , C4 > 0.

Let ‖u‖a = γ < 1. Then we have

Iλ(u) ≥ 1

p+

∫
Ω

(
|∆u|p(x)

+ a (x) |u|p(x)
)
dx− λb+

α−

∫
Ω

|u|α(x)
dx+

λc−

β+

∫
Ω

|u|β(x)
dx

≥ 1

p+
‖u‖p

+

a −
λb+Cα

−

4

α−
‖u‖α

−

a .

Then for any u ∈ X with ‖u‖a = γ < 1 small enough, there exists δ > 0 such that
Iλ (u) ≥ δ > 0, for every λ ∈ (0,∞).
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ii) Let u ∈ X with ‖u‖a = γ > 1, and t > 1. Then

Iλ(tu) ≤ 1

p−

∫
Ω

(
|∆tu|p(x)

+ a(x) |tu|p(x)
)
dx

− λ
(
b+

α−

∫
Ω

|tu|α(x)
dx− c−

β+

∫
Ω

|tu|β(x)
dx

)
≤ tp

+

p−

∫
Ω

(
|∆u|p(x)

+ a(x) |u|p(x)
)
dx

− tα
− λb+

α−

∫
Ω

|u|α(x)
dx+ tβ

− λc−

β+

∫
Ω

|u|β(x)
dx.

So, we conclude that Iλ (tu)→ −∞ as t→ +∞. �

Finally, we will show that under the condition (12), Lemma 2.8 holds for functional
Iλ as well for all λ ∈ (0,∞). To this end, using Lemma 2.10 and the Mountain Pass
Theorem, we deduce that there exists a (PS)-sequence, defined as in (11), {un} ⊂ X
for Iλ. We prove that {un} is bounded in X. Assume the contrary. Then, passing to
a subsequence, still denoted by {un}, we may assume that ‖un‖a → ∞ as n → ∞.
Thus, we may consider that ‖un‖a > 1, for any integer n. Moreover, by condition
(C), for any real number t we have

Θ (x, t) ≥ b(x)

(
1

q
− 1

α (x)

)
|t|α(x)

+ c (x)

(
1

β (x)
− 1

q

)
|t|β(x)

≥ b−
(

1

q
− 1

α−

)
|t|α(x)

+ c−
(

1

β+
− 1

q

)
|t|β(x) ≥M > 0, (13)

where Θ (x, t) := 1
q

(
b(x) |t|α(x) − c(x) |t|β(x)

)
−
(
b(x)
α(x) |t|

α(x) − c(x)
β(x) |t|

β(x)
)

.

Then, using (11) and (13) for n large enough, we have

C ≥ Iλ (un)− 1

q
|〈I ′λ(un), un〉|

≥
∫

Ω

1

p(x)

(
|∆un|p(x)

+ a(x) |un|p(x)
)
dx

− λ
∫

Ω

(
b(x)

α (x)
|un|α(x) − c(x)

β (x)
|un|β(x)

)
dx

− 1

q

[∫
Ω

(
|∆un|p(x)

+ a(x) |un|p(x)
)
dx− λ

∫
Ω

(
b(x) |un|α(x) − c(x) |un|β(x)

)
dx

]
≥
(

1

p+
− 1

q

)
‖un‖p

−

a + λ

∫
Ω

Θ (x, un) dx ≥
(

1

p+
− 1

q

)
‖un‖p

−

a + λM |Ω| .

Since p− > 1, we get a contradiction. So, ‖un‖a must be bounded. The rest of the
proof is similar to the proof of Lemma 2.8, so we omit it. Therefore we obtain that
un → u in X.

Proof (of Theorem 2.9). From Lemmas 2.8 and 2.10, and the fact that Iλ (0) = 0, Iλ
satisfies the Mountain Pass Theorem. So Iλ has a nontrivial critical point, i.e. (2)
has at least one nontrivial weak solution. �
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