MATEMATIČKI VESNIK MATEMATИЧКИ ВЕСНИК Corrected proof Available online 30.10.2025

research paper оригинални научни рад DOI: 10.57016/MV-BFZe2402

RESULTS ON RELATIVE MATLIS REFLEXIVE MODULES WITH RESPECT TO A SEMIDUALIZING MODULE

Maryam Salimi and Elham Tavasoli

Abstract. Let R be a commutative local ring and let C be a semidualizing R-module. In [E. Tavasoli, M. Salimi, Relative Matlis duality with respect to a semidualizing module, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér., **66(114)**, **4** (2023), 433–444], the notion of relative Matlis duality with respect to C, and C-Matlis reflexive modules are introduced, which generalized the notions of Matlis duality and Matlis reflexive modules. In this paper, we investigate conditions under which the R-modules $\operatorname{Ext}_R^{i\geqslant 0}(M,N)$ and $\operatorname{Tor}_{i\geqslant 0}^R(M,N)$ become C-Matlis reflexive, where M and N are R-modules. In addition, we deal with the isomorphic modules to the relative Matlis duality of R-modules $\operatorname{Ext}_R^{i\geqslant 0}(M,N)$, and $\operatorname{Tor}_{i\geqslant 0}^R(M,N)$ in the case that M and N are Matlis reflexive modules over the complete ring R.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring, and we use the notation $\mathcal{E}_R(M)$ for the injective envelope of an R-module M. Let (R,\mathfrak{m}) be a local ring. We define the Matlis dual of M to be $M^\vee=\operatorname{Hom}_R(M,E(R/\mathfrak{m}))$. We say that M is Matlis reflexive if the canonical injection $M\to M^{\vee\vee}$ is an isomorphism. In [5], it is shown that M is Matlis reflexive if and only if M has a finitely generated submodule S such that M/S is Artinian. Using this characterization, Belshoff in [2] investigated the category of Matlis reflexive modules over a complete local ring. In particular, it is shown that if M and N are Matlis reflexive R-modules, then so are the R-modules $\operatorname{Hom}_R(M,N), M\otimes_R N, \operatorname{Ext}_R^{i\geqslant 1}(M,N),$ and $\operatorname{Tor}_{i\geqslant 1}^R(M,N).$

In [11], the notion of relative Matlis duality with respect to a semidualizing R-module was introduced, which gives a generalization of the notion of Matlis duality: for an R-module M, $M^{\vee_C} = \operatorname{Hom}_R(M, C^{\vee})$ is the relative Matlis dual of M with respect to a semidualizing R-module C. There is also a natural R-homomorphism $\psi: M \to (M^{\vee_C})^{\vee_C}$ defined by $\psi(x)(f) = f(x)$ for all $x \in M$ and $f \in M^{\vee_C}$. An

2020 Mathematics Subject Classification: 13D05, 13D45, 18G20 Keywords and phrases: Semidualizing; Matlis duality; Matlis reflexive.

R-module M is called C-Matlis reflexive if $M \cong (M^{\vee_C})^{\vee_C}$ under the homomorphism ψ .

In this paper, we investigate the conditions under which $\operatorname{Ext}_R^{i\geqslant 0}(M,N)$ and $\operatorname{Tor}_{i\geqslant 0}^R(M,N)$ become C-Matlis reflexive R-modules. We also provide isomorphisms for R-modules ($\operatorname{Ext}_R^i(M,N)$) $^{\vee_C}$ and ($\operatorname{Tor}_i^R(M,N)$) $^{\vee_C}$ to state the connection between relative Matlis duality with respect to C of these R-modules and Matlis duality, in the case that M and N are Matlis reflexive modules over the complete local ring R. In addition, we investigate the conditions that imply the modules $\operatorname{Ext}_R^{i\geqslant 0}(M,N)$ and $\operatorname{Tor}_{i\geqslant 0}^R(M,N)$ are C-Matlis reflexive R-modules and \widehat{C} -Matlis reflexive \widehat{R} -modules.

2. Relative Matlis reflexive modules

In [11], the notion of relative Matlis duality with respect to a semidualizing R-module was introduced, which gives a generalization of the notion Matlis duality over the local ring R. The notion of semidualizing module due to Foxby [7], generalizing Grothendieck's notion of a dualizing module, and introduced independently by Golod [8] and Vasconcelos [12]: a finitely generated R-module C, wherein R is a commutative Noetherian ring, is called semidualizing if the natural homothety morphism $R \to \operatorname{Hom}_R(C,C)$ is an isomorphism and $\operatorname{Ext}_R^{i\geqslant 1}(C,C)=0$. Now we are ready to recall the notion of relative Matlis duality with respect to a semidualizing module over the local ring (R,\mathfrak{m}) from [11]: for an R-module M, $M^{\vee_C} = \operatorname{Hom}_R(M,C^{\vee})$ is the relative Matlis dual of M with respect to a semidualizing R-module C. There is also a natural R-homomorphism $\psi: M \to (M^{\vee_C})^{\vee_C}$ defined by $\psi(x)(f) = f(x)$ for all $x \in M$ and $f \in M^{\vee_C}$. We say that an R-module M is C-Matlis reflexive if $M \cong (M^{\vee_C})^{\vee_C}$ under the homomorphism ψ . The main goal of this paper is to deal with conditions under which $\operatorname{Ext}_R^{i\geqslant 0}(M,N)$ and $\operatorname{Tor}_{i\geqslant 0}^R(M,N)$ are C-Matlis reflexive R-modules.

In the following, we collect some nice isomorphisms from [11, Proposition 3.2] in order to show the connection between $(-)^{\vee_C}$ and $(-)^{\vee}$.

Fact 2.1. Let C be a semidualizing R-module, wherein R is a local ring, and let M be an R-module. Then the following statements hold.

(i)
$$M^{\vee_C} \cong (C \otimes_R M)^{\vee}$$
. (ii) $M^{\vee_C} \cong \operatorname{Hom}_R(C, M^{\vee})$.

$$(iii) \ (M^{\vee_C})^{\vee_C} \cong \operatorname{Hom}_R(C, C \otimes_R M^{\vee\vee}). \qquad (iv) \ (M^{\vee_C})^{\vee_C} \cong (\operatorname{Hom}_R(C, C \otimes_R M))^{\vee\vee}.$$

EXAMPLE 2.2. Let (R, \mathfrak{m}) be a complete local ring, and let $C = \mathbb{E}(R/\mathfrak{m})$. By [6, Theorem 3.4.1], $\operatorname{Hom}_R(\mathbb{E}(R/\mathfrak{m}), \mathbb{E}(R/\mathfrak{m})) \cong R$, and $\operatorname{Ext}_R^{i\geqslant 1}(\mathbb{E}(R/\mathfrak{m}), \mathbb{E}(R/\mathfrak{m})) = 0$. Then C is a semidualizing R-module. It is routine to check that R is a C-Matlis reflexive module.

The classes defined next are collectively known as $Foxby\ classes$. The definitions are due to Foxby [1,4].

DEFINITION 2.3. Let C be a semiaualizing R-module. The Auslander class with respect to C is the class $\mathcal{A}_{C}(R)$ of R-modules M such that:

- (i) $\operatorname{Tor}_{i}^{R}(C, M) = 0 = \operatorname{Ext}_{R}^{i}(C, C \otimes_{R} M)$ for all $i \geqslant 1$, and

(ii) the natural map $\gamma_C^M: M \to \operatorname{Hom}_R(C, C \otimes_R M)$ is an isomorphism. The Bass class with respect to C is the class $\mathcal{B}_C(R)$ of R-modules M such that:

- (i) $\operatorname{Ext}_{R}^{i}(C, M) = 0 = \operatorname{Tor}_{i}^{R}(C, \operatorname{Hom}_{R}(C, M))$ for all $i \geq 1$, and
- (ii) the natural evaluation map $\xi_M^C: C \otimes_R \operatorname{Hom}_R(C,M) \to M$ is an isomorphism.

Proposition 2.4. Let C be a semidualizing R-module, wherein R is a local ring, and let $M \in \mathcal{A}_C(R)$. Then M is Matlis reflexive if and only if M is C-Matlis reflexive.

Proof. Let M be a Matlis reflexive R-module. Then M is C-Matlis reflexive by [11, Proposition 3.3 (i)]. For the reverse, we have the following R-isomorphisms.

$$M \cong (M^{\vee_C})^{\vee_C} \cong (\operatorname{Hom}_R(C, C \otimes_R M))^{\vee\vee} \cong M^{\vee\vee}.$$

In the above sequence, second isomorphism follows from Fact 2.1 (iv), and the last one follows from the assumption that $M \in \mathcal{A}_C(R)$.

Using [2, Proposition 1] and Proposition 2.4, we have the following results.

PROPOSITION 2.5. Let C be a semidualizing module over local ring R, M be a finitely generated R-module, and let N be a Matlis reflexive R-module. Then the following $statements\ hold.$

- (i) If $\operatorname{Hom}_R(M,N) \in \mathcal{A}_C(R)$, then $\operatorname{Hom}_R(M,N)$ is C-Matlis reflexive.
- (ii) If $M \otimes_R N \in \mathcal{A}_C(R)$, then $M \otimes_R N$ is C-Matlis reflexive.
- (iii) If $\operatorname{Ext}_{R}^{i\geqslant 1}(M,N)\in\mathcal{A}_{C}(R)$, then $\operatorname{Ext}_{R}^{i\geqslant 1}(M,N)$ is C-Matlis reflexive.
- (iv) If $\operatorname{Tor}_{i\geq 1}^R(M,N)\in\mathcal{A}_C(R)$, then $\operatorname{Tor}_{i\geq 1}^R(M,N)$ is C-Matlis reflexive.

COROLLARY 2.6. Let C be a semidualizing module over local ring R, M be a finitely generated R-module, and let N be a Matlis reflexive R-module. Then the following statements hold.

- (i) Let $M \in \mathcal{B}_C(R)$. If $\mathrm{id}_R N < \infty$ and $\mathrm{Ext}_R^{i\geqslant 1}(M,N) = 0$, then $\mathrm{Hom}_R(M,N)$ is C-Matlis reflexive.
- (ii) Let $M \in \mathcal{A}_C(R)$. If $\operatorname{fd}_R N < \infty$ and $\operatorname{Tor}_{i \geq 1}^R(M, N) = 0$, then $M \otimes_R N$ is C-Matlis

Proof. (i) By [10, Proposition 3.3.16 (a)], $\operatorname{Hom}_R(M,N) \in \mathcal{A}_C(R)$. Now the assertion follows from Proposition 2.5 (i).

(ii) By [10, Proposition 3.3.14 (a)], $M \otimes_R N \in \mathcal{A}_C(R)$. Now the assertion follows from Proposition 2.5 (ii).

Proposition 2.7. Let C be a semidualizing module over local ring R, M be an Artinian R-module and let N be a finitely generated R-module. Then the following statements hold.

(i) If $\operatorname{Hom}_R(M,N) \in \mathcal{A}_C(R)$, then $\operatorname{Hom}_R(M,N)$ is C-Matlis reflexive.

- (ii) Let $M \in \mathcal{B}_C(R)$. If $\mathrm{id}_R N < \infty$ and $\mathrm{Ext}_R^{i \geqslant 1}(M,N) = 0$, then $\mathrm{Hom}_R(M,N)$ is C-Matlis reflexive.
- *Proof.* (i) By [2, Proposition 4], $\operatorname{Hom}_R(M, N)$ is a Matlis reflexive R-module. Now the assertion follows from Proposition 2.4.
- (ii) By [2, Proposition 4], $\operatorname{Hom}_R(M,N)$ is a Matlis reflexive R-module, and [10, Proposition 3.3.16 (a)] implies that $\operatorname{Hom}_R(M,N) \in \mathcal{A}_C(R)$. Using Proposition 2.4 we get the assertion.

PROPOSITION 2.8. Let R be a complete local ring, C be a semidualizing R-module and let M and N be Matlis reflexive R-modules.

- (i) If $\operatorname{Hom}_R(M,N) \in \mathcal{A}_C(R)$, then $\operatorname{Hom}_R(M,N)$ is C-Matlis reflexive, and $\operatorname{Hom}_R(M,N)^{\vee_C} \cong \operatorname{Hom}_R(C,M\otimes_R N^{\vee})$.
- (ii) Let $M \in \mathcal{B}_C(R)$. If $\mathrm{id}_R N < \infty$ and $\mathrm{Ext}_R^{i \geqslant 1}(M,N) = 0$, then $\mathrm{Hom}_R(M,N)$ is C-Matlis reflexive, and $\mathrm{Hom}_R(M,N)^{\vee_C} \cong \mathrm{Hom}_R(C,M\otimes_R N^{\vee})$.
- (iii) If $M \otimes_R N \in \mathcal{A}_C(R)$, then $M \otimes_R N$ is C-Matlis reflexive, and $(M \otimes_R N)^{\vee_C} \cong \operatorname{Hom}_R(M, N^{\vee_C})$.
- (iv) Let $M \in \mathcal{A}_C(R)$. If $\operatorname{fd}_R N < \infty$ and $\operatorname{Tor}_{i\geqslant 1}^R(M,N) = 0$, then $M \otimes_R N$ is C-Matlis reflexive, and $(M \otimes_R N)^{\vee_C} \cong \operatorname{Hom}_R(M,N^{\vee_C})$.
- (v) If $\operatorname{Ext}_R^{i\geqslant 1}(M,N)\in \mathcal{A}_C(R)$, then $\operatorname{Ext}_R^{i\geqslant 1}(M,N)$ is C-Matlis reflexive, and for all $i\geqslant 0$ we have: $\operatorname{Ext}_R^i(M,N)^{\vee_C}\cong \operatorname{Hom}_R(C,\operatorname{Tor}_i^R(M,N^{\vee}))$.
- (vi) If $\operatorname{Tor}_{i\geqslant 1}^R(M,N)\in\mathcal{A}_C(R)$, then $\operatorname{Tor}_{i\geqslant 1}^R(M,N)$ is C-Matlis reflexive, and for all $i\geqslant 0$ we have: $\operatorname{Tor}_i^R(M,N)^{\vee_C}\cong\operatorname{Hom}_R(C,\operatorname{Ext}_R^i(M,N^{\vee}))$.
- *Proof.* (i) By [2, Theorem 1], $\operatorname{Hom}_R(M, N)$ is a Matlis reflexive R-module, and Proposition 2.4 implies that $\operatorname{Hom}_R(M, N)$ is C-Matlis reflexive. To see the isomorphism we have the following sequence of R-isomorphisms, where the first isomorphism follows from Fact 2.1 (ii), and the second one follows from [2, Theorem 4(a)]:
 - $\operatorname{Hom}_R(M,N)^{\vee_C} \cong \operatorname{Hom}_R(C,\operatorname{Hom}_R(M,N)^{\vee}) \cong \operatorname{Hom}_R(C,M\otimes_R N^{\vee}).$
- (ii) By [10, Proposition 3.3.16 (a)], $\operatorname{Hom}_R(M,N) \in \mathcal{A}_C(R)$. Now the assertion follows from item (i).
- (iii) By [2, Theorem 2], $M \otimes_R N$ is a Matlis reflexive R-module and Proposition 2.4 implies that $M \otimes_R N$ is C-Matlis reflexive. To see the isomorphism, we have the following sequence of R-isomorphisms, where the first isomorphism follows from Fact 2.1 (ii), second one follows from [2, Theorem 4(a)], third and forth ones follow from adjointness, and the last one follows from Fact 2.1 (ii).
- $(M \otimes_R N)^{\vee_C} \cong \operatorname{Hom}_R(C, (M \otimes_R N)^{\vee}) \cong \operatorname{Hom}_R(C, \operatorname{Hom}_R(M, N^{\vee}))$ $\cong \operatorname{Hom}_R(C \otimes_R M, N^{\vee}) \cong \operatorname{Hom}_R(M, \operatorname{Hom}_R(C, N^{\vee})) \cong \operatorname{Hom}_R(M, N^{\vee_C}).$
- (iv) By [10, Proposition 3.3.14 (a)], $M \otimes_R N \in \mathcal{A}_C(R)$. Now the assertion follows from (iii).

Items (v) and (vi) follow from [2, Theorem 4] and Proposition 2.4. To see the isomorphisms, for each i we have:

 $\operatorname{Ext}_R^i(M,N)^{\vee_C} \cong \operatorname{Hom}_R(C,\operatorname{Ext}_R^i(M,N)^{\vee}) \cong \operatorname{Hom}_R(C,\operatorname{Tor}_i^R(M,N^{\vee})),$

where the first isomorphism follows from Fact 2.1 (ii) and the second one follows from [2, Theorem 4(c)]. Finally,

 $\operatorname{Tor}_{i}^{R}(M,N)^{\vee_{C}} \cong \operatorname{Hom}_{R}(C,\operatorname{Tor}_{i}^{R}(M,N)^{\vee}) \cong \operatorname{Hom}_{R}(C,\operatorname{Ext}_{R}^{i}(M,N^{\vee})),$

where the first isomorphism follows from Fact 2.1 (ii) and the second one follows from [2, Theorem 4(d)]. \Box

PROPOSITION 2.9. Let C be a semidualizing R-module, wherein R is a local ring, and let M and N be R-modules such that $\operatorname{Ext}_R^{i\geqslant 1}(M,N)\in\mathcal{A}_C(R)$. Then the following statements hold.

- (i) If M is Matlis reflexive and N is Artinian, then $\operatorname{Ext}_R^{i\geqslant 1}(M,N)$ is C-Matlis reflexive.
- (ii) If M is Artinian and N is finitely generated, then $\operatorname{Ext}_R^{i\geqslant 1}(M,N)$ is C-Matlis reflexive.
- (iii) If M and N are Artinian, then $\operatorname{Ext}_R^{i\geqslant 1}(M,N)$ is C-Matlis reflexive.
- (iv) If M is Artinian and N is Matlis reflexive, then $\operatorname{Ext}_R^{i\geqslant 1}(M,N)$ is C-Matlis reflexive.
- (v) If M is finitely generated and N is Matlis reflexive, then $\operatorname{Ext}_R^{i\geqslant 1}(M,N)$ is C-Matlis reflexive.
- (vi) If M and N are Matlis reflexive, then $\operatorname{Ext}_R^{i\geqslant 1}(M,N)$ is C-Matlis reflexive.

Proof. In the light of Proposition 2.4, items (i)–(vi) follow from [2, Proposition 7], [2, Proposition 8], [2, Proposition 9], [2, Proposition 10], [2, Proposition 11] and [2, Theorem 3], respectively. □

Recall that an R-module M is mini-max if there is a Noetherian submodule N of M such that M/N is artinian. In [3, Theorem 12] it is shown that an R-module M is Matlis reflexive if and only if it is mini-max and $R/\operatorname{Ann}_R(M)$ is complete.

REMARK 2.10. Let R be a local ring and let C be a semidualizing R-module. By [10, Proposition 2.2.1], \widehat{C} is a semidualizing \widehat{R} -module. Let M be an \widehat{R} -module. Since $\widehat{R} \in \mathcal{A}_C(R)$, [10, Proposition 3.4.6] implies that $M \in \mathcal{A}_C(R)$ if and only if $M \in \mathcal{A}_{\widehat{C}}(\widehat{R})$.

PROPOSITION 2.11. Let C be a semidualizing module over local ring R and let $M \in \mathcal{A}_C(R)$ such that $R/\operatorname{Ann}_R(M)$ is complete. The following conditions are equivalent. (i) M is C-Matlis reflexive over R. (ii) M is mini-max over R.

(iii) M is mini-max over \widehat{R} . (iv) M is \widehat{C} -Matlix reflexive over \widehat{R} .

Proof. By Remark 2.10, $M \in \mathcal{A}_{\widehat{C}}(\widehat{R})$. Now the assertion follows from [9, Lemma 1.20] and Proposition 2.4.

DEFINITION 2.12. Let R be a local ring with maximal ideal \mathfrak{m} and let M be an R-module. For each integer i, the i-th Bass number of M is $\mu_R^i(M) = \operatorname{len}_R(\operatorname{Ext}_R^i(R/\mathfrak{m}, M))$, where $\operatorname{len}_R(N)$ denotes the length of an R-module N.

PROPOSITION 2.13. Let C be a semidualizing R-module over local ring R and let M and N be R-modules such that $R/(\operatorname{Ann}_R(M) + \operatorname{Ann}_R(N))$ is complete and M is Artinian. For each $i \geq 0$ such that $\mu_R^i(N) < \infty$, the module $\operatorname{Ext}_R^i(M,N)$ is C-Matlis reflexive over R and C-Matlis reflexive over R, provided that $\operatorname{Ext}_R^i(M,N) \in \mathcal{A}_C(R)$.

Proof. By Remark 2.10, $\operatorname{Ext}_{R}^{i}(M,N) \in \mathcal{A}_{\widehat{C}}(\widehat{R})$ for each $i \geq 0$. Now the assertion follows from [9, Corollary 2.4] and Proposition 2.4.

PROPOSITION 2.14. Let C be a semidualizing R-module over local ring R and let M and N be R-modules such that N is Artinian and M is mini-max. For each $i \ge 0$, the module $\operatorname{Ext}_R^i(M,N)$ is \widehat{C} -Matlis reflexive over \widehat{R} , provided that $\operatorname{Ext}_R^i(M,N) \in \mathcal{A}_C(R)$.

Proof. By Remark 2.10, $\operatorname{Ext}_{R}^{i}(M,N) \in \mathcal{A}_{\widehat{C}}(\widehat{R})$ for each $i \geq 0$. Now the assertion follows from [9, Theorem 2.6] and Proposition 2.4.

PROPOSITION 2.15. Let C be a semidualizing R-module over local ring R and let M and N be R-modules. Then the following statements hold.

- (i) If M is mini-max and N is Noetherian such that $R/(\operatorname{Ann}_R(M) + \operatorname{Ann}_R(N))$ is complete, then $\operatorname{Ext}_R^{i\geqslant 0}(M,N)$ is C-Matlis reflexive over R and \widehat{C} -Matlis reflexive over \widehat{R} , provided that $\operatorname{Ext}_R^{i\geqslant 0}(M,N)\in\mathcal{A}_C(R)$.
- (ii) If M and N are mini-max R-modules such that $R/(\operatorname{Ann}_R(M) + \operatorname{Ann}_R(N))$ is complete, then $\operatorname{Ext}_R^{i\geqslant 0}(M,N)$ is C-Matlis reflexive over R and \widehat{C} -Matlis reflexive over \widehat{R} , provided that $\operatorname{Ext}_R^{i\geqslant 0}(M,N)\in \mathcal{A}_C(R)$.
- (iii) Let M and N be R-modules such that M is mini-max and N is Matlis reflexive. The modules $\operatorname{Ext}_R^{i\geqslant 0}(M,N)$ and $\operatorname{Ext}_R^{i\geqslant 0}(N,M)$ are C-Matlis reflexive over R and \widehat{C} -Matlis reflexive over \widehat{R} , provided that $\operatorname{Ext}_R^{i\geqslant 0}(N,M)$ and $\operatorname{Ext}_R^{i\geqslant 0}(M,N)$ belong to $\mathcal{A}_C(R)$.

Proof. By Remark 2.10, $\operatorname{Ext}_R^{i\geqslant 0}(M,N)\in\mathcal{A}_{\widehat{C}}(\widehat{R})$. In the light of Proposition 2.4, items (i)–(iii) follow from [9, Theorem 2.7], [9, Theorem 2.8], and [9, Corolary 2.9], respectively.

PROPOSITION 2.16. Let C be a semidualizing R-module over local ring R and let M and N be R-modules such that M is Artinian and $R/(\operatorname{Ann}_R(M) + \operatorname{Ann}_R(N))$ is complete. Then for each $i \geq 0$ such that $\beta_i^R(N) < \infty$, the module $\operatorname{Tor}_i^R(M,N)$ is Artinian, C-Matlis reflexive over R and \widehat{C} -Matlis reflexive over \widehat{R} , provided that $\operatorname{Tor}_i^R(M,N) \in \mathcal{A}_C(R)$.

Proof. By [9, Theorem 3.5], $\operatorname{Tor}_i^R(M,N)$ is a Matlis reflexive R-module for each $i\geqslant 0$. On the other hand, Remark 2.10 implies that $\operatorname{Tor}_i^R(M,N)\in\mathcal{A}_{\widehat{C}}(\widehat{R})$ for each $i\geqslant 0$. Now the assertion follows from Proposition 2.4.

PROPOSITION 2.17. Let C be a semidualizing R-module over local ring R and let M and N be R-modules such that M and N are mini-max R-modules, and fix $i \ge 0$. If $R/(\operatorname{Ann}_R(M) + \operatorname{Ann}_R(N))$ is complete, then $\operatorname{Tor}_i^R(M,N)$ is C-Matlis reflexive over R and \widehat{C} -Matlis reflexive over \widehat{R} , provided that $\operatorname{Tor}_i^R(M,N) \in \mathcal{A}_C(R)$.

Proof. By [9, Theorem 3.5], $\operatorname{Tor}_i^R(M,N)$ is a Matlis reflexive R-module for each $i\geqslant 0$. On the other hand, Remark 2.10 implies that $\operatorname{Tor}_i^R(M,N)\in\mathcal{A}_{\widehat{C}}(\widehat{R})$ for each $i\geqslant 0$. Now the assertion follows from Proposition 2.4.

PROPOSITION 2.18. Let C be a semidualizing R-module over local ring R and let M and N be R-modules such that M is mini-max, N is Matlis reflexive, and $\operatorname{Tor}_{i\geqslant 0}^R(M,N) \in \mathcal{A}_C(R)$. Then the module $\operatorname{Tor}_{i\geqslant 0}^R(M,N)$ is C-Matlis reflexive over R and \widehat{C} -Matlis reflexive over \widehat{R} .

Proof. By Remark 2.10, $\operatorname{Tor}_{i\geqslant 0}^R(M,N)\in\mathcal{A}_{\widehat{C}}(\widehat{R})$. Now the assertion follows from [9, Corollary 3.6] and Proposition 2.4.

References

- L. L. Avramov, H. B. Foxby, Ring homomorphisms and finite Gorenstein dimension, Proc. London Math. Soc. III, 75(2) (1997), 241–270.
- [2] R. G. Belshoff, Matlis reflexive modules, Commun. Algebra, 19(4) (1991), 1099–1118.
- [3] R.G. Belshoff, E.E. Enochs, J.R. García Rozas, Generalized Matlis duality, Proc. Amer. Math. Soc., 128(5) (2000), 1307–1312.
- [4] L. W. Christensen, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc., 353(5) (2001), 1839–1883.
- [5] E. E. Enochs, Flat covers and flat cotorsion modules, Proc. Am. Math. Soc., 92 (2) (1984), 179–184.
- [6] E. Enochs, O. M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics, Vol. 30, Walter de Gruyter, Berlin, New York, 2000.
- [7] H. B. Foxby, Gorenstein modules and related modules, Math. Scand., 31 (1972), 267–284.
- [8] E. S. Golod, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov., 165 (1984), 62-66.
- [9] B. Kubik, M. J. Leamerb, S. Sather-Wagstaff, Homology of artinian and Matlis reflexive modules, J. Pure Appl. Algebra, 215 (2011), 2486–2503.
- $\textbf{[10]} \hspace{0.1cm} S. \hspace{0.1cm} Sather-Wagstaff, \hspace{0.1cm} Semidualizing \hspace{0.1cm} modules, \hspace{0.1cm} URL: \\ http://www.ndsu.edu/pubweb/\simssatherw/discounting the statement of the s$
- [11] E. Tavasoli, M. Salimi, Relative Matlis duality with respect to a semidualizing module, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér., 66(114), 4 (2023), 433–444.
- [12] W. V. Vascocelos, Divisor theory in module categories, North-Holland Math. Stud., vol. 14, North-Holland Publishing Co., Amsterdam, 1974.

(received 14.12.2023; in revised form 01.02.2025; available online 30.10.2025)

Department of Mathematics, East Tehran Branch, Islamic Azad University, Tehran, Iran E-mail: maryamsalimi@ipm.ir

ORCID iD: https://orcid.org/0000-0001-5937-4195

Department of Mathematics, East Tehran Branch, Islamic Azad University, Tehran, Iran E-mail:elhamtavasoli@ipm.ir

ORCID iD: https://orcid.org/0000-0002-4584-7120