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Abstract. This paper deals with the validation of convergence results for the newly
proposed C-α non-expansive mappings in the CAT(0) space setting. Before analyzing the
convergence behavior, we emphasize key results related to C-α non-expansive mappings. The
convergence results are obtained using the JF -iteration method. We then illustrate these
results with non-trivial examples and compare them to other notable iterations. These com-
parisons are presented in both tabular and graphical forms. Finally, we discuss a variational
inequality problem within the context of these mappings using the same iteration scheme.

1. Introduction

Over the past few decades, fixed point theory has evolved in various ways. These
include the development of new iterations, non-expansive mappings, and their ap-
plications. Researchers have also explored these elements in different underlying
spaces. The theoretical appeal and potential applications have motivated researchers
to investigate widely. This has led to several generalizations of non-expansive map-
pings [5, 14, 15, 23]. Additionally, multi-step iteration algorithms [1, 13, 20, 22] have
been developed, which are significantly faster than earlier methods. These concepts
have been explored in spaces beyond metric and Banach spaces. One such space that
has attached interest is a CAT(0) space. A CAT(0) space refers to a metric space,
say (A, d), where geodesic connectivity is ensured and every triangular geodesic struc-
ture is as thin as or thinner than its counterpart in the Euclidean plane. It is well
established that any Riemannian manifold that is simply connected, complete, and
has a non-positive sectional curvature qualifies as a CAT(0) space. More examples
include pre-Hilbert spaces, R-trees and so on. One may go through the texts [2, 3]
for a detailed exploration of these spaces. The exploration of CAT(0) spaces in fixed
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2 Convergence behaviour of JF -iteration in CAT(0) spaces with application

point theory was pioneered by Kirk [10] by proving the existence of fixed point per-
taining to a non-expansive mapping defined on a set with suitable conditions within
the framework of a complete CAT(0) space. For studying convergence behaviour, the
notion of ∆-convergence, which was initially proposed by Lim [12] has been restricted
to CAT(0) spaces by Kirk and Panyanak [11].

Now, one may question about the primary causes of developments of fixed point
theory in such spaces. The response to this is the development of new non-expansive
mappings and fixed point iterations. These developments lead to the exploration of
these concepts in different spaces, such as CAT(0) spaces. One may go through [6–
8, 10, 11, 21] and references therein to review fixed point theory in the framework of
CAT(0) spaces. Nevertheless, a significant direction of development in non-expansive
mappings is Suzuki generalized non-expansive mapping or Condition (C) [19]. It is a
self-mapping G : D → D, defined on a subset D ̸= ∅ of an arbitrary Banach space A
such that

1

2
∥p− Gp∥ ≤ ∥p− q∥ ⇒ ∥Gp− Gq∥ ≤ ∥p− q∥ ,

for all p, q ∈ D. Additionally, another distinct class of non-expansive mappings known
as α-nonexpansive mappings has been proposed [14]. It is defined as a self-mapping
G : D → D, on a non-empty subset D of an arbitrary Banach space A such that for
all p, q ∈ D and α ∈ [0, 1)

∥Gp− Gq∥2 ≤ α ∥p− Gq∥2 + α ∥q − Gp∥2 + (1− 2α) ∥p− q∥2 .
It is pertinent to note that Suzuki generalized mappings and α-nonexpansive mappings
are independent and generally discontinuous. In contrast, non-expansive mappings
are uniformly continuous. Building on this, Pant and Shukla [15] proposed a more
generalized class of mappings called a generalized α-nonexpansive mapping. It is a
self-mapping G defined on a subset D ≠ ∅ of an arbitrary Banach space A such that
for all p, q ∈ D and α ∈ [0, 1)

1

2
∥p− Gp∥ ≤ ∥p− q∥ implies ∥Gp− Gq∥

≤ α ∥p− Gq∥+ α∥q − Gp∥+ (1− 2α) ∥p− q∥ .
Note that this class of mappings does not properly contain that of α-nonexpansive
mappings. To tackle this problem, Pant and Shukla [14] proposed another type of
non-expansive mappings known as generalized C-α non-expansive mappings. It is a
self-mapping G defined on a subset D ≠ ∅ of any arbitrary Banach space A such that
for all p, q ∈ D and α ∈ [0, 1)

1

2
∥p− Gp∥ ≤ ∥p− q∥ implies ∥Gp− Gq∥2

≤ α ∥p− Gq∥2 + α∥q − Gp∥2 + (1− 2α) ∥p− q∥2 .
This class of mappings properly contains all the previously defined mappings. Now,
since fixed point approximation of non-expansive mappings relies on suitable iter-
ations, introducing novel iterations and modifying existing ones is essential. These
iterations help approximate solutions to real world problems formulated as fixed point
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problems. Some problems for which the solutions can be approximated by this ap-
proach are delay differential equations [1], split feasibility problems [16], fractional
differential equations [24], image processing [4], boundary value problems [24], varia-
tional inequality problems [4,8,23] and so on. In light of this, some notable iterations
are Mann [13], Thakur-New [20], JF [1], D [9], K∗ [22] and many others. For rel-
evance, we only define the JF -iterative scheme. Assume ∅ ≠ D ⊆ A, where D
represents a closed and convex set and A be a Banach space. Then, with an initial
point k1 ∈ D, the sequence (kn) is defined by

gn = G((1− cn)kn + cnGkn), bn = Ggn, kn+1 = G((1− en)bn + enGbn), (1)

where (cn) and (en) are sequences in (0, 1).

In this paper, we first establish auxiliary lemmas related to generalized C-α non-
expansive mappings. These lemmas highlight their similarity to the well-known con-
dition (E) and their relevance to our work. Next, we obtain ∆ and strong convergence
results for these mappings using JF -iteration in a CAT(0) space. We demonstrate
that JF -iteration is faster than some recently proposed iterations through tabular and
graphical representations, supported by proper examples. One example also illustrates
the relationship between this class of mappings and generalized α-nonexpansive map-
pings. Finally, we use this iteration scheme to discuss the solution of a variational
inequality problem.

2. Preliminaries

Through the entirety of this article, standard notations have been used. N and F (G),
respectively, represent the set of natural numbers and the fixed point set corresponding
to the mapping G. First, we introduce the definition of C-α non-expansive mappings
in the setting of CAT(0) spaces. It is important to note that this class of mappings
has originally been introduced within the framework of Banach spaces in [14].

Definition 2.1. Consider a CAT(0) space A with D as a non-empty subset. A
self-mapping G : D → D is known to be a C-α non-expansive mapping if

1

2
d(p,Gp) ≤ d(p, q) implies d(Gp,Gq)2

≤ αd(Gp, q)2 + αd(p,Gq)2 + (1− 2α)d(p, q)2 (2)

for all p, q ∈ D and α ∈ [0, 1).

Definition 2.2 ([21]). Assuming a CAT(0) space A, let (kn) be a sequence in A that
is bounded. Then for arbitrary k ∈ A, we define some relevant concepts as follows

(a) asymptotic center of (kn) at k as r(k, (kn)) = lim supn→∞ d(kn, k);

(b) asymptotic radius of (kn) relative to D as r(D, (kn)) = inf{r(k, kn) : k ∈ D};

(c) asymptotic center of (kn) relative to D as A(D, (kn)) = {k ∈ D : r(k, (kn)) =
r(D, (kn))}.
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It is important to note that for an arbitrary uniformly convex, closed CAT(0)
space, exactly one point is contained by the set A(D, (kn)).

Definition 2.3 ([21]). Let (kn) be any sequence in A. Then (kn) is said to be ∆-
convergent to k ∈ A if for every subsequence (pn) of (kn), k is the asymptotic center
of (pn), which is unique. We denote it as ∆− lim

n→∞
kn = k and read it as the ∆-limit

of (kn) is k.

Observe that for a given (kn) ⊆ A such that (kn) is ∆-convergent to k and a given
p ∈ A so that k ̸= p, by the property of asymptotic center being unique, we have

lim sup
n→∞

d(kn, k) < lim sup
n→∞

d(kn, p).

Therefore, the Opial property is satisfied by every CAT(0) space. We now recollect
some properties of CAT(0) spaces that are relevant to this paper.

Definition 2.4 ([18]). For a non-empty subset D of a normed space A, let G : D → D
be a mapping. Then G satisfies Condition (I) if there exists a non-decreasing function
g : [0,∞) → [0,∞) satisfying g(0) = 0 and g(γ) > 0 for all γ ∈ (0,∞) so that
d(p,Gp) ≥ g(d(p, F (G))) for all p ∈ D, where d(p, F (G)) = inf{d(p, k) : k ∈ F (G)}.

Lemma 2.5 ([11]). For every sequence that is bounded in a complete CAT (0) space,
there exists a subsequence which is ∆-convergent.

Lemma 2.6 ([7]). Assume (kn) to be a bounded sequence in D, where D is a convex
and closed subset of a complete CAT (0) space A. Then the asymptotic center of (kn)
is in D.

Lemma 2.7 ([6]). For a CAT (0) space A with p, q ∈ A and α ∈ [0, 1], there exists a
unique r ∈ [p, q] such that d(p, r) = αd(p, q) and d(q, r) = (1− α)d(p, q).

The notation used for the unique point r in the above lemma is (1− α)p⊕ αq.

Lemma 2.8 ([21]). For p, q, r ∈ A and α ∈ [0, 1], we have

d((1− α)p⊕ αq, r) ≤ (1− α)d(p, r) + αd(q, r).

Lemma 2.9 ([17]). Assume A to be a complete CAT (0) space and p ∈ A. Consider
(sn) to be a sequence in [α, β], for some α, β ∈ (0, 1). Further, let (pn) and (qn) be
sequences in A so that lim sup

n→∞
d(pn, p) ≤ m, lim sup

n→∞
d(qn, p) ≤ m, and lim

n→∞
d((1 −

sn)pn ⊕ snqn, p) = m for some m ≥ 0. Then lim
n→∞

d(pn, qn) = 0.

3. Auxiliary results

We obtain two auxiliary results, which are not addressed in the work of Pant and
Shukla [14]. The following result, although used indirectly in the original paper, is
provided separately to emphasize its semblance with Condition (E).
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Lemma 3.1. The following inequality is admitted by every C-α non-expansive mapping

d(p,Gq)2 ≤
(
1+α

1−α

)
d(p,Gp)2+d(p, q)2+

(
2

1−α

)
(αd(p, q)+d(Gp,Gq))d(p,Gp). (3)

Proof. Using the triangle inequality and (2), we have

d(p,Gq)2 ≤ (d(p,Gp) + d(Gp,Gq))2

= d(p,Gp)2 + d(Gp,Gq)2 + 2d(p,Gp)d(Gp,Gq)
≤ d(p,Gp)2 + αd(p,Gq)2 + αd(q,Gp)2 + (1− 2α)d(p, q)2

+ 2d(p,Gp)d(Gp,Gq)
(1− α)d(p,Gq)2 ≤ d(p,Gp)2 + α(d(q, p) + d(p,Gp))2 + (1− 2α)d(p, q)2

+ 2d(p,Gp)d(Gp,Gq)
≤ (1 + α)d(p,Gp)2 + (1− α)d(p, q)2 + 2(d(Gp,Gq) + αd(p, q))d(p,Gp)

⇒ d(p,Gq)2 ≤
(
1 + α

1− α

)
d(p,Gp)2 + d(p, q)2

+

(
2

1− α

)
(αd(p, q) + d(Gp,Gq))d(p,Gp).

Lemma 3.2. Assume D to be a non-empty subset of a CAT (0) space A and G :
D → D to be a C-α non-expansive mapping that has a fixed point. Then G is quasi-
nonexpansive.

Proof. Let q ∈ F (G) and p ∈ D. Since 1
2d(q,Gq) = 0 ≤ d(p, q), we utilize (2) to have

d(Gp, q)2 = d(Gp,Gq)2 ≤ αd(Gp, q)2 + αd(p,Gq)2 + (1− 2α)d(p, q)2

= αd(Gp, q)2 + αd(p, q)2 + (1− 2α)d(p, q)2 = αd(Gp, q)2 + (1− α)d(p, q)2

⇒ (1− α)d(Gp, q)2 ≤ (1− α)d(p, q)2.

From this, we have d(Gp, q) ≤ d(p, q). Hence G is quasi-nonexpansive. □

Lemma 3.3. Assume D be a non-empty subset of a CAT (0) space A and G : D → D
be a C-α non-expansive mapping that has a fixed point. Then F (G) is closed. Also,
F (G) is convex, assuming strict convexity of A together with convexity of D.

Proof. This proof can be done by following the steps from [14, Lemma 3.9]. □

4. Convergence behaviour of C-α non-expansive mappings

In this section, we procure the convergence results for a C-α non-expansive mapping
by utilizing a three-step iterative algorithm namely JF -iteration, in the setting of an
arbitrary CAT (0) space. Assume G : D → D to be a self-mapping satisfying (2),
where D is a non-empty subset of a CAT (0) space A. Then JF -iteration in this
setting is defined as

k1 ∈ D, gn = G((1−cn)kn ⊕ cnGkn), bn = Ggn, kn+1 = G((1−en)bn ⊕ enGbn) (4)
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for all n ∈ N, where (cn) and (en) are control sequences in (0, 1). Foremost, we
procure the lemma below about the iterative algorithm defined above in context of
C-α non-expansive mappings.

Lemma 4.1. For a non-empty closed and convex subset D of a complete CAT (0)
space A, assume G : D → D be a C-α non-expansive mapping with F (G) ̸= ∅. If the
sequence (kn) is defined by (4), then limn→∞ d(kn, k) exists for all k ∈ F (G).

Proof. Since G satisfies (2), then it is quasi-nonexpansive due to Lemma 3.2. Therefore
from (4) and Lemma 2.8, we have

d(gn, k) = d(G((1− cn)kn ⊕ cnGkn), k) ≤ d((1− cn)kn ⊕ cnGkn, k)
≤ (1− cn)d(kn, k) + cnd(Gkn, k) ≤ (1− cn)d(kn, k) + cnd(kn, k)

⇒ d(gn, k) ≤ d(kn, k). (5)

Similarly, we have

d(bn, k) = d(Ggn, k) ≤ d(gn, k) ≤ d(kn, k), (6)

and

d(kn+1, k) = d(G((1− en)bn ⊕ enGbn), k) ≤ d((1− en)bn ⊕ enGbn, k)
≤ (1− en)d(bn, k) + end(Gbn, k) ≤ (1− en)d(bn, k) + end(bn, k)

d(kn+1, k) ≤ d(bn, k). (7)

From (5), (6) and (7), we have

d(kn+1, k) ≤ d(bn, k) ≤ d(gn, k) ≤ d(kn, k).

This implies that (d(kn, k)) is a non-increasing sequence which is bounded below for
all k ∈ F (G). Therefore, lim

n→∞
d(kn, k) exists. □

Lemma 4.2. Consider A, D, G and (kn) to be the same as in Lemma 4.1. Then
F (G) ̸= ∅ iff the sequence (kn) is bounded and lim

n→∞
d(Gkn, kn) = 0.

Proof. Consider F (G) ̸= ∅ and k ∈ F (G). By Lemma 4.1, lim
n→∞

d(kn, k) exists and

(kn) is bounded. Let lim
n→∞

d(kn, k) = m. From (5) and (6), we have

lim sup
n→∞

d(gn, k) ≤ lim sup
n→∞

d(kn, k) ≤ m, (8)

and similarly,

lim sup
n→∞

d(bn, k) ≤ lim sup
n→∞

d(kn, k) ≤ m. (9)

From (4) we have,

d(kn+1, k) = d(G((1− en)bn ⊕ enGbn), k) ≤ d((1− en)bn ⊕ enGbn, k)
≤ (1− en)d(bn, k) + end(Gbn, k) ≤ (1− en)d(bn, k) + end(bn, k)

≤ (1− en)d(kn, k) + end(gn, k)

⇒ d(kn+1, k) ≤ d(kn, k)− end(kn, k) + end(gn, k)



J. Prabakaran, M. Owais, A. Chanda 7

which implies,

d(kn+1, k)− d(kn, k) ≤ en (d(gn, k)− d(kn, k))

d(kn+1, k)− d(kn, k)

en
≤ d(gn, k)− d(kn, k).

Since en ∈ (0, 1), we have

d(kn+1, k)− d(kn, k) ≤
d(kn+1, k)− d(kn, k)

en
≤ d(gn, k)− d(kn, k)

⇒ d(kn+1, k) ≤ d(gn, k). (10)

By applying lim inf on both sides, we have m ≤ lim inf
n→∞

d(gn, k). By using (8) and (10),

we have

m = lim
n→∞

d(gn, k) = lim
n→∞

d(G((1− cn)kn ⊕ cnGkn), k).

Also, due to quasi-nonexpansiveness of G we have d(Gkn, k) ≤ d(kn, k). By taking
lim sup on both sides, we have

lim sup
n→∞

d(Gkn, k) ≤ lim sup
n→∞

d(kn, k) ≤ m.

Thus all the requirements of Lemma 2.9 are fulfilled and we have lim
n→∞

d(Gkn, kn) = 0.

Conversely, let (kn) be bounded and limn→∞ d(Gkn, kn) = 0 and let k ∈ A(D, (kn)).
Then by utilizing Lemma 3.1, we have

r(kn,Gk)2 = lim sup
n→∞

d(kn,Gk)2

≤ lim sup
n→∞

(
1 + α

1− α

)
d(kn,Gkn)2 + lim sup

n→∞
d(kn, k)

2

+ lim sup
n→∞

(
2

1− α

)
(αd(kn, k) + d(Gkn,Gk))d(kn,Gkn)

= lim sup
n→∞

d(kn, k)
2 = r((kn), k)

2.

Thus we have Gk ∈ A(D, (kn)). Since D is a closed and convex subset of the CAT (0)
space A, A(D, (kn)) is singleton set. Hence we have Gk = k, that is, F (G) ̸= ∅. □

Theorem 4.3. Consider A, D, G and (kn) to be the same as in Lemma 4.1 with
F (G) ̸= ∅. Then the sequence (kn) is ∆-convergent to a point of F (G).

Proof. Due to Lemma 4.2, the sequence (kn) is bounded and lim
n→∞

d(kn,Gkn) = 0.

Let Kj((kn)) := ∪A(D, (an)), where we take union over all subsequences (an) of
(kn). To claim that (kn) is ∆-convergent to a point of F (G), we show that Kj((kn)) ⊆
F (G) and Kj((kn)) is a singleton set. Now, we prove that Kj((kn)) ⊆ F (G). Let
t ∈ Kj((kn)). Then there is a subsequence (tn) of (kn) such that A(D, (tn)) = t. By
Lemma 2.5, there exists a subsequence (sn) of (tn) such that ∆ − lim

n→∞
sn = s and

s ∈ D. As lim
n→∞

d(sn,Gsn) = 0 and G satisfies (3), we have

d(sn,Gs)2 ≤
(
1 + α

1− α

)
d(sn,Gsn)2 + d(sn, s)

2
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+

(
2

1− α

)
(αd(sn, s) + d(Gsn,Gs))d(sn,Gsn).

By taking lim sup on both sides, we get

lim sup
n→∞

d(sn,Gs)2 ≤ lim sup
n→∞

(
1 + α

1− α

)
d(sn,Gsn)2 + lim sup

n→∞
d(sn, s)

2

+ lim sup
n→∞

(
2

1− α

)
(αd(sn, s) + d(Gsn,Gs))d(sn,Gsn).

This implies that lim sup
n→∞

d(sn,Gs)2 ≤ lim sup
n→∞

d(sn, s)
2 which leads to

lim sup
n→∞

d(sn,Gs) ≤ lim sup
n→∞

d(sn, s). (11)

As ∆− lim
n→∞

sn = s, using Opial property, we have

lim sup
n→∞

d(sn, s) ≤ lim sup
n→∞

d(sn,Gs). (12)

From (11) and (12), we have Gs = s, that is, s ∈ F (G). Now, we claim that s = t.
Assuming not, say t > s, then by Lemma 4.1, lim

n→∞
d(kn, s) exists and from the

uniqueness of asymptotic centers

lim sup
n→∞

d(sn, s) < lim sup
n→∞

d(sn, t) ≤ lim sup
n→∞

d(tn, t) < lim sup
n→∞

d(tn, s)

= lim sup
n→∞

d(kn, s) = lim sup
n→∞

d(sn, s).

This is a clear contradiction. Hence s = t.
We claim that Kj((kn)) is a singleton. To show this, let (tn) be a subsequence of

(kn). Due to Lemma 2.5 and Lemma 2.6, a subsequence (sn) of (tn) exists such that
∆− limn→∞ sn = s. Let A(D, (tn)) = t = s and A(D, (kn)) = k. We now claim that
s = k. On contrary, assume s ̸= k, then in view of Lemma 4.1, d(kn, s) converges.
Due to uniqueness of asymptotic centers, we have

lim sup
n→∞

d(sn, s) < lim sup
n→∞

d(sn, k) ≤ lim sup
n→∞

d(kn, k)

< lim sup
n→∞

d(kn, s) = lim sup
n→∞

d(sn, s),

which is a contradiction. Hence our claim follows. □

Theorem 4.4. Consider A, D, G and (kn) to be the same as in Lemma 4.1 with
F (G) ̸= ∅ such that D is also a compact subset of A. Then (kn) strongly converges to
a fixed point of G.

Proof. Given that F (G) ̸= ∅, we have limn→∞ d(kn,Gkn) = 0. Also due to compact-
ness of D, a subsequence (kni

) of (kn) exists so that kni
→ k for a k ∈ D. Thence,

by Lemma 3.1, we obtain

d(kni ,Gk)2 ≤
(
1 + α

1− α

)
d(kni ,Gkni)

2 + d(kni , k)
2

+

(
2

1− α

)
(αd(kni

, k) + d(Gkni
,Gk))d(kni

,Gkni
).
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Now for i → ∞, we get Gk = k, that is, k ∈ F (G). Using Lemma 4.1, limn→∞ d(kn, k)
exists for every k ∈ F (G) and so (kn) is strongly convergent to a fixed point of G. □

Theorem 4.5. Consider A, D, G and (kn) to be the same as in Lemma 4.1 with
F (G) ̸= ∅. If G satisfies the Condition (I) stated as Definition 2.4, then the sequence
(kn) strongly converges to a fixed point of G.

Proof. From the hypothesis and Condition (I), we have g(d(kn, F (G))) ≤ d(kn,Gkn).
As F (G) ̸= ∅, then in light of Lemma 4.2, we get

lim
n→∞

d(kn,Gkn) = 0 ⇒ lim
n→∞

g(d(kn, F (G))) = 0.

We have lim
n→∞

d(kn, F (G)) = 0, since g is non-decreasing. Then, we have (kni
), a

subsequence of (kn) and a sequence (tn) ⊆ F (G) so that, for all i ∈ N

d(kni
, ti) <

1

2i
(13)

and d(kni+1
, ti) ≤ d(kni

, ti) <
1

2i
.

Therefore

d(ti+1, ti) ≤ d(ti+1, kni+1
) + d(kni+1

, ti)≤
1

2i−1
→ 0 as i → ∞.

This asserts that (tn) is Cauchy in F (G) and as F (G) is closed due to Lemma 3.3, it
converges to some k ∈ F (G). Again from (13), we derive (kni) is also convergent to
k. Finally as limn→∞ d(kn, k) exists, we have kn → k. □

5. Numerical examples

This section exemplifies C-α non-expansive mappings solely, as well as the relation-
ship between C-α and generalized α-nonexpansive mappings. Furthermore, we use
these examples to procure the comparative convergence of JF -iteration with other
notable iterations which has been demonstrated through tabular and graphical rep-
resentations.

Example 5.1. Consider a function G : [0, 2] → [0, 2] defined as

G(s) =

{
sin( s3 ), if s ̸= 2,
3
2 , if s = 2.

We show that G is a C-α non-expansive mapping but not a generalized α-nonexpansive
mapping for α ≥ 1

3 .

Case I: If s, t ̸= 2, then

d(Gs,Gt)2 = d

(
sin
(s
3

)
, sin

(
t

3

))2

≤ 1

9
d(s, t)2 ≤ 1

3
d(s, t)2 =

(
1− 2× 1

3

)
d(s, t)2

≤ 1

3
d(s,Gt)2 + 1

3
d(t,Gs)2 +

(
1− 2× 1

3

)
d(s, t)2.
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Case II: If s = 2 and t ̸= 2, then

d(Gs,Gt)2 = d

(
3

2
, sin

(
t

3

))2

(14)

and αd(s,Gt)2 + αd(t,Gs)2 + (1− 2α)d(s, t)2

=
1

3
d

(
2, sin

(
t

3

))2

+
1

3
d

(
t,
3

2

)2

+
1

3
d

(
3

2
, sin

(
t

3

))2

. (15)

Simplifying (14) and (15), we have

d

(
3

2
, sin

(
t

3

))
=

(
3

2
− sin

(
t

3

))2

=
9

4
− 3 sin

(
t

3

)
+ sin2

(
t

3

)
(16)

and

1

3

(∣∣∣∣2− sin

(
t

3

)∣∣∣∣2 + ∣∣∣∣t− 3

2

∣∣∣∣2 + ∣∣∣∣32 − sin

(
t

3

)∣∣∣∣2
)

=
1

3

(
4− 4 sin

(
t

3

)
+ sin2

(
t

3

))
+

1

3

(
t− 3

2

)2

+
1

3

(
9

4
− 3 sin

(
t

3

)
+ sin2

(
t

3

))
=

25

12
− 7

3
sin

(
t

3

)
+

2

3
sin2

(
t

3

)
+

1

3

(
t− 3

2

)2

. (17)

Now, we compare (16) and (17) by method of contradiction. We claim that (16) is
less than or equal to (17). Assume on contrary that for a particular t, (16) is greater
than (17), that is,

9

4
− 3 sin

(
t

3

)
+ sin2

(
t

3

)
>

25

12
− 7

3
sin

(
t

3

)
+

2

3
sin2

(
t

3

)
+

1

3

(
t− 3

2

)2

(
9

4
− 25

12

)
+

(
−3 +

7

3

)
sin

(
t

3

)
+

(
1− 2

3

)
sin2

(
t

3

)
>

1

3

(
t− 3

2

)2

1

6
− 2

3
sin

(
t

3

)
+

1

3
sin2

(
t

3

)
>

1

3

(
t− 3

2

)2

⇒ sin2
(
t

3

)
− 2 sin

(
t

3

)
+

1

2
>

(
t− 3

2

)2

. (18)

It can be easily checked that (18) does not hold for any t ∈ R, which is a contradiction.
Thus we have that the expression (14) is less than or equal to that of (15). Therefore
the mapping G is a C-α non-expansive mapping possessing a fixed point 0, which is
unique. Now we provide the following case to show its relationship with generalized
α-nonexpansive mappings.

If we take s = 2 and t = 1, then

1

2
d(s,Gs) = 1

2
d

(
2,

3

2

)
=

1

4
≤ d(s, t) = d(2, 1) = 1.

and d(Gs,Gt) = d

(
3

2
, sin

(
1

3

))
= |1.5, 0.3271| = 1.1720,
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1

3
d(s,Gt) = 1

3
|2− 0.3271| = 0.5576,

1

3
d(t,Gs) = 1

3
|1.5− 1| = 0.1667,

⇒ d(Gs,Gt) = 1.7720 > 1.0576 =
1

3
d(s,Gt) + 1

3
(t,Gs) + 1

3
d(s, t).

This implies that, G does not qualify as a generalized α-nonexpansive mapping.
We now use this G as the mapping in iteration (4) to showcase the comparative
convergence behaviour of JF -iteration with respect to other notable iterations. We
take the initial guess as k1 = 1.9 and the two control sequences as cn = 0.65 and
en = 0.25.

n JF -iteration D-iteration K∗-iteration Picard Thakur
1 0.0487919093 0.0585032955 0.0954878653 0.5918349050 0.1768256475
2 0.0013377018 0.0019319246 0.0050096056 0.1960011527 0.0175092633
3 0.0000366767 0.0000638012 0.0002628496 0.0652872480 0.0017347048
4 0.0000010056 0.0000021070 0.0000137915 0.0217606983 0.0001718643
5 0.0000000276 0.0000000696 0.0000007236 0.0072535025 0.0000170273
6 0.0000000008 0.0000000023 0.0000000380 0.0024178318 0.0000016870
7 0.0000000000 0.0000000001 0.0000000020 0.0008059438 0.0000001671

Table 1: Comparison of JF -iteration with some notable iterations wrt. Example 5.1
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No. of Iterations
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Figure 1: Graphical representation of Table 1

Example 5.2. Consider a function G : [0, n] → [0, n] for n ∈ N, defined as

G(s) = s

7
+

1

7
log(s+ 1).

We show that G is a C-α non-expansive mapping. We first have

d(Gs,Gt)2 = d

(
s

7
+

1

7
log(s+ 1),

t

7
+

1

7
log(t+ 1)

)2
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=
1

7
|s− t+ log(s+ 1)− log(t+ 1)|2. (19)

We assert that | log(s + 1) − log(t + 1)| ≤ |s − t|. Since log(s + 1) is continuous and
differentiable in the interval [0, n], n ∈ N, then by mean value theorem there exists a

point, say c ∈ (0, n) such that | log(s+1)− log(t+1)| ≤
(

1
s+1

)
c
|s−t|. As

(
1

s+1

)
c
≤ 1

for all s ∈ [0, n], we have | log(s+1)− log(t+1)| ≤ |s− t|. Hence, from (19), we have

d(Gs,Gt)2 ≤ 1

7
(|s− t|+ | log(s+ 1)− log(t+ 1)|)2 ≤ 1

7
(|s− t|+ |s− t|)2 =

4

7
|s− t|2

≤ 3

14
d(s,Gt)2 + 3

14
d(t,Gs)2 +

(
1− 2× 3

14

)
d(s, t)2.

Therefore, G is a C-α non-expansive mapping with 0 as its unique fixed point. We
now use this G as the mapping in iteration (4) to draw a comparison of the behaviour
of convergence of JF -iteration with other notable iterations. We take the same initial
guess as previously, that is, k1 = 1.9 and the two control sequences as cn = 0.65 and
en = 0.25.

n JF -iteration D-iteration K∗-iteration Picard Thakur
1 0.0203604686 0.0276397808 0.0519631026 0.4235301053 0.0995380037
2 0.0003105731 0.0005647786 0.0018440403 0.1109528402 0.0069821825
3 0.0000047689 0.0000116416 0.0000662133 0.0308815574 0.0005027752
4 0.0000000732 0.0000002400 0.0000023785 0.0087565535 0.0000362736
5 0.0000000011 0.0000000049 0.0000000854 0.0024964273 0.0000026174
6 0.0000000000 0.0000000001 0.0000000031 0.0007128205 0.0000001889
7 0.0000000000 0.0000000000 0.0000000001 0.0002036267 0.0000000136

Table 2: Comparison of JF -iteration with some notable iterations wrt. Example 5.2

1 2 3 4 5 6 7

No. of Iterations
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Figure 2: Graphical representation of Table 2
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6. Application to a variational inequality problem

In this section, an application to variational inequality problem is discussed. Assume
a Hilbert space A with D as its non-empty, closed, and convex subset. Then, the
mapping G : A → A is monotone iff ⟨Gs − Gt, s − t⟩ ≥ 0, for all s, t ∈ A. Now, we
define a variational inequality problem V (G,D) characterized by G and D as to find
t∗ ∈ D such that for each t ∈ A ⟨Gt∗, t− t∗⟩ ≥ 0.

Let I : A → A be the identity self-mapping and PD denote the closest point
projection onto D. Then for σ > 0, t∗ is the solution of V (G,D) iff PD(1−σG)(t∗) = t∗

(see [4]). Further, let the solution set of V (G,D) be denoted by SV (G,D). By [4,
Theorem 2.3], if SV (G,D) ̸= ∅ together with 1 − σG and PD(1 − σG) as averaged
non-expansive mapping, the sequence (kn) obtained by the iterative method kn+1 =
PD(1− σG)kn weakly converges to a point in SV (G,D).

We now proceed to approximate solution to V (G,D) in the context of generalized
C-α non-expansive mappings. It is important to note here that these mappings are
not necessarily continuous. This inference can be directly drawn from the Example 5.1
and relationships provided in [14]. We utilize iteration (4), which has already been
shown to be relatively faster previously. Also, since the Opial condition is satisfied
by every Hilbert space and every Hilbert space qualifies as a complete CAT(0) space,
we state the upcoming convergence results.

Theorem 6.1. Assume SV (G,D) ̸= ∅ and L := PD(1− σG) with σ > 0 to be a gener-
alized C-α non-expansive mapping. Let (kn) be a sequence generated by iteration (4).
Then (kn) is ∆-convergent to a point, say t∗ ∈ SV (G,D).

Proof. Since the prerequisites of Theorem 4.3 are fulfilled, the conclusion follows
from it. □

Theorem 6.2. Consider the same set of assumptions as in Theorem 6.1. Further let
D be compact. Then (kn) stongly converges to a point, say t∗ ∈ SV (G,D).

Proof. Since the prerequisites of Theorem 4.4 are fulfilled, the conclusion follows
from it. □

7. Conclusion

In this article, foremost, Condition (E) analog has been highlighted as a potential
generalization of Condition (E) for further investigation in the future. Afterwards,
strong and ∆-convergence results have been obtained in the context of the newly
proposed C-α non-expansive mappings by using JF -iteration scheme in the setting of
CAT(0) spaces. Furthermore, JF -iteration scheme has been shown to be faster than
many notable iterations by tabular and graphical representations. This comparison
has emphasized the speed of convergence and thus the importance of JF -iteration in
the context of the aforementioned kind of mappings. Finally, we have approximated
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solution to a variational inequality problem by utilizing the procured convergence
results. By doing so, we have demonstrated that the CAT(0) spatial approach to
approximating solutions to a variational inequality problem is just as feasible as a
Banach spatial approach. The future directions from this work would include inves-
tigation of other applications within the framework of these concepts such as split
feasibility in [16]. A multivalued analog of C-α non-expansive mappings could be de-
fined and a variational inequality problem may be investigated within CAT(0) space
setting as in [8]. Also, the exploration of other applications such as image recovery
and integral equations are possible. Additionally, these problems can be investigated
with a change in the setting, that is, in CAT(k) or hyperbolic spaces.
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