Finite dimensions defined by means of $m$-coverings
Vitaly V. Fedorchuk
Abstract
We introduce and investigate finite dimensions
$(m,n)\text{-}\tx{\rm dim}$ defined by means of $m$-coverings. These
dimensions generalize the Lebesgue dimension: $\tx{\rm
dim}=(2,1)\text{-}\tx{\rm dim}$. If $n
Keywords: Dimension; dimension $(m,n)\text{-}\tx{\rm dim}$; metrizable space; hereditarily normal space.