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Gunther Jäger

Abstract. We study certain diagonal axioms defined for quantale-valued Cauchy tower
spaces and their relations to similar diagonal axioms for quantale-valued convergence tower
spaces and quantale-valued uniform limit tower spaces. We construct a completion for a
quantale-valued Cauchy tower space that preserves a diagonal axiom and show that our
construction is the coarsest possible such completion.

1. Introduction

It is well-known that Cauchy spaces [13] are a natural setting for studying complete-
ness and completions [25]. Richardson and Kent introduced probabilistic versions of
Cauchy spaces [26] using a whole family of spaces indexed by the unit interval. This
line of research was followed and generalized by Nusser [21,22]. However, despite the
name, the connection to probabilistic metric spaces remained unclear. In a previous
paper [12] we extended these approaches even further by allowing the index set to be
a quantale. This allowed to established natural Cauchy towers in particular for prob-
abilistic metric spaces, but also classical metric spaces are covered. The completion of
quantale-valued metric spaces (or L-categories) has been dealt with in many papers,
see e.g. [4, 6, 16]. Here we address the completion of a subcategory of the category of
quantale-valued Cauchy tower spaces which is close to quantale-valued metric spaces,
by studying diagonal conditions. We construct a so-called diagonal completion of a
diagonal quantale-valued Cauchy tower space which is in a sense the coarsest of such
completions.

The paper is organized as follows. In the next section we collect the necessary
background about quantales and filters and we fix the notation. Section 3 reviews
quantale-valued Cauchy tower spaces and quantale-valued convergence spaces and
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gives several examples. Suitable diagonal axioms are introduced and studied in Sec-
tion 4 and in Section 5 we give a completion construction which preserves a diagonal
axiom. Finally we draw some conclusions.

2. Preliminaries

A commutative and integral quantale is a triple L = (L,≤, ∗) with a complete lattice
(L,≤), with distinct top element ⊤ and bottom element ⊥, and a commutative semi-
group (L, ∗), with ⊤ as the unit and ∗ is distributive over arbitrary joins, i.e. if we
have (

∨
i∈J αi) ∗ β =

∨
i∈J(αi ∗ β) for all αi, β ∈ L, i ∈ J . We will, in the sequel,

simply speak of a quantale.

Important examples of quantales are the unit interval [0, 1] with a left-continuous
t-norm [27] or Lawvere’s quantale, the interval [0,∞] with the opposite order and
addition α ∗ β = α + β (extended by α +∞ = ∞ + α = ∞), see e.g. [5]. A further
noteworthy example is the quantale of distance distribution functions with a sup-
continuous triangle function as semigroup operation, see e.g. [5]. This quantale is
important in the theory of probabilistic metric spaces [27].

In some places we need the well-below relation in a complete lattice: α ◁ β if for
all subsets D ⊆ L such that β ≤

∨
D there is δ ∈ D such that α ≤ δ. Then α ≤ β

whenever α◁β and, for a subset B ⊆ L, we have α◁
∨
β∈B β iff α◁β for some β ∈ B.

A complete lattice is completely distributive, if and only if we have α =
∨
{β : β◁α}

for any α ∈ L

For a set X, we denote its power set by P(X) and the set of all (proper) filters
F,G, . . . on X by F(X). The set F(X) is ordered by set inclusion and maximal
elements of F(X) in this order are called ultrafilters. In particular, for each x ∈ X,
the point filter [x] = {A ⊆ X : x ∈ A} is an ultrafilter. More general, for A ⊆ X we
denote [A] = {F ⊆ X : A ⊆ X} ∈ F(X). If F ∈ F(X) and f : X −→ Y is a mapping,
then we define f(F) ∈ F(Y ) by f(F) = {G ⊆ Y : f(F ) ⊆ G for some F ∈ F}. For
filters Φ,Ψ ∈ F(X × X) we define Φ−1 to be the filter generated by the filter base
{F−1 : F ∈ Φ} where F−1 = {(x, y) ∈ X × X : (y, x) ∈ F} and Φ ◦ Ψ to be the
filter generated by the filter base {F ◦G : F ∈ Φ, G ∈ Ψ}, whenever F ◦G ̸= ∅ for all
F ∈ Φ, G ∈ Ψ, where F ◦G = {(x, y) ∈ X×X : (x, s) ∈ F, (s, y) ∈ G for some s ∈ X}.

For a set J and a selection function σ : J −→ F(X) and A ⊆ X we define
Aσ = {j ∈ J : A ∈ σ(j)}. We then have for A,B ⊆ X that Xσ = J and that A ⊆ B
implies Aσ ⊆ Bσ; and (A ∩ B)σ = Aσ ∩ Bσ. We define now for a selection function
σ and for a filter G ∈ F(J), the diagonal filter κσ(G) ∈ F(X) of (G, σ) by A ∈ κσ(G)
if Aσ ∈ G.

For details and notation from category theory we refer to [1, 24].
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3. L-convergence tower spaces and L-Cauchy tower spaces

Definition 3.1 ([11]). Let L = (L,≤, ∗) be a quantale. A pair (X, q = (qα)α∈L)
is called an L-convergence tower space, if (qα : F(X) −→ P(X))α∈L is a family of
mappings satisfying:
(LCTS1) x ∈ qα([x]), ∀x ∈ X,α ∈ L;

(LCTS2) ∀F,G ∈ F(X), with F ≤ G, and α ∈ L implies qα(F) ⊆ qα(G);

(LCTS3) ∀α, β ∈ L with α ≤ β implies qβ(F) ⊆ qα(F), ∀F ∈ F(X);

(LCTS4) x ∈ q⊥(F), ∀x ∈ X, F ∈ F(X).
If, moreover, (X, q) satisfies
(LCTS5) qα(F) ∩ qα(G) ≤ qα(F ∧G), ∀α ∈ L, for F,G ∈ F(X),
then we call (X, q) an L-limit tower space. If (X, q) satisfies x ∈ q∨A(F) whenever
x ∈ qα(F) ∀α ∈ A, it is called left-continuous. A mapping f : (X, q) −→

(
X ′, q′

)
between L-convergence tower spaces is called continuous if, for all x ∈ X, and for all
F ∈ F(X), f(x) ∈ q′α(f(F)) whenever x ∈ qα(F). The category of all L-convergence
tower spaces and continuous mappings is denoted by L-CTS.

If L = {0, 1}, then L-convergence tower spaces can be identified with classical
convergence spaces, [3, 24]. For Lawvere’s quantale L = ([0,∞],≥,+), an L-limit
tower space is a limit tower space [2] and a left-continuous L-limit tower space is an
approach limit spaces in the sense of Lowen [17]. For L = ([0, 1],≤, ∗), we obtain
probabilistic convergence spaces in the sense of Richardson and Kent, [26] and for
the quantale of distance distribution functions an L-convergence tower space is a
probabilistic convergence space in the definition of [7].

Definition 3.2 ([12]). Let L = (L,≤, ∗) be a quantale. A pair (X,C) = (X, (Cα)α∈L)
is called an L-Cauchy tower space, where Cα ⊆ F(X) for all α ∈ L, if
(LChyTS1) [x] ∈ Cα for all x ∈ X,α ∈ L;

(LChyTS2) G ≥ F ∈ Cα implies G ∈ Cα;

(LChyTS3) α ≤ β,F ∈ Cβ implies F ∈ Cα;

(LChyTS4) C⊥ = F(X).

(LChyTS5) F ∈ Cα,G ∈ Cβ ,F ∨G exists, implies F ∧G ∈ Cα∗β .
An L-Cauchy tower space is called left-continuous if F ∈ Cα for all α ∈ A ⊆ L implies
F ∈ C∨

A.

We call a mapping f : (X,C) −→ (X ′, C ′) Cauchy-continuous if F ∈ Cα implies
f(F) ∈ C ′α. The category with the L-Cauchy tower spaces as objects and Cauchy-
continuous mappings as morphisms is denoted by L-ChyTS.

For L = {0, 1} we obtain the classical Cauchy spaces [13]. For L = ([0, 1],≤, ∗)
with a continuous t-norm ∗, an L-Cauchy tower space is a probabilistic Cauchy space
in the definition of Nusser [21, 22] and if ∗ = min, then we obtain the probabilistic
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Cauchy spaces of Kent and Richardson [15]. In case of Lawever’s quantale L, an L-
Cauchy tower space is a Cauchy tower space in the definition of [20], which can be
identified in the left-continuous case with an approach Cauchy space [18,19].

We note that for (X,C) ∈ |L-ChyTS|, the “top level” (X,C⊤) is a classical Cauchy
space [13].

Proposition 3.3 ([12]). The category L-ChyTS is topological. If the quantale opera-
tion is the minimum, i.e. if ∗ = ∧, then it is also a Cartesian closed category.

As the category L-ChyTS is topological we can do initial constructions as follows,
see [12]. For (fj : X −→ (Xj , Cj))j∈J we define for F ∈ F(X), F ∈ Cα ⇐⇒ fj(F) ∈
Cjα for all j ∈ J .

We define, for an L-Cauchy tower space the underlying L-limit tower space by [12]

x ∈ qCα (F) ⇐⇒ F ∧ [x] ∈ Cα.

Proposition 3.4. Let (X,C) be an L-Cauchy tower space. Then

x ∈ qCα (F) ⇐⇒ ∃G ∈ Cα,G ≤ F, x ∈
⋂
G∈G

G.

Proof. Let first x ∈ qCα (F). Then G = F ∧ [x] ∈ Cα and G ≤ F and x ∈
⋂
G∈GG.

For the converse, we conclude from G ∈ Cα, x ∈
⋂
G∈GG that G ≤ [x] and hence

G = G ∧ [x] ∈ Cα, i.e. x ∈ qCα (G). From (LCTS2) then also x ∈ qCα (F). □

An L-Cauchy tower space (X,C) is called a T1-space if (X, qC) is a T1-space [9],

i.e. if [x]∧ [y] ∈ C⊤ implies x = y. It is called a T2-space if (X, qC) is a T2-space [9],
i.e. if F∧ [x],F∧ [y] ∈ C⊤ implies x = y. It has been shown in [12] that for L-Cauchy
tower spaces, the T1-axiom and the T2-axiom are equivalent.

Example 3.5 (L-metric spaces [4,16]). Natural examples are given by L-metric spaces
(X, d) with d : X ×X −→ L with the properties d(x, x) = ⊤ and d(x, y) ∗ d(y, z) ≤
d(x, z). Whenever we discuss L-metric spaces in this paper, we assume that L is
completely distributive. For an L-metric space (X, d) we define x ∈ qdα(F) ⇐⇒∨
F∈F

∧
xy∈F d(x, y) ≥ α. Then (X, qd) is an L-convergence tower space, see [11].

Similarly, we define F ∈ Cdα ⇐⇒
∨
F∈F

∧
x,y∈F d(x, y) ≥ α. Then (X,Cd) is an

L-Cauchy tower space, see [12].

Example 3.6 ([8, L-uniform limit tower spaces]). For a set X we call a family Λ =
(Λα)α∈L, with Λα ⊆ F(X ×X), which satisfies the axioms, for all α, β ∈ L,
(LUC1) [(x, x)] ∈ Λα for all x ∈ X;

(LUC2) Ψ ∈ Λα whenever Φ ≤ Ψ and Φ ∈ Λα;

(LUC3) Φ ∧Ψ ∈ Λα whenever Φ,Ψ ∈ Λα;

(LUC4) Λβ ⊆ Λα whenever α ≤ β;

(LUC5) Φ−1 ∈ Λα whenever Φ ∈ Λα;
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(LUC6) Φ ◦Ψ ∈ Λα∗β whenever Φ ∈ Λα, Ψ ∈ Λβ and Φ ◦Ψ exists;

(LUC7) Λ⊥ = F(X ×X)
an L-uniform convergence tower on X and we call the pair (X,Λ) an L-uniform con-
vergence tower space [8]. A mapping f : (X,Λ) −→ (X ′,Λ′) between L-uniform
convergence tower spaces is called uniformly continuous if (f × f)(Φ) ∈ Λ′α when-
ever Φ ∈ Λα. The category of L-uniform convergence tower spaces with uniformly
continuous mappings as morphisms is denoted by L-UCTS.

We define, for an L-uniform limit tower space (X,Λ),

x ∈ qΛα(F) ⇐⇒ [x]× F ∈ Λα,

F ∈ CΛ
α ⇐⇒ F× F ∈ Λα.

Then (X, qΛ) is an L-convergence tower space and (X,CΛ) is an L-Cauchy tower

space. Moreover, we have qC
Λ

α (F) ⊆ qΛα(F) ⊆ qC
Λ

α∗α(F) for all F ∈ F(X) and all α ∈ L,
see [10].

4. Diagonal axioms for quantale-valued Cauchy tower spaces

In [9] we introduced the following diagonal axiom for an L-convergence tower space
(X, q) and a mapping γ : L×L −→ L. We say that (X, q) satisfies the axiom (LF-γ)
if

∀J, ψ : J −→ X,σ : J −→ F(X),G ∈ F(J), x ∈ X,α, β ∈ L :

x ∈ qα(ψ(G)), ψ(j) ∈ qβ(σ(j))∀j ∈ J =⇒ x ∈ qγ(α,β)(κσ(G)).

Proposition 4.1 ([9]). Let (X, d) be an L-metric space. Then (X, qd) satisfies (LF-γ)
with γ(α, β) = α ∗ β.

Let now (X,C) be an L-Cauchy tower space and let γ : L × L −→ L be a fixed
mapping. We say that (X,C) satisfies the axiom (LCF-γ) if

∀J, ψ : J −→ X,G ∈ F(J), σ : J −→ F(X), α, β ∈ L :

ψ(G) ∈ Cα, σ(j) ∧ [ψ(j)] ∈ Cβ∀j ∈ J =⇒ κσ(G) ∈ Cγ(α,β).

The next two results show that the axiom (LCF-γ) behaves somewhat complicated,
however they also underline why it makes sense to introduce the diagonal axioms
depending on a mapping γ : L× L −→ L.

Proposition 4.2. Let (X, d) be an L-metric space and let γ(α, β) = α ∗ β ∗ β. Then

(X,Cd) satisfies (LCF-γ).

Proof. Let ψ(G) ∈ Cdα let σ : J −→ F(X) such that for all j ∈ J , we have σ(j) ∧
[ψ(j)] ∈ Cdβ . Let α′ ◁ α and β′ ◁ β. Then there is G ∈ G such that for all i, j ∈ G
we have d(ψ(i), ψ(j)) ≥ α′ and for every j ∈ J there is Fj ∈ σ(j) such that for all
u, v ∈ Fj ∪ {ψ(j)} we have d(u, v) ≥ β′. In particular we have d(u, ψ(j)) ≥ β′ and
d(ψ(j), v) ≥ β′ for all u ∈ Fj . We define H =

⋃
j∈G Fj . Then H ∈ σ(j) for all j ∈ G,
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i.e. we haveG ⊆ Hσ and thereforeHσ ∈ G which means thatH ∈ κσ(G). For a, b ∈ H
there are ja, jb ∈ G with a ∈ Fja and b ∈ Fjb . Hence d(a, ψ(ja)) ≥ β′, d(ψ(jb), b) ≥
β′ and d(ψ(ja), ψ(jb)) ≥ α′ and we obtain d(a, b) ≥ d(a, ψ(ja)) ∗ d(ψ(ja), ψ(jb)) ∗
d(ψ(jb), b) ≥ β′ ∗ α′ ∗ β′. We conclude

∨
H∈κσ(G)

∧
a,b∈H d(a, b) ≥ β′ ∗ α′ ∗ β′. The

complete distributivity then yields κσ(G) ∈ Cdα∗β∗β . □

Proposition 4.3. Let the L-Cauchy tower space (X,C) satisfy (LCF-γ). Then

(X, qC) satisfies (LF-γ′) with γ′(α, β) = α ∗ γ(α, β).

Proof. Let x ∈ qCα (ψ(G)) and ψ(j) ∈ qCβ (σ(j)) for all j ∈ J . Then ψ(G)∧[x] ∈ Cα and
σ(j)∧ [ψ(j)] ∈ Cβ for all j ∈ J . By (LChyTS2) then also ψ(G) ∈ Cα and (LChyTS5)
and (LChyTS1) imply (σ(j) ∧ [ψ(j)]) ∧ [ψ(j)] ∈ Cβ for all j ∈ J . From the axiom
(LCF-γ) we conclude κ(σ(·) ∧ [ψ(·)])(G) ∈ Cγ(α,β).

We next show that κ(σ(·)∧ [ψ(·)])(G) ≤ ψ(G). Let H ∈ κ(σ(·)∧ [ψ(·)])(G). Then
there is G ∈ G such that for all j ∈ G we have H ∈ σ(j)∧ [ψ(j)] ≤ [ψ(j)], i.e. we have
ψ(j) ∈ H. Hence ψ(G) ⊆ H and we have H ∈ ψ(G).

Therefore (ψ(G)∧[x])∨κ(σ(·)∧[ψ(·)])(G) exists and hence, by (LChyTS5), κ(σ(·)∧
[ψ(·)])(G)∧ [x] ∈ Cα∗γ(α,β). Now we note that κσ(G) ≥ κ(σ(·)∧ [ψ(·)])(G) and obtain

finally κσ(G) ∧ [x] ∈ Cα∗γ(α,β), i.e. x ∈ qCα∗γ(α,β)(κσ(G)). □

For an L-uniform limit tower space (X,Λ) the axiom (LUF-γ) is defined simi-
larly [10]:

∀J, ψ : J −→ X ×X,σ : J −→ F(X ×X),G ∈ F(J), α, β ∈ L :

ψ(G) ∈ Λα, ψ(j) ∈ qΛβ × qΛβ (σ(j))∀j ∈ J =⇒ κσ(G) ∈ Λγ(α,β).

Proposition 4.4. Let the L-uniform limit tower space (X,Λ) satisfy (LUF-γ). Then

(X,CΛ) satisfies (LCF-γ).

Proof. Let J be a set, ψ : J −→ X, G ∈ J and σ : J −→ F(X) such that ψ(G) ∈ CΛ
α

and σ(j) ∧ [ψ(j)] ∈ CΛ
β for all j ∈ J . We define J̃ = J × J and ψ̃ : J̃ −→ X ×X by

ψ̃(i, j) = (ψ(i), ψ(j)). Furthermore, we define the selection function σ̃ : J̃ −→ F(X ×
X) by σ̃(i, j) = σ(i)×σ(j) and G̃ = G×G ∈ F(J̃). Then ψ̃(G̃) = ψ(G)×ψ(G) ∈ Λα.
Also, as (σ(j) ∧ [ψ(j)]) × (σ(j) ∧ [ψ(j)]) ∈ Λβ , we conclude [ψ(j)] × σ(j) ∈ Λβ and

hence ψ(j) ∈ qΛβ (σ(j)) for all j ∈ J . This implies ψ̃(i, j) ∈ qΛβ × qΛβ (σ̃(i, j)) for all

(i, j) ∈ J̃ . The axiom (LUF-γ) then yields κσ̃(G̃) ∈ Λγ(α,β) and we finally show that

κσ̃(G̃) ≤ κσ(G) × κσ(G). To this end, let A ∈ κσ̃(G̃). Then Aσ̃ ∈ G̃ = G × G.
For (i, j) ∈ Aσ̃ we have A ∈ σ̃(i, j) = σ(i) × σ(j). Hence, there are Ai ∈ σ(i) and
Aj ∈ σ(j) auch that Ai × Aj ⊆ A. It follows that (i, j) ∈ Aσi × Aσj and so we have

Aσ̃ ⊆ Aσi ×Aσj . As Aσ̃ ∈ G×G, there is G ∈ G such that G×G ⊆ Aσi ×Aσj , i.e. we
have Aσi , A

σ
j ∈ G, which means that Ai, Aj ∈ κσ(G). Therefore A ∈ κσ(G)× κσ(G).

The axiom (LUC2) yields κσ(G)×κσ(G) ∈ Λγ(α,β) and we conclude κσ(G) ∈ CΛ
γ(α,β),

which completes the proof. □
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As in general the preservation properties of the axiom (LCF-γ) are complicated,
weaker diagonal conditions make sense. We say that the L-Cauchy tower space (X,C)
satisfies the axiom (WLCF), or is diagonal, if

∀J, ψ : J −→ X,G ∈ F(J), σ : J −→ F(X), α ∈ L :

ψ(G) ∈ Cα, σ(j) ∧ [ψ(j)] ∈ C⊤ ∀j ∈ J =⇒ κσ(G) ∈ Cα.

If the mapping γ : L × L −→ L satisfies γ(α,⊤) = α, then (LCF-γ) implies
(WLCF).

Proposition 4.5. Let (X, d) be an L-metric space. Then (X,Cd) satisfies (WLCF).

Proof. According to Proposition 4.2, (X,Cd) satisfies (LCF-γ) with γ(α, β) = α∗β∗β.
As γ(α,⊤) = α, the remark above shows that (X,Cd) satisfies (WLCF). □

For an L-convergence tower space (X, q) we similarly say that it satisfies the axiom
(WLF) if

∀J, ψ : J −→ X,G ∈ F(J), σ : J −→ F(X), α ∈ L :

x ∈ qα(ψ(G)), ψ(j) ∈ q⊤(σ(j))∀j ∈ J =⇒ x ∈ qα∗α(κσ(G)).

If the axiom (WLF) is satisfied for (X, q), a weak pretopological axiom is valid.
See in this regard also Proposition 4.6 in [9], the proof of which can easily be adapted.

Proposition 4.6. If (X, q) satisfies (WLF) and x ∈ q⊤(Fj) for all j ∈ J , then
x ∈ q⊤(

∧
j∈J Fj).

The next proposition can be seen similar to the case of the axiom (LF), see [9].

Proposition 4.7. For an L-metric space (X, d), the space (X, qd) satisfies (WLF).

Proposition 4.8. Let the L-Cauchy tower space (X,C) satisfy (WLCF). Then (X, qC)
satisfies (WLF).

Proof. This is similar to the proof of Proposition 3.4 and not shown. □

An L-uniform limit tower space (X,Λ) satisfies the axiom (WLUF) if

∀J, ψ : J −→ X ×X,σ : J −→ F(X ×X),G ∈ F(J), α ∈ L :

ψ(G) ∈ Λα, ψ(j) ∈ qΛ⊤ × qΛ⊤(σ(j))∀j ∈ J =⇒ κσ(G) ∈ Λα.

Again, the proof of the following proposition is not shown because it is similar to the
proof of Proposition 4.4.

Proposition 4.9. Let the L-uniform limit tower space (X,Λ) satisfy (WLUF). Then

(X,CΛ) satisfies (WLCF).

The axioms (LCF-γ) and (WLCF) are preserved by initial constructions.

Proposition 4.10. Let (Xk, Ck) satisfy the axiom (LCF-γ) (resp. the axiom (WLCF))

for all k ∈ K and let (fk : X −→ (Xλ, Ck))k∈K be a source and C the initial structure
on X w.r.t. this source. Then (X,C) satisfies the axiom (LCF-γ) (resp. the axiom
(WLCF)).
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Proof. We only show (LCF-γ), the other axiom is similar. Let (fk : X −→ (Xk, Ck))k∈K
be a source and let all (Xk, Ck) satisfy the axiom (LCF-γ). Let J be a set and let ψ :
J −→ X, σ : J −→ F(X) and letG ∈ F(J) such that ψ(G) ∈ Cα and σ(j)∧[ψ(j)] ∈ Cβ
for all j ∈ J . We define, for k ∈ K, ψk = fk ◦ψ and σk = fk ◦ψ. Then, for all k ∈ K,
we have ψk(G) = fk(ψ(G)) ∈ Ckα and σk(j) ∧ [ψk(j)] = fk(σ(j) ∧ [ψ(j)]) ∈ Ckβ , and

therefore, by (LCF-γ) we conclude κσk(G) ∈ Ckγ(α,β). We have A ∈ κσk(G) if, and

only if, (f←k (A))σ = Aσk ∈ G if, and only if A ∈ fk(κσ(G)). Hence, for all k ∈ K, we
have fk(κσ(G)) ∈ Ckγ(α,β) which means, κσ(G) ∈ Cγ(α,β). □

In particular the axioms (LCF-γ) and (WLCF) are preserved by the formation of
subspaces.

The following result gives yet another axiom which characterizes diagonal spaces
with a very special selection function. It will be applied in the next section.

Proposition 4.11. For an L-Cauchy tower space (X,C) the axiom (WLCF) is equiv-
alent to

(WLCG) ∀F ∈ F(X), α ∈ L : F ∈ Cα =⇒ U⊤(F) ∈ Cα,

where U⊤(F) = κσU(F) for the selection function σU : X −→ F(X), σU(x) = U⊤x , with
the neighborhood filters U⊤x =

∧
G∧[x]∈C⊤

G.

Proof. Let first (WLCF) be satisfied and let F ∈ Cα. We define J = {(x,G) :
G ∧ [x] ∈ C⊤} and define the mapping ψ : J −→ X by ψ((x,G)) = x. Further we
define σ(x,G) = G for (x,G) ∈ J . As [x] ∧ [x] ∈ C⊤, the mapping ψ is a surjection
and hence K = ψ←(F) ∈ F(J) and ψ(K) = F ∈ Cα. The axiom (WLCF) then implies
κσ(K) ∈ Cα. We show κσ(K) ≤ U⊤(F). Let A ∈ κσ(K). Then Aσ ∈ K = ψ←(F)
and there is F ∈ F such that ψ←(F ) ⊆ Aσ. This means that for all (x,G) ∈ J ,
(x,G) ∈ ψ←(F ) implies (x,G) ∈ Aσ. Equivalently, G ∧ [x] ∈ C⊤ and x ∈ F implies
A ∈ σ(x,G) = G. Hence, for x ∈ F we have A ∈

∧
G∧[x]∈C⊤

G = U⊤x = σU(x), i.e. we

have F ⊆ AσU , which implies AσU ∈ F and finally A ∈ κσU(F). Therefore, we have
U⊤(F) ∈ Cα.

For the converse, let ψ : J −→ X, G ∈ F(J) and σ : J −→ F(X). If ψ(G) ∈ Cα
and for all j ∈ J , σ(j)∧ [ψ(j)] ∈ C⊤, then σ(j) ≥ U⊤ψ(j) for all j ∈ J and by (WLCG)

U⊤(ψ(G)) ∈ Cα. We show that U⊤(ψ(G)) ≤ κσ(G). Let A ∈ U⊤(ψ(G)). Then
AσU ∈ ψ(G) and hence there is a set G ∈ G such that ψ(G) ⊆ AσU . For j ∈ G with
ψ(j) = x we then have A ∈ σU(x) ≤ σ(j), i.e. j ∈ Aσ. This means that ψ(G) ⊆ ψ(Aσ)
and ψ(Aσ) ∈ ψ(G). Therefore Aσ ∈ ψ←(ψ(G)) ≤ G and we have A ∈ κσ(G). We
conclude with (LChyTS2) that κσ(G) ∈ Cα and the axiom (WLCF) is valid. □

Example 4.12. We show a space (X,C) which satisfies (WLCF) but not (LCF-γ).
Let L = {⊥, α,⊤} with ⊥ < α < ⊤ and consider the minimum as quantale operation,
i.e. we use the quantale L = (L,≤,∧). Let further X be an infinite set and let
F0 = {F ⊆ X : X \ F is finite} be the complement-finite filter and fix an ultrafilter
U ≥ F0. Then U ̸= [x] for all x ∈ X. We define C by F ∈ C⊤ if F = [x] for some x ∈ X
or if F = U and F ∈ Cα if F = U or if F ≥ [A] with a non-empty finite set A ⊆ X



G. Jäger 9

and C⊥ = F(X). It is then not difficult to see that (X,C) is an L-Cauchy tower space
and that the T2-axiom is valid. For x ∈ X we have U⊤x =

∧
G∧[x]∈C⊤

G = [x] and

therefore U⊤(F) = F for all F ∈ F(X) and the axiom (WLCF) is valid. We use the

mapping γ(α, β) = α ∧ β. If we assume that (X,C) satisfies (LCF-γ), then (X, qC)

satisfies (LF-γ) and this implies, as γ(⊤, α) = α, that (X, qC) is pretoppological [9].

We have in particular x ∈ qC(Uαx) with Uαx =
∧

G∧[x]∈Cα
G. As

∧
G∧[x]∈Cα

G ≤∧
A⊆X finite[A] = [X] we conclude Uαx = [X] and because [X] ∧ [x] = [X] /∈ Cα, this

contradicts the pretopologicalness of (X, qC). Hence (X,C) does not satisfy (LF-γ).

5. A diagonal completion

We call an L-Cauchy tower space (X,C) complete [12] if for all α ∈ L, F ∈ Cα implies
the existence of x ∈ X such that F ∧ [x] ∈ Cα. With this definition, the “point of
convergence” x = x(F, α) not only depends on the filter F but also on the “level”
α ∈ L. In the left-continuous case, this cannot occur and x = x(F) depends only on
the filter F [12].

Let (X,C) be a non-complete L-Cauchy tower space. A completion of (X,C) is a
pair ((X ′, C ′), κ) with a complete L-Cauchy tower space (X ′, C ′) and an initial and
injective mapping κ : (X,C) −→ (X ′, C ′) such that κ(X) is dense in (X ′, C ′). Here,

a set A ⊆ X is called dense in (X,C) if A is dense in (X, qC), i.e. if for all x ∈ X
there is F ∈ F(X) with A ∈ F and F ∧ [x] ∈ C⊤. A mapping κ : (X,C) −→ (X ′, C ′)
is called initial if F ∈ Cα if and only if κ(F) ∈ C ′α.

We consider now a non-complete L-Cauchy tower space (X,C) and define NC =
{V ∈ F(X) : V ∈ C⊤,V ∧ [x] /∈ C⊤∀x ∈ X}. Furthermore, we consider the following
equivalence relation on C⊤: F ∼ G ⇐⇒ F ∧G ∈ C⊤ and we denote the equivalence
class of F ∈ C⊤ by ⟨F⟩ = {G ∈ C⊤ : F ∼ G}. We define X∗ = {⟨[x]⟩ : x ∈ X}∪ {⟨V⟩ :
F ∈ NC}. We note that {⟨F⟩ : F ∈ NC} = {⟨V⟩ : V ∈ NC ,V ultra}. It suffices to note
that for F ∈ NC we can choose an ultrafilter V ≥ F and then clearly, by (LChyTS5),
V ∈ NC and ⟨V⟩ = ⟨F⟩.

Furthermore, we say that a space (X,C) satisfies the completion axiom (LCA) if
whenever F ∈ Cα with F∧ [x] /∈ Cα for all x ∈ X, then there exists V ∈ NC such that
F ∧ V ∈ Cα. It is shown in [15,22] that a space (X,C) ∈ |L-ChyTS| has a completion
if and only if the axiom (LCA) is satisfied.

Example 5.1. Let X be an infinite set and consider again the complement-finite filter
F0 = {F ⊆ X : X \ F is finite} and an ultrafilter U ≥ F. Remember that U ̸= [y] for
all y ∈ X. We define the following L-Cauchy tower on X. For ⊥ < α < ⊤ we define
F ∈ Cα ⇐⇒ F = U or if F = [x] for some x ∈ X and for α = ⊤ we define F ∈ C⊤
if F = [x] for some x ∈ X. It is not difficult to show that the L-Cauchy tower space
(X,C) satisfies the T2-axiom and is not complete. As NC is empty, (X,C) cannot
have a completion.
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In the sequel, we are going to construct a completion which is diagonal for a non-
complete space (X,C). Note that by Proposition 4.10 (X,C) must be diagonal for
this. For a related similar construction in the category of Cauchy spaces, see [14].

We denote the inclusion mapping ι : X −→ X∗, x 7−→ ι(x) = ⟨[x]⟩ and note that
if (X,C) is a T2-space, then ι is an injection: If ι(x) = ι(y), then [x] ∧ [y] ∈ C⊤ and
by (T2) then x = y. In the sequel, we will therefore always assume that (X,C) is a
T2-space.

For A ⊆ X we define the set A∗ ⊆ X∗ by

x∗ ∈ A∗ ⇐⇒

{
x ∈ A if x∗ = ⟨[x]⟩,
A ∈ Vmin if x∗ = ⟨V⟩,

with Vmin =
∧

G∈⟨V⟩G. The following lemma collects the properties of this construc-
tion. The proofs are straightforward and not shown.

Lemma 5.2. Let A,B ⊆ X. Then

(i) (X)∗ = X∗; (ii) ∅∗ = ∅; (iii) A ⊆ B ⇒ A∗ ⊆ B∗; (iv) (A ∩B)∗ = A∗ ∩B∗.

Let now Φ ∈ F(X∗). We define Φ̃ ⊆ P (X) by A ∈ Φ̃ ⇐⇒ A∗ ∈ Φ. From

Lemma 5.2 it follows that Φ̃ ∈ F(X).

Lemma 5.3. Let Φ,Ψ ∈ F(X∗) ans let F ∈ F(X) and let x∗ ∈ X∗.

(i) If Φ ≤ Ψ, then Φ̃ ≤ Ψ̃;

(ii) ˜(Φ ∧Ψ) = Φ̃ ∧ Ψ̃;

(iii) if Φ ∨Ψ exists, then also Φ̃ ∨ Ψ̃ exists;

(iv) ι̃(F) = F;

(v) [̃x∗] =

{
[x] if x∗ = ⟨[x]⟩,
Vmin if x∗ = ⟨V⟩.

Proof. We only show (iv) and (v). For (iv), we have A ∈ ι̃(F) if, and only if, A∗ ∈ ι(F)
if, and only if, there is F ∈ F such that ι(F ) ⊆ A. If x ∈ F , then ⟨[x]⟩ ∈ A∗ and hence
x ∈ A. Therefore we have F ⊆ A and A ∈ F. Conversely, if A ∈ F, then ι(A) ∈ ι(F).
We show that ι(A) ⊆ A∗. If ι(x) ∈ ι(A), then x ∈ A and hence x∗ ∈ A∗. Therefore,
finally, A ∈ ι(F).

For (v), let first x∗ = ⟨[x]⟩. Then A ∈ [̃x∗] iff A∗ ∈ [x∗] iff x∗ ∈ A∗ iff x ∈ A iff

A ∈ [x]. Secondly, let x∗ = ⟨V⟩. Then similarly, we have A ∈ [̃x∗] iff A∗ ∈ [x∗] iff
x∗ ∈ A∗ iff A ∈ Vmin. □

Following [15], we call an L-Cauchy tower space (X,C) cushioned if for all V ∈ NC

we have that Vmin =
∧

G∈⟨V⟩G ∈ ⟨V⟩.
We show that an L-Cauchy tower space (X,C) which allows a diagonal completion

must be cushioned. In this sense, we will not demand too much later.
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Proposition 5.4. Let the L-Cauchy tower space (X,C) have a completion ((X+, C+), j)
such that (X+, C+) is diagonal and T2. Then (X,C) is cushioned, diagonal, T2 and
satisfies the completion axiom (LCA).

Proof. Let V ∈ NC and let G ∼ V, i.e. G ∧ V ∈ C⊤. Then j(G) ∧ j(V) ∈ C+
⊤ and by

completeness there is x+ ∈ X+ such that j(G) ∧ j(V) ∧ [x+] ∈ C+
⊤ , and hence also

ȷ(V)∧ [x+] ∈ C+
⊤ . The T2-property shows that x+ does not depend on G but only on

V. The Proposition 4.6 then shows that
∧

G∧V∈C⊤
j(G)∧ j(V)∧ [x+] ∈ C+

⊤ and hence

also
∧

G∧V∈C⊤
j(G) = j(

∧
G∧V∈C⊤

G) = j(Vmin) ∈ C+
⊤ amd therefore also Vmin ∈ C⊤

and (X,C) is cushioned. The diagonal and T2 properties are inherited by subspaces
and the proof is complete. □

Let now (X,C) be non-complete, T2 and cushioned and satisfy the completion

axiom. We define an L-Cauchy tower C∗ on X∗ by Φ ∈ C∗α ⇐⇒ Φ̃ ∈ Cα.

Proposition 5.5. Let (X,C) be non-complete, T2 and cushioned and satisfy the
completion axiom (LCA). Then
(i) (X∗, C∗) ∈ |L-ChyTS|.

(ii) If (X,C) is left-continuous, then so is (X∗, C∗).

(iii) (X∗, C∗) is complete.

(iv) ι(F) ∈ C∗α ⇐⇒ F ∈ Cα.

(v) ι(X) is dense in (X∗, C∗).

(vi) (X∗, C∗) is a T2-space.

(vii) If (X,C) satisfies (WLCF), then so does (X∗, C∗).

Proof. (i) (LChyTS1) Let x∗ = ⟨[x]⟩ with x ∈ X. Then [̃x∗] = [x] ∈ Cα and hence
[x∗] ∈ C∗α. If x∗ = ⟨V⟩ with V ∈ C⊤, then from the cushionedness we get Vmin ∈ ⟨V⟩
and hence [̃x∗] = Vmin = V ∧ Vmin ∈ C⊤ ⊆ Cα, which implies [x∗] ∈ C∗α.

(LChyTS2) Let Φ ∈ C∗α and let Ψ ≥ Φ. Then Ψ̃ ≥ Φ̃ ∈ Cα and hence Ψ̃ ∈ Cα
which implies Ψ ∈ C∗α.

(LChyTS3) If α ≤ β and Φ ∈ C∗β , then Φ̃ ∈ Cβ ⊆ Cα and hence Φ ∈ C∗α.

(LChyTS4) Let Φ ∈ F(X∗). Then Φ̃ ∈ C⊥ and hence Φ ∈ C∗⊥.

(LChyTS5) Let Φ ∈ C∗α,Ψ ∈ C∗β and let Φ ∨ Ψ exist. Then Φ̃ ∈ Cα, Ψ̃ ∈ Cβ and

Φ̃ ∨ Ψ̃ exists. Hence Φ̃ ∧Ψ = Φ̃ ∧ Ψ̃ ∈ Cα∗β and this implies Φ ∧Ψ ∈ C∗α∗β .

(ii) Let A ⊆ L. If Φ ∈ C∗α for all α ∈ A, then Φ̃ ∈ Cα for all α ∈ A and hence, by

left-continuity, Φ̃ ∈ C∨
A. This implies Φ ∈ C∗∨A.

(iii) Let Φ ∈ C∗α. Then Φ̃ ∈ Cα. If Φ̃∧ [x] ∈ Cα for some x ∈ X, then ˜Φ ∧ [⟨[x]⟩] =
Φ̃ ∧ [x] ∈ Cα and hence Φ ∧ [x∗] ∈ C∗α with x∗ = ⟨[x]⟩. If Φ̃ ∧ [x] /∈ Cα for all x ∈ X,

then by the completion axiom (LCA) there is V ∈ NC such that Φ̃ ∧ V ∈ Cα. As

(Φ̃∧V)∨(V∧Vmin) exists and Vmin = V∧Vmin ∈ C⊤ we conclude (Φ̃∧V)∧(V∧Vmin) =
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Φ̃∧Vmin ∈ Cα∗⊤ = Cα. Hence ˜Φ ∧ [⟨V⟩] = Φ̃∧Vmin ∈ Cα and we have Φ∧ [x∗] ∈ C∗α
with x∗ = ⟨V⟩.

(iv) We have ι(F) ∈ C∗α if and only if F = ι̃(F) ∈ Cα.
(v) We need to show that X∗ ⊆ ι(X). If x∗ = ⟨[x]⟩ with x ∈ x, then ι(X) = x∗ ∈

ι(X), i.e. ι(X) ∈ [x∗] and [x∗] ∈ C∗⊤. If x
∗ = ⟨V⟩ with V ∈ NC , then ι(X) ∈ ι(V) and

ι(V) ∧ [⟨V⟩] ∈ C∗⊤, as
˜ι(V) ∧ [⟨V⟩] = ι̃(V) ∧ [̃⟨V⟩] = V ∧ Vmin = Vmin ∈ C⊤.

(vi) Let [x∗] ∧ [y∗] ∈ C∗⊤. If x∗ = ⟨[x]⟩ and y∗ = ⟨[y]⟩ with x, y ∈ X, then

[x] ∧ [y] = [̃x∗] ∧ [̃y∗] ∈ C⊤ and hence x = y, i.e. x∗ = y∗. If x∗ = ⟨U⟩ and
y∗ = ⟨V⟩ with U,V ∈ NC , then Umin∧Vmin ∈ C⊤ and hence Umin ∼ Vmin from which
x∗ = ⟨U⟩ = ⟨V⟩ = y∗ follows. The other cases do not occur, as e.g. x∗ = ⟨[x]⟩ and

y∗ = ⟨V⟩ with x ∈ X and V ∈ NC implies [x]∧V = [̃x∗]∧ [̃y∗] ∈ C⊤, in contradiction
to V ∈ NC .

(vii) We use Proposition 4.11. Let Φ ∈ C∗α. Then Φ̃ ∈ Cα and by (WLCF)

U⊤(Φ̃) ∈ Cα. We show that U⊤(Φ̃) ≤ Ũ∗⊤(Φ) with the neighbourhood filters U∗x∗

⊤ =∧
Ψ∧[x∗]∈C∗

⊤
Ψ. Let A ∈ U⊤(Φ̃). Then AσU ∈ Φ̃, i.e. we have (AσU)∗ ∈ Φ. We will

show that (AσU)∗ ⊆ (A∗)σU∗ . Consider first x ∈ X amd let ⟨[x]⟩ ∈ (AσU)∗. Then
x ∈ AσU , and this is equivalent to A ∈ σU(x) = U⊤x . This means that A ∈ G for all

G∧[x] ∈ C⊤ and in particular, A ∈ Ψ̃ whenever Ψ̃∧[x] ∈ C⊤. Therefore we have A
∗ ∈∧

Ψ̃∧[x]∈C⊤
Ψ =

∧
Ψ∧[⟨[x]⟩]∈C∗

⊤
Ψ = U⊤∗⟨[x]⟩ = σU∗(⟨[x]⟩) and this implies ⟨[x]⟩ ∈ (A∗)σU∗ .

Let now V ∈ NC and let ⟨V⟩ ∈ (AσU)∗. This is equivalent to AσU ∈ Vmin. Now we

note that if Ψ̃ ∧ Vmin ∈ C⊤, then Ψ̃ ≥ Vmin and hence we have A ∈ Ψ̃ whenever
Ψ̃∧Vmin ∈ C⊤, i.e. we have A

∗ ∈
∧

Ψ̃∧Vmin∈C⊤
Ψ =

∧
Ψ∧[⟨V⟩]∈C∗

⊤
Ψ = U⊤∗⟨V⟩ = σU∗(⟨V⟩).

Therefore ⟨V⟩ ∈ (A∗)σU∗ . We conclude (A∗)σU∗ ∈ Φ and hence A ∈ Ũ∗⊤(Φ). This

shows that Ũ∗⊤(Φ) ∈ Cα which finally implies U∗⊤(Φ) ∈ C∗α. □

We collect the contents of the previous proposition in the following theorem.

Theorem 5.6. Let the L-Cauchy tower space (X,C) be a non-complete, cushioned,
diagonal T2-space that satisfies the completion axiom (LCA). Then ((X∗, C∗), ι) is a
completion of (X,C) that is diagonal and a T2-space.

Note that for F ∈ C⊤ we have ι(F) ∧ [⟨F⟩] ∈ C∗. In general, we call a completion
((Y,D), κ) of (X,C) in standard form if Y = X∗, κ = ι and if ι(F) ∧ [⟨F⟩] ∈ D⊤ for
all F ∈ C⊤, cf. [25].

Proposition 5.7. For an L-Cauchy tower space (X,C) which is diagonal, T2 and
cushioned and satisfies the completion axiom (LCA), the completion ((X∗, C∗), ι) is
the coarsest diagonal T2-completion in the sense that for any other diagonal T2-
completion in standard form, ((X∗, D), ι), of (X,C) we have Dα ⊆ C∗α for all α ∈ L.

Proof. We first show that for A ⊆ X∗ we have AσUD
⊆ (ι←(A))∗ with σUD (x∗) =

UD⊤x∗ =
∧

Ψ∧[x∗]∈D⊤
Ψ. To this end, let x∗ ∈ AσUD

. Then A ∈
∧

Ψ∧[x∗]∈D⊤
Ψ, i.e.

if Ψ ∧ [x∗] ∈ D⊤, then A ∈ Ψ. Let first x∗ = ⟨[x]⟩ with x ∈ X. Then with
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Ψ = [⟨[x]⟩] we have Ψ ∧ [x∗] ∈ D⊤ and hence A ∈ [⟨[x]⟩]. This means ⟨[x]⟩ ∈ A, i.e.
x ∈ ι←(A) and we have ⟨[x]⟩ ∈ (ι←(A))∗. For the second case, let x∗ = ⟨V⟩ with
V ∈ NC . Then ⟨V⟩ = ⟨Vmin⟩ and because ((X∗, D), ι) is in standard form we have
ι(Vmin) ∧ [⟨Vmin⟩] ∈ D⊤, which implies A ∈ ι(Vmin). Hence ι←(A) ∈ Vmin and we
conclude ⟨V⟩ = ⟨Vmin⟩ ∈ (ι←(A))∗.

Let now Φ ∈ Dα. As (Y,D) is diagonal, it follows that κσUD (Φ) ∈ Dα. From

what we have just shown, we see that κσUD (Φ) ≤ ι(Φ̃). In fact, for A ∈ κσUD (Φ)

we have AσUD
∈ Φ and hence (ι←(A))∗ ∈ Φ which means ι←(A) ∈ Φ̃, i.e. A ∈ ι(Φ̃).

Therefore, ι(Φ̃) ∈ Dα, which implies Φ̃ ∈ Cα and hence, by definition, Φ ∈ C∗α. □

6. Conclusions

We have introduced certain diagonal axioms for quantale-valued Cauchy tower spaces
and have shown their relations with diagonal axioms for quantale-valued convergence
tower spaces and quantale-valued uniform convergence tower spaces. We gave a com-
pletion construction that preserves the diagonal property. At present not known is
the construction of a completion that preserves the stronger diagonal axiom (LCF-γ).
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