
MATEMATIČKI VESNIK

MATEMATIQKI VESNIK

Corrected proof

Available online 19.01.2026

research paper

originalni nauqni rad

DOI: 10.57016/MV-ZooS4049

ON THE EQUIDISTANT DIMENSION OF HAMMING GRAPHS

Jozef J. Kratica, Aleksandar Lj. Savić, Zoran Lj. Maksimović and Milena
S. Bogdanović

Abstract. In this paper, we examine the recently introduced concept of equidistant
dimension eqdim(G) for Hamming graphs Hr,k. For hypercubes Qr = Hr,2, exact values
have been derived for r ̸≡ 0(mod 4). Finally, the exact value for eqdim(H2,k) has been
derived. We have shown that for Hamming graphs H2,k, the equidistant dimension remains
constant when k ≥ 5, whereas for hypercubes, it grows linearly with the order of the graph.

1. Introduction and previous work

The concept of a resolving set (also known as a locating set) was introduced inde-
pendently by Slater [8] and Harary and Melter [5]. This notion arises naturally in
applications such as fault detection in computer networks modeled as graphs. For-
mally, a subset of vertices S is called a resolving set if every vertex in the graph
can be uniquely identified by its vector of distances to the vertices in S. The metric
dimension of a graph is then defined as the minimum cardinality of such a resolving
set.

However, many authors have turned their attention precisely in the opposite di-
rection – to resolvability, thus trying to study anonymization problems in networks
instead of location aspects. Indeed, a subset of vertices A is a 2-antiresolving set if,
for every vertex v /∈ A, there exists another different vertex w /∈ A such that v and
w have the same vector of distances to the vertices of A. The 2-metric antidimension
of a graph is the minimum cardinality among all its 2-antiresolving sets.

Building upon this research direction, the work in [4] introduces novel graph-
theoretic concept – distance-equalizer sets and equidistant dimension – with direct
applications to network anonymization problems. Beyond their immediate utility for
anonymization, these concepts prove valuable for several mathematical applications,
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including: (1) establishing improved bounds for doubly resolving sets of graphs, and
(2) providing a new graph-theoretic formulation of a classical number theory problem.

The equidistant dimension problem is NP-hard in general [3]. Previous work has
investigated the equidistant dimension of lexicographic graph products [3] and estab-
lished key properties of distance-equalizer sets in arbitrary graphs [6, Lemma 1.6]. Ad-
ditionally, exact values for the equidistant dimensions of Johnson and Kneser graphs
have been determined [6]: eqdim(Jn, 2) = 3, eqdim(J2k, k) = 1

2 ·
(
2k
k

)
for odd k and

eqdim(Kn, 2) = 3 are found. Moreover, it has been proved that n−2 is a tight upper
bound for eqdim(Jn, 3).

The equidistant dimension of certain classes of convex polytopes has been studied
in [7]. Exact value is equal to 2n for Tn, Sn with odd n and S′′

n with even n. For R′′
n

with even n, exact value is equal to 3n. Finally, for odd n, lower bounds of 3n and
2n have been found for R′′

n and S′′
n, respectively.

All graphs considered in this paper are connected, undirected, simple, and fi-
nite. The vertex set and the edge set of a graph G are denoted by V (G) and E(G),
respectively. The order of G is |V (G)|. For any vertex v ∈ V (G), its open neigh-
borhood is the set N(v) = {w ∈ V (G) | vw ∈ E(G)} and its closed neighborhood is
N [v] = N(v) ∪ {v}.

The degree of a vertex v, denoted by deg(v), is defined as the cardinality of N(v).
If deg(v) = 1, then we say that v is a leaf, in which case the only vertex adjacent to v
is called its support vertex. When deg(v) = |V (G)|−1, we say that v is universal. The
maximum degree of G is ∆(G) = max{deg(v) | v ∈ V (G)} and its minimum degree is
δ(G) = min{deg(v) | v ∈ V (G)}. The distance between two vertices v, w ∈ V (G) is
denoted by d(v, w), and the diameter of G is Diam(G) = max{d(v, w) | v, w ∈ V (G)}.

A clique is a subset of pairwise adjacent vertices and the clique number of G,
denoted by ω(G), is the maximum cardinality of a clique of G. An independent set
of G is a subset of pairwise non-adjacent vertices and the independence number of G,
denoted by α(G), is the maximum cardinality of an independent set of G.

The set of vertices on equal distances from u and v is denoted in the literature by

uWv (see [1]). Formally, uWv = {w ∈ V (G) | d(u,w) = d(v, w)}.

Definition 1.1 ([4]). Let x, y, w ∈ V (G). We say that w is equidistant from x and
y if d(x,w) = d(y, w).

Definition 1.2 ([4]). A subset S of vertices is called a distance-equalizer set for G if
for every two distinct vertices x, y ∈ V (G) \S there exists a vertex w ∈ S equidistant
from x and y.

Definition 1.3 ([4]). The equidistant dimension of G, denoted by eqdim(G), is the
minimum cardinality of a distance-equalizer set of G.

Theorem 1.4 ([4]). For every graph G of order n ≥ 2, the following statements hold.

� eqdim(G) = 1 if and only if ∆(G) = n− 1;

� eqdim(G) = 2 if and only if ∆(G) = n− 2.
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Corollary 1.5 ([4]). If G is a graph of order n with ∆(G) < n−2 then eqdim(G) ≥ 3.

Lemma 1.6 ([6]). Let G be a graph, and u and v be any vertices from V (G). Then,
S is a distance-equalizer set of G if and only if S ∩ ({u, v} ∪ uWv) ̸= ∅.

Corollary 1.7. Let G be a graph, and u and v be any vertices from V (G). If S is
a distance-equalizer set of G and uWv = ∅ then u ∈ S or v ∈ S.

Table 1 presents the equidistant dimension of several well-known families of graphs
from the literature. For comparison, the last two columns show the metric dimension
and the doubly metric dimension of these graph families. The notation ’n.a.’ indicates
that a corresponding result is not available in the literature.

Graph G Contraints eqdim(G) dim(G) ψ(G)

Pn n ≥ 2 n− r(
⌈
n
2

⌉
) 1 2

n = 4k ≥ 4 3n
4 − 1 2 3

Cn n = 4k + 2 ≥ 6 n
2 2 3

n = 4k + 1 ≥ 5 n− r(
⌈
n+1
4

⌉
) 2 2

Kn n ≥ 3 1 n− 1 n− 1
Kr,s 2 ≤ r ≤ s = n− r r n− 2 n− 2
K1,n−1 n ≥ 4 1 n− 2 n− 1
K2(r, s) 3 ≤ r ≤ s = n− r r n− 4 n− 2
Kn1,...,np p ≥ 3, n1 + · · ·+ np = n min{3, n1, . . . , np} n− p n− p
Jn,2 n ≥ 6 3

⌈
2n
3

⌉
n.a.

J2k,k odd k 1
2

(
2k
k

)
≤ 2k n.a.

Kn,2 n ≥ 6 3
⌈
2n
3

⌉
n.a.

Jn,3 n ≥ 9 ≤ n− 2
⌊
3n+3

4

⌋
n.a.

R′′
n even n 3n 3 n.a.

R′′
n odd n ≥ 3n 3 n.a.

Sn odd n 2n 3 n.a.
S′′
n odd n ≥ 2n 3 3
S′′
n even n 2n 3 3
Tn n ≥ 8 2n 3 3

Table 1: Equidistant dimension and some other parameters of some families of graphs

2. New results

The Hamming graph Hr,k is the Cartesian product [2]:

Hr,k = Kk□Kk□ . . .□Kk︸ ︷︷ ︸
r

(1)

where Kk denotes the complete graph with k vertices. The vertices of Hamming
graphs can be considered also as r-dimensional vectors, where every coordinate has a
value from the set {0, 1, . . . , k − 1}.
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Obviously, Hr,k has kr vertices. Furthermore, every vertex has the r-dimensional
neighborhood with k − 1 neighbors with respect to each coordinate, so the overall
number of edges is kr ·r ·(k−1)/2. Hypercubes are Hamming graphs such that k = 2,
i.e., Qr = Hr,2.

Since Q1
∼= P2, then next result holds.

Result 2.1. eqdim(Q1) = 1.

All remaining cases (r ≥ 2) are fully or partially resolved in the following theorem.

Theorem 2.2. For r ≥ 2 and r ̸≡ 0 (mod 4), it holds that eqdim(Qr) = 2r−1.

Proof. Step 1. eqdim(Qr) ≥ 2r−1

Let S be a distance-equalizer set of Qr, and u0 and u1 be arbitrary vertices, where
u0 = (q1, q2, . . . , qr−1, 0) and u1 = (q1, q2, . . . , qr−1, 1), qi ∈ {0, 1}, 0 ≤ i ≤ r − 1.

Therefore, for arbitrary vertex w ∈ V (Qr) it holds that either d(u0, w) < d(u1, w),
or d(u0, w) > d(u1, w), so d(u0, w) ̸= d(u1, w) implying that u0

Wu1
= ∅. Using Coro-

larry 1.7, either u0 ∈ S (the last coordinate of w is 0) or u1 ∈ S (the last coordinate
of w is 1) holds. Let us divide vertices V (Qr) into the sets {(q1, q2, . . . , qr−1, 0),
(q1, q2, . . . , qr−1, 1) | qi ∈ {0, 1}, 0 ≤ i ≤ r − 1}. These sets are obviously mutually
disjoint, their union is equal to V (Qr) and there are 2r−1 of them, so |S| ≥ 2r−1.

Step 2. eqdim(Qr) ≤ 2r−1

If we introduce the function nz(v) : V (Q) → N as the sum of non-zero coordinates
of v, we can now color the vertices in chess board style. Vertices are “white” or “black”
depending on the value of function nz: if the value is odd, those vertices are “white”
and if the value is even, those vertices are “black”. We will denote by ⊕ binary
summation by coordinates of two vertices.

Let S = {v ∈ V (Qr) | nz(v) is even} or S be the set consisting of all black
vertices, and u and v be arbitrary vertices from V (Qr) \ S.

Case 1. r is odd.

It is obvious that nz(u), nz(v) are odd, i.e., they are white vertices. This means
that they differ in even number of coordinates. Let us now construct vertex x in the
following way: from those coordinates that are different in vertices u and v, we will
take half of them from vertex u and half from vertex v and all coordinates which are
equal in both u and v. If we denote c = d(u, v), then d(u, x) = d(v, x) = c

2 . Since c
is an even number, it implies the existence of x. If x is a black vertex then x ∈ S,
otherwise let us construct vertex x′ from x by changing one of the r − c coordinates
that are the same in both u and v from 0 to 1 or vice versa. Now, x′ is a black vertex
and belongs to S. Therefore, since |S| = 2r/2 = 2r−1, the property holds.

Case 2. r ≡ 2 (mod 4) and nz(u⊕ v) < r.

Vertices u and v are white and not diagonal, so it can be reduced to Case 1.
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Case 3. r ≡ 2(mod 4) and nz(u⊕ v) = r.

Vertices u and v are white and diagonal, which means that u is the complement of
v, i.e., all their coordinates are different. Then vertex x can be constructed, without
loss of generality, by taking the first half of u-coordinates (r/2 of them), and the
second half of v-coordinates (r/2 of them). Since r ≡ 2 (mod 4) implies that r/2 is
an odd number and since d(u, x) = d(v, x) = r/2 is an odd number, and taking in
account that both u and v are white vertices, it follows that x is a black vertex and
must belong to S. It can be concluded that the property holds.

Finally, in all cases, both x and x′ are equidistant from u and v and x, x′ ∈ S, so
S is an equidistant set for Qr, and eqdim(Qr) ≤ |S| = 2r−1 for r ̸≡ 0 (mod 4). □

It should be noted that Step 1. holds for any r ≥ 2. For better understanding
the notions applied in Theorem 2.2, two illustrative examples are given:

Example 2.3. Let r = 5, u = (1, 0, 1, 0, 1) and v = (0, 1, 1, 1, 0), nz(u) = nz(v) = 3,
u ⊕ v = (1, 1, 0, 1, 1), c = nz(1, 1, 0, 1, 1) = 4. Let x = (1, 0, 1, 1, 0). It follows that
nz(u⊕ x) = nz(v ⊕ x) = c

2 .

Example 2.4. Let r = 6, u = (0, 1, 0, 1, 0, 1) and v = (0, 0, 1, 1, 1, 0), nz(u) = nz(v) =
3, u⊕ v = (0, 1, 1, 0, 1, 1), c = nz(0, 1, 1, 0, 1, 1) = 4. Let x = (0, 1, 0, 1, 1, 0). It follows
that nz(u⊕ x) = nz(v ⊕ x) = c

2 .

It is interesting to find the equidistant dimension of H2,k. First three values, for
k = 3, 4 and 5 are obtained by simple enumeration and are presented in Result 2.5.

Result 2.5. By a simple enumeration, it is found that
(I) eqdim(H2,3) = 3 with the corresponding distance-equalizer set

S = {{0, 0}, {0, 1}, {0, 2}};
(II) eqdim(H2,4) = 4 with the corresponding distance-equalizer set

S = {{0, 0}, {0, 1}, {0, 2}, {0, 3}};
(III) eqdim(H2,5) = 5 with the corresponding distance-equalizer set

S = {{0, 0}, {0, 1}, {0, 2}, {1, 0}, {2, 0}}.

All other cases, for k ≥ 6, are resolved by Theorem 2.6.

Theorem 2.6. For k ≥ 6 it holds that eqdim(H2,k) = 5.

Proof. Since the graph H2,k is (2k− 2)-regular, then ∆(H2,k) = 2k− 2. The order of
graphH2,k is k2, and then sufficient condition of Result 1.5 holds, so eqdim(H2,k) ≥ 3.
From Result 2.5 (III) it follows that for H2,5 there is no distance-equalizer set S with
cardinality in {3, 4}, i.e., (∃u, v ∈ V (H2,5) \ S))(∀x ∈ S)d(u, x) ̸= d(v, x)).

Let S = {(i1, j1), (i2, j2), (i3, j3), (i4, j4)}. Let A and B be arbitrary sets of indices
such that |A| = 5, |B| = 5, i1, i2, i3, i4 ∈ A and j1, j2, j3, j4 ∈ B. The Cartesian
product A×B is a subset of V (H2,k). Let G

′ be the induced subgraph of H2,k such
that V (G′) = A×B.

It should be noted that all distances in the induced subgraph G′ are equal to
distances from graph H2,k and G′ ∼= H2,5. Let f : H2,5 → G′ be an isomorphism.
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Since eqdim(H2,5) = 5 by Result 2.5 (III), there is no equalizer set S′ in H2,5 with
cardinality four, i.e., (∃u, v ∈ V (H2,5))(∀x ∈ S′)(d(u, x) ̸= d(v, x)).

If S′ = f(S), then f(u), f(v) ∈ V (G′) ⊂ V (H2,k) f(x) ∈ f(S) ⊂ V (G′) such that
d(f(u), f(x)) ̸= d(f(v), f(x)) for each x ∈ S′. Therefore, S is not an equalizer set for
G′ so it is not an equalizer set for H2,k.

Using the same arguments there is no equalizer set with 3 vertices.
Therefore, there is no distance-equalizer set S′ of H2,k, k ≥ 6 with cardinal-

ity in {3, 4}, i.e., (∃u, v ∈ V (H2,k) \ S′))(∀x ∈ S′)d(u, x) ̸= d(v, x)). Therefore,
eqdim(H2,k) ≥ 5.

Now, let eqdim(H2,k) ≤ 5. Let S = {{0, 0}, {0, 1}, {0, 2}, {1, 0}, {2, 0}} and u =
(iu, ju) and v = (iv, jv). When checking S as a distance-equalizer set of H2,k there
are two possible cases:

Case 1. 0 ≤ iu, iv, ju, jv ≤ 4

Since the vertex-induced subgraph H2,5 “inherits” the distance relationship from
H2,k, k ≥ 6, then from (III) it directly follows that S is a distance-equalizer set
for H2,5.

Case 2. Otherwise.

Without loss of generality we can assume that iu ≤ iv.

u = (iu, ju) v = (iv, jv) x d(u, x) d(v, x)
iu = 0 ju ≥ 3 iv = 0 jv ≥ 3 (0, 0) 1 1
iu = 0 ju ≥ 3 iv ∈ {1, 2} jv ≥ 3 (3− iv, 0) 2 2
iu = 0 ju ≥ 3 iv ≥ 3 jv = 0 (0, 0) 1 1
iu = 0 ju ≥ 3 iv ≥ 3 jv ∈ {1, 2} (0, jv) 1 1
iu = 0 ju ≥ 3 iv ≥ 3 jv ≥ 3 (1, 0) 2 2

iu ∈ {1, 2} ju ∈ {1, 2} iv ≥ 3 jv ≥ 3 (0, 0) 2 2
iu ∈ {1, 2} ju ≥ 3 iv ∈ {1, 2} jv ≥ 3 (0, 0) 2 2
iu ∈ {1, 2} ju ≥ 3 iv ≥ 3 jv ≥ 3 (0, 0) 2 2
iu ≥ 3 ju = 0 iv ≥ 3 jv = 0 (0, 0) 1 1
iu ≥ 3 ju = 0 iv ≥ 3 jv ∈ {1, 2} (0, 3− jv) 2 2
iu ≥ 3 ju ∈ {1, 2} iv ≥ 3 jv = 0 (0, 3− ju) 2 2
iu ≥ 3 ju ∈ {1, 2} iv ≥ 3 jv ∈ {1, 2} (0, 0) 2 2
iu ≥ 3 ju ≥ 3 iv ≥ 3 jv = 0 (0, 1) 2 2
iu ≥ 3 ju ≥ 3 iv ≥ 3 jv ∈ {1, 2} (0, 0) 2 2
iu ≥ 3 ju ≥ 3 iv ≥ 3 jv ≥ 3 (0, 0) 2 2

Table 2: Possible vertices u, v ∈ V (H2,k) for k ≥ 6.

All subcases are given in Table 2. In the first and second column, iu and ju
coordinates of vertex u are presented. In the same way, in the following two columns,
coordinates of vertex v are given. the fifth column presents vertex x that is equidistant
from u and v. The last two columns present distances from vertices u and v to x,
respectively. It can be observed from Table 2 that, in all subcases, the equality
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d(u, x) = d(v, x) holds. Combined with Case 1., this confirms that the set S is a
distance-equalizer set for H2,k. Therefore, eqdim(H2,k) = 5 for k ≥ 6. □

3. Conclusions

In this paper, we have investigated the equidistant dimensions of certain Hamming
graphs. For the Hamming graphs H2,k, the equidistant dimension is constant and
equal to 5, for k ≥ 5. In contrast, for hypercubes, the equidistant dimension increases
linearly with the order of the graph. Specifically, when r ̸≡ 0 (mod 4), we have
eqdim(Qr) = 2r−1, and when r ≡ 0 (mod 4), eqdim(Qr) ≥ 2r−1.

Future work could investigate the equidistant dimension for broader graph families,
along with developing exact algorithms and efficient heuristics for its computation.
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