MATEMATIČKI VESNIK
МАТЕМАТИЧКИ ВЕСНИК



MATEMATIČKI VESNIK
CONVERGENCE AND STABILITY OF PICARD S-ITERATION PROCEDURE FOR CONTRACTIVE-LIKE OPERATORS
G.V.R. Babu, G. Satyanarayana

Abstract

Let $(X,\|.\|)$ be a normed linear space. Let $K$ be a nonempty closed convex subset of $X$. Let $T:K\to K$ be a contractive-like operator with a nonempty fixed point set $F(T)$. We prove the strong convergence and $T$-stability of Picard S-iteration procedure with respect to the contractive-like operator $T$ which are independent for any arbitrary choices of the sequences $\{\alpha_n\}_{n=0}^\infty$ and $\{\beta_n\}_{n=0}^\infty$ in $[0,1]$.

Creative Commons License

Keywords: Fixed point; contractive-like operator; Picard S-iteration procedure; $T$-stability.

MSC: 47H10, 54H25

Pages:  111--118     

Volume  73 ,  Issue  2 ,  2021