A MULTIVALUED FIXED POINT THEOREM IN ULTRAMETRIC SPACES

Ljiljana Gajić

Abstract. The purpose of this paper is to prove that a class of generalized contractive multivalued mappings on a spherically complete ultrametric space has a fixed point.

Let (X, d) be a metric space. If the metric d satisfies strong triangle inequality: for all $x, y, z \in X$

$$d(x,y) \le \max\{d(x,z), d(z,y)\},\$$

it is called *ultrametric* on X [4]. Pair (X, d) is now an *ultrametric space*.

Remark. If $X \neq 0$, then the so called discrete metric d defined on X by

$$d(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$$

is an ultrametric.

EXAMPLE. For $a \in \mathbb{R}$ let [a] be the entire part of a. By

$$d(x,y) = \inf\{2^{-n} : n \in \mathbb{Z}, [2^n(x-e)] = [2^n(y-e)]\}$$

(here e is any irrational number) an ultrametric d on \mathbb{Q} is defined which determines the usual topology on \mathbb{Q} [4].

An ultrametric space (X, d) is said to be *spherically complete* if every shrinking collection of balls in X has a nonempty intersection.

In [3] authors proved a fixed point theorem for contractive function on spherically complete ultrametric space X. Let us recall: $T\colon X\to X$ is said to be contractive if for every $x,y\in X,\,x\neq y,\,d(Tx,Ty)< d(x,y)$. This result is generalized in [2] for multivalued mappings $T\colon X\to 2^X_c$ (2^X_c is the space of all nonempty compact subsets in X with Hausdorff metric H).

AMS Subject Classification: 47 H 10

 $[\]it Keywords$ and $\it phrases$: Ultrametric space, spherically complete, fixed point, multivalued mappings.

Communicated at the 5th International Symposium on Mathematical Analysis and its Applications, Niška banja, Yugoslavia, October, 2-6, 2002.

90 Li. Gajić

On the other side, the result from [3] is generalized for a class of functions $T: X \to X$ such that for every $x, y \in X$, $x \neq y$

$$d(Tx, Ty) < \max\{d(x, y), d(x, Tx), d(y, Ty)\}.$$

Now we are going to prove the related result for multivalued mappings.

Theorem. Let (X,d) be a spherically complete ultrametric space. If $T\colon X\to 2^X_c$ is such that for any $x,y\in X$, $x\neq y$,

$$H(Tx, Ty) < \max\{d(x, y), d(x, Tx), d(y, Ty)\},$$
 (1)

then T has a fixed point (i.e., there exists $x \in X$ such that $x \in Tx$).

Proof. Let $B_a = B[a; d(a, Ta)]$ denote the closed ball centered at a with radius $d(a, Ta) = \inf_{z \in Ta} d(a, z)$, and let \mathcal{A} be the collection of these spheres for all $a \in X$. The relation

$$B_a \leqslant B_b$$
 iff $B_b \subseteq B_a$

is a partial order on \mathcal{A} . Let \mathcal{A}_1 be a totally ordered subfamily of \mathcal{A} . Since X is spherically complete, $\bigcup_{B_a \in \mathcal{A}_1} B_a = B \neq \emptyset$. Let $b \in B$ and $B_a \in \mathcal{A}_1$. Obviously, $b \in B_a$, so $d(b,a) \leq d(a,Ta)$.

Take $u \in T(a)$ such that d(a, u) = d(a, Ta) (it is possible since Ta is a nonempty compact set). Then

$$\begin{split} d(b,Tb) &\leqslant \inf_{c \in Tb} d(b,c) \leqslant \max\{d(b,a),d(a,u),\inf_{c \in Tb} d(u,c)\} \\ &\leqslant \max\{d(a,Ta),H(Ta,Tb)\} < \max\{d(a,Ta),d(a,b),d(b,Tb)\} \\ &= \max\{d(a,Ta),d(b,Tb)\} \end{split}$$

which is possible only for d(b, Tb) < d(a, Ta). Now, for any $x \in B_b$,

$$d(x,b) \le d(b,Tb) < d(a,Ta),$$

 $d(x,a) \le \max\{d(x,b), d(b,a)\} < d(a,Ta),$

so $x \in B_a$. We have just proved that $B_b \subseteq B_a$ for any $B_a \in A_1$. Thus B_b is an upper bound in A for the family A_1 . By Zorn's lemma there is a maximal element in A, say B_z . We shall prove that $z \in Tz$.

In opposite case, $z \notin Tz$, there exists $\bar{z} \in Tz$, $\bar{z} \neq z$, such that $d(z, \bar{z}) = d(z, Tz)$. Let us prove that $B_{\bar{z}} \subseteq B_z$.

$$\begin{split} d(\bar{z}, T\bar{z}) \leqslant H(Tz, T\bar{z}) < \max\{d(z, \bar{z}), d(z, Tz), d(\bar{z}, T\bar{z})\} \\ = \max\{d(z, Tz), d(\bar{z}, T\bar{z})\}, \end{split}$$

which is possible only for $d(\bar{z}, T\bar{z}) < d(z, Tz)$. Now, for any $y \in B_{\bar{z}}$,

$$\begin{split} d(y,\bar{z}) &\leqslant d(\bar{z},T\bar{z}) < d(z,Tz), \\ d(y,z) &\leqslant \max\{d(y,\bar{z}),d(\bar{z},z)\} \leqslant d(z,Tz), \end{split}$$

which means that $y \in B_z$, so $B_{\bar{z}} \subseteq B_z$. But $d(z,\bar{z}) = d(z,Tz) > d(\bar{z},T\bar{z})$, hence $z \notin B_{\bar{z}}$, so $B_{\bar{z}} \subseteq B_z$. This fact contradicts the maximality of B_z . So we have proved that T has a fixed point. \blacksquare

REFERENCES

- $[\mathbf{1}]$ Lj. Gajić, On ultrametric spaces, Novi Sad J. Math. $\mathbf{31},$ 2 (2001), 69–71.
- [2] J. Kubiaczyk and N. Mostafa Ali, A multivalued fixed point theorem in non-Archimedean vector spaces, Novi Sad J. Math. 26, 2 (1996), 111-116.
- [3] C. Petalas and F. Vidalis, A fixed point theorem in non-Archimedean vector space, Proc. Amer. Math. Soc. $\bf 118$ (1993), $\bf 819-821$.
- [4] A. C. M. van Roovij, Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978.

(received 31.12.2002)

Deaprtment of Mathematics and Informatics, 21000 Novi Sad, trg D. Obradovića 4, Yugoslavia