MATEMATIČKI VESNIK МАТЕМАТИЧКИ ВЕСНИК Corrected proof Available online 05.09.2024

research paper оригинални научни рад DOI: 10.57016/MV-N58UKM54

ON THE PÓLYA FIELDS OF SOME REAL BIQUADRATIC FIELDS

Said El Madrari

Abstract. Let \mathcal{O}_K be the ring of integers of a number field K, and let Int (\mathcal{O}_K) = ${R \in K[X] \mid R(\mathcal{O}_K) \subset \mathcal{O}_K}$. The Pólya group is the group generated by the classes of the products of the prime ideals with the same norm. The Pólya group $\mathcal{P}_O(K)$ is trivial if and only if the \mathcal{O}_K -module Int (\mathcal{O}_K) has a regular basis if and only if K is a Pólya field. In this paper, we give the structure of the first cohomology group of units of the real biquadratic number fields $K = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_2})$, where $d_1 > 1$ and $d_2 > 1$ are two square-free integers with $(d_1, d_2) = 1$ and the prime 2 is not totally ramified in K/\mathbb{Q} . We then determine the Pólya groups and the Pólya fields of K .

1. Introduction

Let Int $(\mathcal{O}_K) = \{R \in K[X] \mid R(\mathcal{O}_K) \subset \mathcal{O}_K\}$ be the ring of integer-valued polynomials on \mathcal{O}_K . In 1919 Pólya [\[11\]](#page-14-0) and Ostrowski [\[10\]](#page-14-1) were interested in whether the \mathcal{O}_K module Int(\mathcal{O}_K) has a regular basis. According to Pólya, a basis $(g_n)_{n\in\mathbb{N}}$ of Int(\mathcal{O}_K) is said to be a regular basis if the $deg(g_n) = n$ for each polynomial g_n . In 1982 Zantema [\[16\]](#page-15-0) called field K for which the \mathcal{O}_K -module Int (\mathcal{O}_K) has a regular basis, Pólya-field. √

ya-neid.
Let $K={\mathbb Q}(\sqrt{2})$ $d_1,$ d_2) be the real biquadratic number field such that d_1 and d_2 are square-free integers with $(d_1, d_2) = 1$. Let $H^1(G_K, E_K)$ be the first cohomology group of the units of K . The studies on the Pólya groups and the Pólya fields of K started in 1982 by Zantema $[16]$, who gave a result on Pólya real biquadratic fields using $H^1(G_K, E_K)$ (see [Theorem 3.2](#page-2-0) and [Proposition 3.6](#page-3-0) below). In 2011 Leriche [\[7\]](#page-14-2) studied the real biquadratic fields K . She gave some Pólya fields of K by using the capitulation. In [\[4\]](#page-14-3) characterized some Pólya groups and Pólya fields of K based on the structure of $H^1(G_K, E_K)$. In 2020, Tougma [\[14\]](#page-15-1) also used $H^1(G_K, E_K)$ to determine some non-Pólya real biquadratic fields. In 2021 Maarefparvar [\[8\]](#page-14-4) characterized the Pólya groups of some real biquadratic fields also with $H^1(G_K, E_K)$.

²⁰²⁰ Mathematics Subject Classification: 11R04, 11R16, 11R27, 13F20

Keywords and phrases: Pólya fields; Pólya groups; real biquadratic fields; the first cohomology group of units; integer-valued polynomials.

It is clear that the structure of the first cohomology group of the units of K plays an important role in providing results on Pólya groups and Pólya fields of K . In this paper, we characterize $H^1(G_K, E_K)$, the first cohomology group of the units of $K = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_2})$, where $(d_1, d_2) = 1$ and the prime 2 is not totally ramified in K/\mathbb{Q} . We therefore specify the Pólya groups of K in order to determine the Pólya fields of K.

2. Notations

In this work, we accept the following notations:

- 1. $d_1 > 1$ and $d_2 > 1$ are two square-free integers where $(d_1, d_2) = 1$.
- 2. $d_3 = d_1 d_2$.
- 3. $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ √ (d_2) : a real biquadratic number field.
- 4. \mathcal{O}_K : the ring of integers of K.
- 5. $k_i = \mathbb{Q}(\sqrt{d_i})$: the quadratic subfields of K for $i = 1, 2, 3$.
- 6. $\epsilon_i = x_i + y_i \sqrt{d_i}$: the fundamental unit of $\mathbb{Q}(\sqrt{d_i})$, for $i = 1, 2, 3$.
- 7. $N(\gamma_i) = N_i(\gamma_i) = Norm_{k_i/\mathbb{Q}}(\gamma_i)$ where $\gamma_i \in k_i$, for $i = 1, 2, 3$.
- 8. E_K : the unit group of K over Q.
- 9. G_K : the Galois group of K over \mathbb{Q} .
- 10. $\alpha_i = N(\epsilon_i + 1) = 2(x_i + 1) \in \mathbb{Q}$ if $N\epsilon_i = 1$ otherwise $\alpha_i = 1$, for $i = 1, 2, 3$.
- 11. $[\alpha_i]$: the class of α_i in $\mathbb{Q}^*/\mathbb{Q}^{*2}$, for $i=1,2,3$.
- 12. $[d_i]$: the class of d_i in $\mathbb{Q}^*/\mathbb{Q}^{*2}$, for $i = 1, 2, 3$.
- 13. \widetilde{H} : the subgroup of $\mathbb{Q}^*/\mathbb{Q}^{*2}$ generated by the images of $d_1, d_2, d_3, \alpha_1, \alpha_2$ and α_3 .
- 14. $H^1(G_K, E_K)$: the first cohomology group of units of K.
- 15. e_p : the ramification index of a prime number p in K/\mathbb{Q} .
- 16. d_K : the discriminant of K over Q.
- 17. t: the number of the prime divisors of d_K .
- 18. $E_n = (\mathbb{Z}/2\mathbb{Z})^n$, $n \in \mathbb{N}$.

3. Preliminaries

Let $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ √ $(\sqrt{d_1}, \sqrt{d_2})$, d_1 and d_2 be two square-free integers such that $(d_1, d_2) = 1$. Let $k_1 = \mathbb{Q}(\sqrt{d_1})$, $k_2 = \mathbb{Q}(\sqrt{d_2})$ and $k_3 = \mathbb{Q}(\sqrt{d_3})$ with $d_3 = d_1 d_2$.

By [\[3,](#page-14-5) [15\]](#page-15-2) we have when $(d_1, d_2) \equiv (1, 1) \pmod{4}$, then $d_K = (d_1 d_2)^2$ (note that in this case we have the prime 2 is not dividing neither the discriminant of k_1 , k_2 nor k_3). When $(d_1, d_2) \equiv (1, 2), (2, 1), (1, 3), (3, 1), (3, 3) \pmod{4}$, so $d_K = (4d_1d_2)^2$ (note that here the prime 2 is dividing the discriminant of two subfield of K). When $(d_1, d_2) \equiv (2, 3), (3, 2) \pmod{4}$ then $d_K = (8d_1d_2)^2$ (note that the prime 2 is dividing both the discriminant of k_1 and k_2 and k_3). Let e_2 be the ramification index of the prime number 2 in K/\mathbb{Q} . The prime 2 is the only prime can be totally ramified in K/\mathbb{Q} .

REMARK 3.1. When we say that $e_2 = 4 = [K : \mathbb{Q}]$, the prime 2 is totally ramified in K/\mathbb{Q} , so we have $(d_1, d_2) \equiv (2, 3), (3, 2) \pmod{4}$ and thus $N\epsilon_1 \neq N\epsilon_2 = N\epsilon_3 = 1$, $N\epsilon_2 \neq N\epsilon_1 = N\epsilon_3 = 1$ or $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$.

When we say that $e_2 \neq 4$, the prime 2 is not totally ramified in K/\mathbb{Q} , so we have either $e_2 = 1$ or 2 and hence $(d_1, d_2) \equiv (1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (3, 3) \pmod{4}$, therefore we have the following possibilities : $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = -1, N\epsilon_1 = N\epsilon_2 =$ $-1 \neq N\epsilon_3 = 1, N\epsilon_1 = N\epsilon_2 = 1 \neq N\epsilon_3 = -1, N\epsilon_j = 1 \neq N\epsilon_k = N\epsilon_3 = -1,$ $N\epsilon_j = -1 \neq N\epsilon_k = N\epsilon_3 = 1, j \neq k \in \{1, 2\}$ or $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$.

Let $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ $(\sqrt{d_2})$, $k_1 = \mathbb{Q}(\sqrt{d_1})$, $k_2 = \mathbb{Q}(\sqrt{d_2})$ and $k_3 = \mathbb{Q}(\sqrt{d_3})$ where $d_3 =$ $d_1 d_2$. Let $\epsilon_1 = x_1 + y_1 \sqrt{d_1}$, $\epsilon_2 = x_2 + y_2 \sqrt{d_2}$ and $\epsilon_3 = x_3 + y_3 \sqrt{d_3}$ be the fundamental unit of k_1 , k_2 and k_3 respectively. Let $H^1(G_K, E_K)$ be the first cohomology group of units of K. Recall $\alpha_i \in \mathbb{Q}$ such that $\alpha_i = N(\epsilon_i + 1) = 2(x_i + 1)$ when $N\epsilon_i = 1$ else $\alpha_i = 1$, for $i = 1, 2, 3$. \widetilde{H} is the subgroup of $\mathbb{Q}^*/\mathbb{Q}^{*2}$ generated by the images of d_1 , $d_2, d_3, \alpha_1, \alpha_2$ and α_3 with $d_3 = d_1 d_2$. Setzer [\[13\]](#page-15-3) gave the following theorem which gives the structure of the first cohomology group of units of K . Keep in mind that Zantema stated the following theorem (see [\[16,](#page-15-0) Section 4]).

THEOREM 3.2 ([\[13,](#page-15-3) Theorems 4 and 5]). $\widetilde{H} \simeq H^1(G_K, E_K)$, except for the next two cases in which H is canonically isomorphic to a subgroup of index 2 of $H^1(G_K, E_K)$: 1. the prime 2 is totally ramified in K/\mathbb{Q} , and there exists integral $z_i \in k_i$, $i \in \{1,2,3\}$ such that $N_1(z_1) = N_2(z_2) = N_3(z_3) = \pm 2$,

2. all the quadratic subfields k_i contain units of norm -1 and $E_K = E_{k_1} E_{k_2} E_{k_3}$.

The theorem above follows directly from the proofs of [\[13,](#page-15-3) Theorems 4 and 5]. The theorem above is also stated in [\[4,](#page-14-3) Theorem 1.6].

PROPOSITION 3.3 ([\[6,](#page-14-6) Satz 1]). Let $K = \mathbb{Q}(\sqrt{\mathbb{Q}})$ $d_1,$ √ (d_2) , d_1 and d_2 be two square-free integers, so we have the following eight possibilities for a system of fundamental units of E_K :

- 1. ϵ_u , ϵ_v , ϵ_w ;
- 2. $\sqrt{\epsilon_u}, \epsilon_v, \epsilon_w$ with $N\epsilon_u = 1$;
- 3. $\sqrt{\epsilon_u}, \sqrt{\epsilon_v}, \epsilon_w$ such that $N\epsilon_u = N\epsilon_v = 1$;
- 4. $\sqrt{\epsilon_u \epsilon_v}$, ϵ_v , ϵ_w such that $N\epsilon_u = N\epsilon_v = 1$;
- 5. $\sqrt{\epsilon_u \epsilon_v}$, $\sqrt{\epsilon_w}$, ϵ_v where $N\epsilon_u = N\epsilon_v = N\epsilon_w = 1$;

6. $\sqrt{\epsilon_u \epsilon_v}$, $\sqrt{\epsilon_v \epsilon_w}$, $\sqrt{\epsilon_w \epsilon_u}$ where $N \epsilon_u = N \epsilon_v = N \epsilon_w = 1$; 7. $\sqrt{\epsilon_u \epsilon_v \epsilon_w}$, ϵ_v , ϵ_w where $N\epsilon_u = N\epsilon_v = N\epsilon_w = 1$; 8. $\sqrt{\epsilon_u \epsilon_v \epsilon_w}$, ϵ_v , ϵ_w with $N\epsilon_u = N\epsilon_v = N\epsilon_w = -1$ where $\{\epsilon_u, \epsilon_v, \epsilon_w\} = \{\epsilon_3, \epsilon_1, \epsilon_2\}.$

It is worth mentioning that the proposition mentioned above was stated by Benjamin et al. [\[1\]](#page-14-7).

The following definition is a well known definition in the Pólya group theory. We refer the reader to [\[2,](#page-14-8) Definition II.3.8 and Proposition II.3.9]. The reader can also consult [\[9,](#page-14-9) Definition 1.2], as well as [\[7,](#page-14-2) Definition 2.2].

DEFINITION 3.4 ([\[2,](#page-14-8) Definition II.3.8]). Let $\prod_q(K)$ be the product of all prime ideals of \mathcal{O}_K with the norm $q \geq 2$. The Pólya group $\mathcal{P}_O(K)$ of a number field K is the subgroup of the class group generated by the classes of the ideals $\prod_q(K)$.

The proposition below is a famous result about the notion of Pólya field and group of a number field K which is mentioned in [\[7,](#page-14-2) Proposition 2.3] (also consult [\[16,](#page-15-0) Theorem 2.3]).

PROPOSITION 3.5. The group $\mathcal{P}_O(K)$ is trivial if and only if one of the following assertions is satisfied:

- 1. the field K is a Pólya field;
- 2. all the ideals $\prod_q(K)$ are principal;
- 3. the \mathcal{O}_K -module Int (\mathcal{O}_K) admits a regular basis.

The following proposition mentioned by many authors in the field, we refer the reader to [\[9,](#page-14-9) Proposition 1.4] and [\[4,](#page-14-3) Proposition 1.3].

PROPOSITION 3.6 ([\[16,](#page-15-0) Section 3]). Let K/\mathbb{Q} be a Galois extension and d_K be its discriminant. Denote by e_p the ramification index of a prime number p in K. Then, the following sequence is exact $1 \to H^1(G_K, E_K) \to \bigoplus_{p/d_K} \mathbb{Z}/e_p\mathbb{Z} \to \mathcal{P}_O(K) \to 1$. In particular, $\mid H^1(G_K, E_K) \mid \mid \mathcal{P}_O(K) \mid = \prod_{p \mid d_K} e_p.$

And thus we have the following corollary.

COROLLARY 3.7. K is a Pólya field if and only if $|H^1(G_K, E_K)| = \prod_{p|d_K} e_p$.

The proposition below is stated in [\[9,](#page-14-9) Proposition 1.3].

PROPOSITION 3.8 ([\[5,](#page-14-10) Theorem 106]). Let $k = \mathbb{Q}(\sqrt{\mathbb{Q}})$ d) be a quadratic number field, where d is a square-free integer, and let ϵ be the fundamental unit of k. Let z be the number of ramified prime in the extension k/\mathbb{Q} . Then,

$$
\mathcal{P}_O(k) \simeq \begin{cases} E_{z-2} & \text{if } k \text{ is real and } N(\epsilon) = 1, \\ E_{z-1} & \text{otherwise.} \end{cases}
$$

Note that we can identify all quadratic Pólya fields based on the characterization provided in the proposition above.

PROPOSITION 3.9 ([\[16,](#page-15-0) Example 3.3]). Let $k = \mathbb{Q}(\sqrt{\mathbb{Q}})$ d) be a quadratic number field, where d is a square-free integer, and let ϵ be the fundamental unit of k. Let p and q be two distinct odd prime numbers. Then, k is a Pólya field if and only if one of the following assertions is satisfied:

1. $d = -2$, or -1 , or 2, or $-p$ with $p \equiv 3 \pmod{4}$, or p.

2. $d = 2p$ and either $p \equiv 3 \pmod{4}$ or $p \equiv 1 \pmod{4}$ and $N(\epsilon) = 1$.

3. $d = pq$ and either $p, q \equiv 3 \pmod{4}$ or $p, q \equiv 1 \pmod{4}$ and $N(\epsilon) = 1$.

The proposition above stated in [\[4,](#page-14-3) Proposition 1.4]. The reader may also find helpful [\[2,](#page-14-8) Proposition 3.1].

In this paper we use a result of Setzer [\[13\]](#page-15-3) [\(Theorem 3.2\)](#page-2-0) and a result of Kubota [\[6\]](#page-14-6) [\(Proposition 3.3\)](#page-2-1), to obtain the first cohomology group of units of real biquadratic number fields $K = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_2})$, where d_1 and d_2 are two square-free integers with $(d_1, d_2) = 1$ and $e_2 \neq 4$. Then we use the result of Zantema [\[16\]](#page-15-0) [\(Proposition 3.6\)](#page-3-0) to give the Pólya groups of K . Finally, we derive the Pólya fields of K .

4. The first cohomology group of units of $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ √ $\left(d_{2}\right) \,$ where $(d_1, d_2) = 1$ and $e_2 \neq 4$

We start this section by giving the following proposition.

PROPOSITION 4.1 ([\[6\]](#page-14-6)). Let $k = \mathbb{Q}(\sqrt{\mathbb{Q}})$ d) such that $N\epsilon = 1$ and let m denote the squarefree part of the positive integer $N(\epsilon+1)$. Then $m>1$, m divides the discriminant of free part of the positive i
k, $m \neq d$, and $\sqrt{m\epsilon} \in k$.

Let $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ √ d_2) such that $(d_1, d_2) = 1$ and $d_3 = d_1 d_2$. Let ϵ_i be the fundamental unit of $\mathbb{Q}(\sqrt{d_i})$ for $i = 1, 2, 3$. Recall that $[d_i]$ be the class of d_i in $\mathbb{Q}^*/\mathbb{Q}^{*2}$, for $i = 1, 2, 3$. Note that $[m_i]$ is the class of the squarefree part m_i of $N(\epsilon_i + 1)$ in $\mathbb{Q}^*/\mathbb{Q}^{*2}$ such that $N\epsilon_i = 1$ for $i = 1, 2, 3$.

PROPOSITION 4.2. Let $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ √ (d_2) , d_1 and d_2 be two square-free integers such that $(d_1, d_2) = 1$. Let ϵ_i be the fundamental unit of $\mathbb{Q}(\sqrt{d_i})$ where $N\epsilon_i = 1$ for $i = 1, 2, 3$ and we let m_i , $i = 1, 2, 3$ as we have in the [Proposition 4.1.](#page-4-0) Then, we have the following results.

1. $\sqrt{\epsilon_3} \in K$ if and only if either $m_3 = d_1$ or d_2 .

2. $\sqrt{\epsilon_1 \epsilon_2} \in K$ if and only if $m_1 = m_2 = 2$.

3. $\sqrt{\epsilon_i \epsilon_3} \in K$ for $j = 1$ or 2 if and only if either $([m_jm_3] = [d_1], [d_2]$ or $[d_3]$ with $j = 1 \text{ or } 2) \text{ or } (m_j = m_3 \text{ for } j = 1 \text{ or } 2).$

4. $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \in K$ if and only if either $([m_1 m_2 m_3] = [d_1], [d_2]$ or $[d_3]$) or $([m_1 m_2] = [m_3])$.

Proof. Let $k_i = \mathbb{Q}(\sqrt{d_i})$ such that $N\epsilon_i = 1$ for $i = 1, 2, 3$ and let m_i be the squarefree part of the positive integer $N(\epsilon_i + 1)$ for $i \in \{1, 2, 3\}.$

1. (\implies) we use the contrapositive. We suppose that $m_3 \neq d_1$ and d_2 . Since we have $\sqrt{m_3\epsilon_3} \in k_3$, then we get that $\sqrt{\epsilon_3} \notin K$. Let $m_3 = d_1$ or d_2 , and since we have $\frac{m_3 \epsilon_3}{\sqrt{m_3 \epsilon_3}} \in k_3$ so $\sqrt{\epsilon_3} \in K$.

2. Suppose that $m_1 \neq 2$ or $m_2 \neq 2$, we have $\sqrt{m_1 \epsilon_1} \in k_1$ and $\sqrt{m_2 \epsilon_2} \in k_2$ and thus we get that $\sqrt{m_1\epsilon_1m_2\epsilon_2} \in K$. Therefore, we get that $\sqrt{\epsilon_1\epsilon_2} \notin K$ since $m_1 \neq 2$ or $m_2 \neq 2$, (we recall that $m_j > 1$, m_j divides the discriminant of k_j , $m_j \neq d_j$ for $j = 1, 2$ and $(d_1, d_2) = 1$. Now let $m_1 = m_2 = 2$, since $\sqrt{m_1 \epsilon_1} \in k_1$ and $\sqrt{m_2 \epsilon_2} \in k_2$ $t = 1, 2$ and $(a_1,$
then $\sqrt{\epsilon_1 \epsilon_2} \in K$.

3. We suppose that $[m_jm_3] \neq [d_1]$, $[d_2]$ and $[d_3]$, and $m_j \neq m_3$ with $j \in \{1,2\}$. We know that $\sqrt{m_j \epsilon_j} \in k_j$ with $j = 1$ or 2 and $\sqrt{m_3 \epsilon_3} \in k_3$ (see the [Proposition 4.1\)](#page-4-0), so $\sqrt{m_j m_3 \epsilon_j \epsilon_3} \in K$ and since $[m_j m_3] \neq [d_1]$, $[d_2]$ and $[d_3]$, and $m_j \neq m_3$. Then, $\sqrt{\epsilon_j \epsilon_3} \notin K$ for $j = 1, 2$. Reciprocally, we suppose either $[m_j m_3] = [d_1], [d_2]$ or $[d_3]$, or $m_j = m_3$, and since we have $\sqrt{m_j \epsilon_j} \in k_j$ with $j = 1$ or 2 and $\sqrt{m_3 \epsilon_3} \in k_3$. So, $\sqrt{m_j \epsilon_j}$ $\sqrt{m_3 \epsilon_3}$ \in K and thus we get that $\sqrt{\epsilon_j \epsilon_3}$ \in K for $j = 1, 2$.

4. Assuming that $[m_1m_2m_3] \neq [d_1], [d_2], [d_3]$, and $[m_1m_2] \neq [m_3]$. Since $\sqrt{m_1\epsilon_1} \in k_1$, $\sqrt{m_2\epsilon_2} \in k_2$, and $\sqrt{m_3\epsilon_3} \in k_3$, so $\sqrt{m_1\epsilon_1m_2\epsilon_2m_3\epsilon_3} \in K$ and therefore $\sqrt{\epsilon_1\epsilon_2\epsilon_3} \notin K$. Now, suppose either $[m_1m_2m_3] = [d_1], [d_2]$ or $[d_3]$, or $[m_1m_2] = [m_3]$. As $\sqrt{m_1\epsilon_1} \in k_1$ and $\sqrt{m_2\epsilon_2} \in k_2$ and then $\sqrt{m_3\epsilon_3} \in k_3$, thus we get that $\sqrt{\epsilon_1\epsilon_2\epsilon_3} \in K$. \Box

EXAMPLE 4.3. Let $K = \mathbb{Q}(\sqrt{2})$ 7, √ 55) where $d_1 = 7$, $d_2 = 5 \cdot 11 = 55$ and $d_3 = 7 \cdot 5 \cdot 11 =$ EXAMPLE 4.5. Let $\mathbf{A} = \mathbb{Q}(\sqrt{7}, \sqrt{55})$ where $a_1 = 7, a_2 = 5 \cdot 11 = 55$ and $a_3 = 7 \cdot 5 \cdot 11 = 385$. The fundamental units are $\epsilon_1 = 8 + 3\sqrt{7}, \epsilon_2 = 89 + 12\sqrt{55}$ and $\epsilon_3 = 95831 + 12\sqrt{55}$ 385. The fundamental units are $\epsilon_1 = 8 + 3\sqrt{7}$, $\epsilon_2 = 89 + 12\sqrt{3}$ and $\epsilon_3 = 95831 + 4884\sqrt{385}$ such that $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$. So, $\alpha_1 = 2(x_1 + 1) = 2(8 + 1) = 2 \cdot 3^2$, $\alpha_2 = 2(x_2+1) = 2(89+1) = 2^2 \cdot 3^2 \cdot 5$ and $\alpha_3 = 2(x_3+1) = 2(95831+1) = 2^4 \cdot 3^2 \cdot 11^3$. We have $m_1 = 2$, $m_2 = 5$ and $m_3 = 11$, so $m_2 m_3 = 5 \cdot 11 = d_2$ which means that $\sqrt{\epsilon_2\epsilon_3} \in K$.

In the following lemma we give in all cases the first cohomology group of units of $K = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_2})$ where $(d_1, d_2) = 1$ and $e_2 \neq 4$.

LEMMA 4.4. Let $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ √ (d_2) , d_1 and d_2 be two square-free integers such that $(d_1, d_2) = 1$. Then

- 1. $H^1(G_K, E_K) \simeq E_2$. If
	- (i) $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = -1$ and $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \in K$ or
	- (*ii*) $N\epsilon_1 = N\epsilon_2 = -1$, $N\epsilon_3 = 1$ and $\sqrt{\epsilon_3} \in K$.
- 2. $H^1(G_K, E_K) \simeq E_3$. When
	- (i) $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = -1$ and $\sqrt{\epsilon_1\epsilon_2\epsilon_3} \notin K$,
	- (*ii*) $N\epsilon_1 = N\epsilon_2 = -1$, $N\epsilon_3 = 1$ and $\sqrt{\epsilon_3} \notin K$,
	- (iii) $N\epsilon_i \neq N\epsilon_k = N\epsilon_3 = -1$ with $j \neq k = 1, 2$,

(iv) $N\epsilon_j \neq N\epsilon_k = N\epsilon_3 = 1$ and either $\sqrt{\epsilon_3} \in K$ or $\sqrt{\epsilon_k \epsilon_3} \in K$ where $e_2 \neq 4$ and $j \neq k = 1, 2 \text{ or }$

(v) $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ and $\sqrt{\epsilon_1\epsilon_2} \in K$ and $\sqrt{\epsilon_1\epsilon_3} \in K$ and $\sqrt{\epsilon_2\epsilon_3} \in K$ where $e_2 \neq 4.$

3. $H^1(G_K, E_K) \simeq E_4$. If (i) $N\epsilon_1 = N\epsilon_2 = 1$, $N\epsilon_3 = -1$, (ii) $N\epsilon_j \neq N\epsilon_k = N\epsilon_3 = 1$, $\sqrt{\epsilon_3} \notin K$ and $\sqrt{\epsilon_k \epsilon_3} \notin K$ where $e_2 \neq 4$ and $j \neq k = 1, 2$

or

(iii) $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ and either $\sqrt{\epsilon_3} \in K$ or $\sqrt{\epsilon_1 \epsilon_2} \in K$ or $\sqrt{\epsilon_1 \epsilon_3} \in K$ or $\sqrt{\epsilon_2\epsilon_3} \in K$ or $\sqrt{\epsilon_1\epsilon_2\epsilon_3} \in K$ where $e_2 \neq 4$.

4.
$$
H^1(G_K, E_K) \simeq E_5
$$
. When

(i) $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ and $\sqrt{\epsilon_3} \notin K$ and $\sqrt{\epsilon_1\epsilon_2} \notin K$ and $\sqrt{\epsilon_1\epsilon_3} \notin K$ and $\sqrt{\epsilon_2\epsilon_3} \notin K$ and $\sqrt{\epsilon_1\epsilon_2\epsilon_3} \notin K$ where $\epsilon_2 \neq 4$.

Proof. Recall that $\alpha_i = N(\epsilon_i + 1) = 2(x_i + 1) \in \mathbb{Q}$ if $N\epsilon_i = 1$ otherwise $\alpha_i = 1$, for $i = 1, 2, 3$, also $[\alpha_i]$ is the class of α_i in $\mathbb{Q}^*/\mathbb{Q}^{*2}$, for $i = 1, 2, 3$. According to [Proposition 3.3,](#page-2-1) we have m_i is the squarefree part of $N(\epsilon_i + 1)$ where $N\epsilon_i = 1$ for $i = 1, 2, 3$ with $m_i > 1$, $m_i | d_{k_i}$ and $m_i \neq d_i$ for $i = 1, 2, 3$. Therefore, $\alpha_i = m_i w^2 =$ $N(\epsilon_i + 1) = 2(x_i + 1)$ where $N\epsilon_i = 1$ for $i = 1, 2, 3$. As a result, we obtain that $[\alpha_i] = [m_i w^2] = [m_i] [w^2] = [m_i]$ taking into account that $N\epsilon_i = 1$ for $i = 1, 2, 3$.

We know that \widetilde{H} is the subgroup of $\mathbb{Q}^*/\mathbb{Q}^{*2}$ generated by the images of d_1, d_2, d_3 , α_1, α_2 and α_3 with $d_3 = d_1 d_2$. In the following we study in $\mathbb{Q}^*/\mathbb{Q}^{*2}$ whether $[d_1], [d_2]$, $[d_3], [\alpha_1], [\alpha_2],$ and $[\alpha_3]$ are linearly independents. Note that $[d_3] = [d_1d_2]$ belongs to the subgroup generated by $[d_1]$ and $[d_2]$ in $\mathbb{Q}^*/\mathbb{Q}^{*2}$, in other words $[d_3] \in \langle [d_1], [d_2] \rangle$. 1. When $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = -1$, then $[\alpha_1] = [\alpha_2] = [\alpha_3] = 1$. So, $H = \langle [d_1], [d_2] \rangle$

i.e. $\widetilde{H} \simeq E_2$. As $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = -1$, then we have to distinguish the two following cases

(i) when $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \in K$, i.e. $E_K = \langle -1, \epsilon_1, \epsilon_2, \sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \rangle$ so by [Theorem 3.2,](#page-2-0) we get that $\widetilde{H} \simeq H^1(G_K, E_K) \simeq E_2$.

(ii) otherwise, i.e. $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \notin K$ and thus $E_K = \langle -1, \epsilon_1, \epsilon_2, \epsilon_3 \rangle = E_{k_1} E_{k_2} E_{k_3}$ where $E_{k_1} = \langle -1, \epsilon_1 \rangle$, $E_{k_2} = \langle -1, \epsilon_2 \rangle$, and $E_{k_3} = \langle -1, \epsilon_3 \rangle$. Thus, by using the [Theorem 3.2,](#page-2-0) we get that $H^1(G_K, E_K) \simeq E_3$.

2. If $N\epsilon_1 = N\epsilon_2 = -1$ and $N\epsilon_3 = 1$, then $[\alpha_1] = [\alpha_2] = 1$. Since $N\epsilon_3 = 1$, then we have the two following cases:

(i) $\sqrt{\epsilon_3} \in K$ (in other words $E_K = \langle -1, \epsilon_1, \epsilon_2, \sqrt{\epsilon_3} \rangle$), so according to [Proposi](#page-4-1)[tion 4.2,](#page-4-1) $[\alpha_3] = [m_3] = [d_1]$ or $[d_2]$ so $[\alpha_3] \in \langle [d_1], [d_2] \rangle$ i.e. $\tilde{H} = \langle [d_1], [d_2] \rangle$. Thus, we get that $\widetilde{H} \simeq H^1(G_K, E_K) \simeq E_2$.

(ii) Otherwise, $\sqrt{\epsilon_3} \notin K$ and thus we have $m_3 \neq d_1$ and d_2 then $[\alpha_3] = [m_3] \notin$ $\langle [d_1], [d_2] \rangle$, i.e. $[d_1], [d_2]$ and $[\alpha_3]$ are linearly independents. So, $\widetilde{H} = \langle [d_1], [d_2], [\alpha_3] \rangle$ and thus we get that $\widetilde{H} \simeq H^1(G_K, E_K) \simeq E_3$.

3. When $N\epsilon_j \neq N\epsilon_k = N\epsilon_3 = -1$ such that $j \neq k = 1, 2$. Then, $[\alpha_k] = [\alpha_3] = 1$ and $[\alpha_j] = [m_j] \notin \langle [d_1], [d_2] \rangle$ (since $m_j > 1$ and m_j divides the discriminant of k_j , $m_j \neq d_j$ for $j = 1, 2$) and thus $\widetilde{H} = \langle [d_1], [d_2], [\alpha_j] \rangle$. So, $\widetilde{H} \simeq H^1(G_K, E_K) \simeq E_3$.

4. If $N\epsilon_1 = N\epsilon_2 = 1$ and $N\epsilon_3 = -1$, then $[\alpha_3] = 1$. As $N\epsilon_3 = -1$ therefore 4. If $N\epsilon_1 = N\epsilon_2 = 1$ and $N\epsilon_3 = -1$, then $[\alpha_3] = 1$. As $N\epsilon_3 = -1$ therefore $(d_1, d_2) \equiv (1, 2)$ or $(2, 1) \pmod{4}$. To say that $\sqrt{\epsilon_1 \epsilon_2} \in K$ we must have $2 \mid d_{k_1}$ (a₁, a₂) = (1, 2) or (2, 1) (mod 4). To say that $\sqrt{\epsilon_1 \epsilon_2} \in K$ we must have $2 \mid a_{k_1}$
and $2 \mid d_{k_2}$ which is not our case. So $\sqrt{\epsilon_1 \epsilon_2} \notin K$, then $[\alpha_k] \notin \langle [d_1], [d_2], [\alpha_j] \rangle$ with $j \neq k = 1, 2$. Hence, $H^1(G_K, E_K) \simeq \widetilde{H} = \langle [d_1], [d_2], [\alpha_1], [\alpha_2] \rangle \simeq E_4$.

5. We assume $N\epsilon_j \neq N\epsilon_k = N\epsilon_3 = 1$ where $\epsilon_2 \neq 4$ and $j \neq k = 1, 2$. Then, $[\alpha_j] = 1$ and since $N\epsilon_k = N\epsilon_3 = 1$, then we have to distinguish the three following cases.

(i) If $\sqrt{\epsilon_3} \in K$. So, by [Proposition 4.2,](#page-4-1) we have $[\alpha_3] = [m_3] = [d_1]$ or $[d_2]$ hence $[\alpha_3] \in \langle [d_1], [d_2] \rangle$. On the other hand, we have $[\alpha_k] = [m_k] \notin \langle [d_1], [d_2] \rangle$ (recall that $m_k > 1$ and m_k divides the discriminant of $\mathbb{Q}(\sqrt{d_k})$, $m_k \neq d_k$ for $k = 1, 2$ see the [Proposition 4.1\)](#page-4-0). Thence, $\tilde{H} = \langle [d_1], [d_2], [\alpha_k] \rangle$ and as a result we get that $\widetilde{H} \simeq H^1(G_K, E_K) \simeq E_3.$

(ii) When $\sqrt{\epsilon_k \epsilon_3} \in K$ for $k = 1$ or 2. As stated in [Proposition 4.2,](#page-4-1) we get that $[m_k m_3] = [d_1], [d_2]$ or $[d_3]$, or $m_k = m_3$ and thus we get that $[\alpha_3] \in \langle [d_1], [d_2], [\alpha_k] \rangle$ so $H = \langle [d_1], [d_2], [\alpha_k] \rangle$. Thus, we have $H \simeq H^1(G_K, E_K) \simeq E_3$.

(iii) Otherwise, i.e. $\sqrt{\epsilon_k \epsilon_3} \notin K$, for $k = 1, 2$ and $\sqrt{\epsilon_3} \notin K$ then we have $[m_k m_3] \neq$ $[d_1], [d_2]$ and $[d_3]$, and $m_k \neq m_3$, and then $m_3 \neq d_1$ and d_2 . Therefore, $[\alpha_3] \notin$ $\langle [d_1], [d_2], [\alpha_k] \rangle$ and thus $\widetilde{H} = \langle [d_1], [d_2], [\alpha_k], [\alpha_3] \rangle$ such that $k = 1, 2$. Consequently, we get that $\widetilde{H} \simeq H^1(G_K, E_K) \simeq E_4$.

6. If $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ where $\epsilon_2 \neq 4$, then we have the following cases.

(i) If $\sqrt{\epsilon_3} \in K$, then we have $[\alpha_3] \in \langle [d_1], [d_2] \rangle$. We mention here that $\sqrt{\epsilon_1 \epsilon_2} \notin K$ (since in this case we have $E_K = \langle -1, \epsilon_1, \epsilon_2, \sqrt{\epsilon_3} \rangle$). Therefore, $[\alpha_k] \notin \langle [d_1], [d_2], [\alpha_j] \rangle$ with $j \neq k = 1, 2$ i.e. $[d_1], [d_2], [\alpha_1]$ and $[\alpha_2]$ are linearly independents. According to [Theorem 3.2,](#page-2-0) we have $\widetilde{H} \simeq H^1(G_K, E_K) \simeq E_4$.

(ii) If $\sqrt{\epsilon_j \epsilon_3} \in K$, $j = 1, 2$ then we have $[\alpha_3] \in \langle [d_1], [d_2], [\alpha_j] \rangle$. On the other hand, we have $\sqrt{\epsilon_k \epsilon_j} \notin K$ with $j \neq k = 1, 2$ (since in this case we have $E_K =$ $\langle -1, \epsilon_1, \epsilon_2, \sqrt{\epsilon_j \epsilon_3} \rangle$, so $[\alpha_k] \notin \langle [d_1], [d_2], [\alpha_j] \rangle$, $j \neq k = 1, 2$. So, $\widetilde{H} = \langle [d_1], [d_2], [\alpha_k], [\alpha_j] \rangle$, $j \neq k = 1, 2$. Therefore, we have $H \simeq H^1(G_K, E_K) \simeq E_4$.

(iii) When $\sqrt{\epsilon_1 \epsilon_2} \in K$, then we get that $[\alpha_1] = [\alpha_2] = [2]$. Note that $\sqrt{\epsilon_k \epsilon_3} \notin K$ for $k = 1, 2$, which means that $[\alpha_3] \notin \langle [d_1], [d_2], [\alpha_k] \rangle$. Therefore, $H = \langle [d_1], [d_2], [\alpha_k], [\alpha_3] \rangle$ where $k = 1, 2$. Thus, we get that $\widetilde{H} \simeq H^1(G_K, E_K) \simeq E_4$.

(iv) If $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \in K$, so we have $([\alpha_1 \alpha_2 \alpha_3] = [d_1], [d_2]$ or $[d_3]$) or $([\alpha_1 \alpha_2] = [\alpha_3])$. We (iv) in $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \in K$, so we have $\left[\alpha_1 \alpha_2 \alpha_3\right] = \left[\alpha_1\right], \left[\alpha_2\right]$ on $\left[\alpha_3\right]$ on $\left[\alpha_1 \alpha_2\right] = \left[\alpha_3\right]$. We
know that, $\left[\alpha_1\right], \left[\alpha_2\right] \in \mathbb{Z}_3$ $\notin \mathbb{Z}_3$ { $\left[\alpha_1\right], \left[\alpha_2\right], \left[\alpha_3\right] \notin \mathbb{Z}_3$ $k \in \{1, 2\}$, but $[\alpha_3] \in \langle [d_1], [d_2], [\alpha_1], [\alpha_2] \rangle$. So, $H^1(G_K, E_K) \simeq \widetilde{H} \simeq E_4$.

(v) Otherwise, i.e. $\sqrt{\epsilon_3} \notin K$, $\sqrt{\epsilon_1 \epsilon_2} \notin K$, $\sqrt{\epsilon_1 \epsilon_3} \notin K$, $\sqrt{\epsilon_2 \epsilon_3} \notin K$ and $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \notin K$. Then, we get that $\widetilde{H} \simeq H^1(G_K, E_K) \simeq E_5$.

7. If $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ and $\sqrt{\epsilon_1\epsilon_2} \in K$ and $\sqrt{\epsilon_1\epsilon_3} \in K$ and $\sqrt{\epsilon_2\epsilon_3} \in K$ where $e_2 \neq 4$, note that in this case we have $E_K = \langle -1, \sqrt{\epsilon_1 \epsilon_2}, \sqrt{\epsilon_2 \epsilon_3}, \sqrt{\epsilon_1 \epsilon_3} \rangle$. When

 $\sqrt{\epsilon_1 \epsilon_2} \in K$, then $[\alpha_k] \in \langle [d_1], [d_2], [\alpha_j] \rangle$ with $j \neq k = 1, 2$ and when $\sqrt{\epsilon_j \epsilon_3} \in K$ so $[\alpha_3] \in \langle [d_1], [d_2], [\alpha_j] \rangle, j = 1, 2$. So, $H^1(G_K, E_K) \simeq \widetilde{H} \simeq E_3$. \Box

We end this section by giving examples of the first cohomology group of units of some fields $K = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_2})$ where $(d_1, d_2) = 1$ and $e_2 \neq 4$.

EXAMPLE 4.5. Let $K = \mathbb{Q}(\sqrt{2})$ 29, √ 65) such that $d_1 = 29$, $d_2 = 5 \cdot 13 = 65$ and EXAMPLE 4.5. Let $K = \mathbb{Q}(\sqrt{29}, \sqrt{65})$ such that $a_1 = 29, a_2 = 5 \cdot 13 = 65$ and $d_3 = 29 \cdot 65 = 1885$. The fundamental units are $\epsilon_1 = \frac{1}{2}(5 + \sqrt{29})$, $\epsilon_2 = 8 + \sqrt{65}$ and $\epsilon_3 = 521 + 12\sqrt{1885}$ where $N\epsilon_1 = N\epsilon_2 = -1$ and $N\epsilon_3 = 1$. So, we have $\alpha_1 = \alpha_2 = 1$ and $\alpha_3 = 2(521 + 1) = 2 \cdot 522 = 2^2 \cdot 3^2 \cdot 29$. Since we have m_3 , the squarefree part of the integer $N(\epsilon_3 + 1) = 2(x_3 + 1) = \alpha_3 = 29 = d_1$, then $\sqrt{\epsilon_3} \in K$. Therefore, we get that $H^1(G_K, E_K) \simeq \widetilde{H} = \langle [29], [65] \rangle$, i.e. $H^1(G_K, E_K) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

EXAMPLE 4.6. Put $K = \mathbb{Q}(\sqrt{2})$ 65, √ 38) such that $d_1 = 5 \cdot 13 = 65$, $d_2 = 2 \cdot 19 = 38$ EXAMPLE 4.6. Put $K = \mathbb{Q}(\sqrt{65}, \sqrt{38})$ such that $a_1 = 5 \cdot 13 = 65$, $a_2 = 2 \cdot 19 = 38$
and $d_3 = 65 \cdot 38 = 2470$. We have $\epsilon_1 = 8 + \sqrt{65}$, $\epsilon_2 = 37 + 6\sqrt{38}$ and $\epsilon_3 =$ and $a_3 = 65 \cdot 38 = 2470$. We have $\epsilon_1 = 8 + \sqrt{63}$, $\epsilon_2 = 37 + 6\sqrt{38}$ and $\epsilon_3 = 2426111 + 48816\sqrt{2470}$ such that $N\epsilon_1 = -1$ and $N\epsilon_2 = N\epsilon_3 = 1$. So, $\alpha_1 = 1$, $\alpha_2 = 2(37 + 1) = 2^2 \cdot 19$ and $\alpha_3 = 2(2426111 + 1) = 2^8 \cdot 3^6 \cdot 2 \cdot 13$. Note that m_2 , the $\alpha_2 = 2(3t+1) = 2 + 13$ and $\alpha_3 = 2(242011+1) = 2 + 3 + 2 + 13$. Note that m_2 , the
squarefree part of α_2 is 19 and $m_3 = 2 \cdot 13$. Therefore, we get that both $\sqrt{\epsilon_3} \notin K$ and $\sqrt{\epsilon_2 \epsilon_3} \notin K$ since $m_3 = 2 \cdot 13 \neq (65 = d_1 \text{ and } 38 = d_2)$, also $2 \cdot 13 \cdot 19 \neq (65, 38 \text{ and } 13)$ 2470). Hence, $H^1(G_K, E_K) \simeq \tilde{H} = \langle [5 \cdot 13], [2 \cdot 19], [19], [2 \cdot 13] \rangle \simeq E_4$.

EXAMPLE 4.7. Let $K = \mathbb{Q}(\sqrt{2})$ 35, √ (23) such that $d_1 = 5 \cdot 7 = 35$, $d_2 = 23$ and $d_3 =$ EXAMPLE 4.*t*. Let $\mathbf{A} = \mathbb{Q}(\sqrt{35}, \sqrt{23})$ such that $a_1 = 5 \cdot t = 35$, $a_2 = 23$ and $a_3 = 35 \cdot 23 = 805$. So, we have $\epsilon_1 = 6 + \sqrt{35}$, $\epsilon_2 = 24 + 5\sqrt{23}$ and $\epsilon_3 = \frac{1}{2}(1447 + 51\sqrt{805})$ such that $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$. And thus we get that $\alpha_1 = 2(6+1) = 2 \cdot 7$, $\alpha_2 = 2(24+1) = 2 \cdot 5^2$, and $\alpha_3 = 2(\frac{1447}{2}+1) = 1449 = 3^2 \cdot 7 \cdot 23$. Therefore, we get that $m_1 = 2 \cdot 7$, $m_2 = 2$, and $m_3 = 7 \cdot 23$, and thus $m_1 m_2 m_3 = (2 \cdot 7)^2 \cdot 23$, hence $[m_1m_2m_3] = [d_2] = [23]$, which means that we have $\sqrt{\epsilon_1\epsilon_2\epsilon_3} \in K$. Therefore, we get that $H^1(G_K, E_K) \simeq \tilde{H} = \langle [5 \cdot 7], [23], [2 \cdot 7], [2] \rangle \simeq E_4.$

5. The Pólya groups of the real biquadratic fields $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ √ $\left(d_{2}\right)$ where $(d_1, d_2) = 1$ and $e_2 \neq 4$

THEOREM 5.1. Let $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ √ (d_2) , d_1 and d_2 be two square-free integers such that $(d_1, d_2) = 1$. Let t be the number of the prime divisors of d_K . Then 1. $\mathcal{P}_O(K) \simeq E_{t-2}$. When

- (i) $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = -1$ and $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \in K$ or (*ii*) $N\epsilon_1 = N\epsilon_2 = -1$, $N\epsilon_3 = 1$ and $\sqrt{\epsilon_3} \in K$.
-

2. $\mathcal{P}_O(K) \simeq E_{t-3}$. When

- (i) $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = -1$ and $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \notin K$,
- (ii) $N\epsilon_1 = N\epsilon_2 = -1$, $N\epsilon_3 = 1$ and $\sqrt{\epsilon_3} \notin K$,
- (iii) $N\epsilon_j \neq N\epsilon_k = N\epsilon_3 = -1$ with $j \neq k = 1, 2$,

(iv) $N\epsilon_j \neq N\epsilon_k = N\epsilon_3 = 1$ and either $\sqrt{\epsilon_3} \in K$ or $\sqrt{\epsilon_k \epsilon_3} \in K$ where $e_2 \neq 4$ and $j \neq k = 1, 2 \text{ or }$

(v) $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ and $\sqrt{\epsilon_1\epsilon_2} \in K$ and $\sqrt{\epsilon_1\epsilon_3} \in K$ and $\sqrt{\epsilon_2\epsilon_3} \in K$ where $e_2 \neq 4.$

- 3. $\mathcal{P}_O(K) \simeq E_{t-4}$. When
	- (i) $N\epsilon_1 = N\epsilon_2 = 1$, $N\epsilon_3 = -1$,

(ii) $N\epsilon_j \neq N\epsilon_k = N\epsilon_3 = 1$, $\sqrt{\epsilon_3} \notin K$ and $\sqrt{\epsilon_k \epsilon_3} \notin K$ where $e_2 \neq 4$ and $j \neq k = 1, 2$ or

(iii) $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ and either $\sqrt{\epsilon_3} \in K$, $\sqrt{\epsilon_1 \epsilon_2} \in K$, $\sqrt{\epsilon_1 \epsilon_3} \in K$, $\sqrt{\epsilon_2 \epsilon_3} \in K$ or $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \in K$ where $e_2 \neq 4$.

4. $\mathcal{P}_O(K) \simeq E_{t-5}$. When

(i) $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$, $\sqrt{\epsilon_3} \notin K$, $\sqrt{\epsilon_1 \epsilon_2} \notin K$, $\sqrt{\epsilon_1 \epsilon_3} \notin K$, $\sqrt{\epsilon_2 \epsilon_3} \notin K$ and $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \notin K$ where $e_2 \neq 4$.

Proof. As the prime 2 is not totally ramified in K/\mathbb{Q} and since K/\mathbb{Q} is a Galois extension and d_K is its discriminant. So, according to [Proposition 3.6,](#page-3-0) we have $|H^1(G_K, E_K)| | \mathcal{P}_O(K)| = \prod_{p|d_K} e_p$ where e_p is the ramification index of the prime number p in K/Q. Thus, we get that $|P_O(K)| = \frac{\prod_{p|d_K} e_p}{|H^1(G_K, E_K)|}$ $\frac{\Pi_{p|d_K}^{L_{p}}^{L_{p}}^{C_p}}{|H^1(G_K, E_K)|}$. Hence, $\mathcal{P}_O(K) \simeq E_{t-s}$ where s satisfies $E_s \simeq H^1(G_K, E_K)$ and $\prod_{p|d_K} e_p = 2^t$ with t is the number of prime numbers dividing d_K . By [Lemma 4.4,](#page-5-0) we have when $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = -1$ and throets dividing a_K . By Befinite 4.4, we have when $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = -1$ and $\epsilon_1 \epsilon_2 \epsilon_3 \in K$ or $N\epsilon_1 = N\epsilon_2 = -1$, $N\epsilon_3 = 1$ and $\sqrt{\epsilon_3} \in K$, then $H^1(G_K, E_K) \simeq E_2$. Therefore, $\mathcal{P}_O(K) \simeq E_{t-2}$. Similarly, we get the other results of the theorem. \Box

6. The real biquadratic Pólya fields

Recall that in [\[3,](#page-14-5) [15\]](#page-15-2) the discriminant d_K of $K = \mathbb{Q}(\sqrt{k})$ $d_1,$ $\sqrt{d_2}$) over $\mathbb Q$ is explicitly determined by:

1. $d_K = (d_1 d_2)^2$ when $(d_1, d_2) \equiv (1, 1) \pmod{4}$.

2. $d_K = (4d_1d_2)^2$ when $(d_i, d_j) \equiv (1, 2), (1, 3)$ or $(3, 3)$ (mod 4) with $i \neq j = 1, 2$. Let p, p_1, p_2, p_3, p_4 and p' be prime integers congruent to 1 (mod 4). Let q, q_1, q_2 , q_3 and q_4 be prime integers congruent to 3 (mod 4).

Now, we determine the real biquadratic Pólya fields and we start by the case of $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = -1.$

THEOREM 6.1. Let $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ √ (d_2) , where d_1 and d_2 are two square-free integers such that $(d_1, d_2) = 1$. We assume $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = -1$ and put $i \neq j \in \{1, 2\}$. Then, K is a Pólya field if and only if one of the following assertions is satisfied: 1. $d_i = p_1 d_j = p_2$,

2. $d_i = p_1 d_j = 2$,

3. $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \notin K$ and either $d_i = p_1 d_j = p_2 p_3$, or $d_i = p_1 p_2 d_j = 2$, or $d_i = p_1 d_j = 2p_2$.

Proof. We have $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = -1$, so by the [Theorem 5.1,](#page-8-0) we have the two following cases:

1. When $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \in K$, then $\mathcal{P}_O(K) \simeq E_{t-2}$, where t is the number of prime divisors of d_K . So, K is a Pólya field if and only if $t = 2$. Thus, we get either $d_i = p_1 \quad d_j = p_2$ or $d_i = p_1$ d_j = 2. As stated in [\[12\]](#page-15-4), $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \in K$ is always verifying whenever we have one of the two first items of the theorem.

2. When $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \notin K$, then $\mathcal{P}_O(K) \simeq E_{t-3}$. So, K is a Pólya field if and only if $t = 3$. (i) Assuming $(d_i, d_j) \equiv (1, 1) \pmod{4}$. Then, K is a Pólya field if and only if $d_i = p_1 d_j = p_2 p_3.$

(ii) Now we assume that $(d_i, d_j) \equiv (1, 2) \pmod{4}$. So, we have either $d_i = p_1 p_2$ $d_j = 2$ or $d_i = p_1 d_j = 2p_2$. \Box

THEOREM 6.2. Let $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ √ $\left(d_{2}\right)$ where d_{1} and d_{2} are two square-free integers such that $(d_1, d_2) = 1$. Assuming $N\epsilon_j \neq N\epsilon_i = N\epsilon_3 = -1$ such that $i \neq j = 1, 2$. So, K is a Pólya field if and only if one of the following assertions is satisfied:

(i) $d_i = p_1$ $d_j = p_2p_3$, (ii) $d_i = p_1$ $d_j = 2p_2$, (iii) $d_i = 2$ $d_j = p_1p_2$.

We assume $N\epsilon_1 = N\epsilon_2 = 1$ and $N\epsilon_3 = -1$. Then, K is a Pólya field if and only if one of the following assertions is satisfied:

(i) $d_i = p_1 p_2$ $d_j = p_3 p_4$, (ii) $d_i = 2p_1$ $d_j = p_2 p_3$.

Proof. We have $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ √ d_2) such that d_1 and d_2 are two square-free integers such that $(d_1, d_2) = 1$.

1. As $N\epsilon_j \neq N\epsilon_i = N\epsilon_3 = -1$ such that $i \neq j = 1, 2$. So, by [Theorem 5.1,](#page-8-0) we have $\mathcal{P}_O(K) \simeq E_{t-3}$. Then, K is a Pólya field if and only if $t = 3$.

(i) We suppose $(d_i, d_j) \equiv (1, 1) \pmod{4}$. Thus, by K.S. Williams [\[15\]](#page-15-2), we get $d_K = (p_1p_2p_3)^2$. So, K is a Pólya field if and only if $d_i = p_1$ $d_j = p_2p_3$.

(ii) Now we assume $(d_i, d_j) \equiv (1, 2) \pmod{4}$. Then, K is a Pólya field if and only if $d_i = p_1$ $d_j = 2p_2$.

(iii) And when $(d_i, d_j) \equiv (2, 1) \pmod{4}$ we get that $d_i = 2 \quad d_j = p_1 p_2$.

2. Assuming $N\epsilon_1 = N\epsilon_2 = 1$ and $N\epsilon_3 = -1$, so we have $\mathcal{P}_O(K) \simeq E_{t-4}$. Then, K is a Pólya field if and only if $t = 4$. So, we get either $d_i = p_1p_2$ $d_i = p_3p_4$, or $d_i = 2p_1$ $d_j = p_2p_3$. \Box

THEOREM 6.3. Let $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ √ (d_2) , where d_1 and d_2 are two square-free integers such that $(d_1, d_2) = 1$. Put $i \neq j = 1, 2$. We assume that $N\epsilon_1 = N\epsilon_2 = -1$ and $N\epsilon_3 = 1$. When $\sqrt{\epsilon_3} \in K$, then K is a Pólya field if and only if one of the following conditions holds:

(i) $d_i = p_1$ $d_j = p_2$, (ii) $d_i = p_1$ $d_j = 2$.

And when $\sqrt{\epsilon_3} \notin K$, then K is a Pólya field if and only if one of the following conditions holds:

(i) $d_i = p_1 p_2$ $d_j = p_3$, (ii) $d_i = p_1 p_2$ $d_j = 2$, (iii) $d_i = p_1$ $d_j = 2p_2$.

Proof. As $N\epsilon_1 = N\epsilon_2 = -1$ and $N\epsilon_3 = 1$. Then, we have to distinguish the following cases.

1. If $\sqrt{\epsilon_3} \in K$, then according to [Theorem 5.1,](#page-8-0) we get that $\mathcal{P}_O(K) \simeq E_{t-2}$. Thence, K is a Pólya field if and only if $t = 2$.

- (i) We assume $(d_i, d_j) \equiv (1, 1) \pmod{4}$. Then, we get that $d_i = p_1 \quad d_j = p_2$.
- (ii) Now we suppose that $(d_i, d_j) \equiv (1, 2) \pmod{4}$. Then, $d_i = p_1 \quad d_j = 2$.

2. Otherwise i.e. $\sqrt{\epsilon_3} \notin K$ then as stated in [Theorem 5.1,](#page-8-0) we get that $\mathcal{P}_O(K) \simeq E_{t-3}$. So, K is a Pólya field if and only if $t = 3$.

(i) Assuming $(d_i, d_j) \equiv (1, 1) \pmod{4}$, so we get that $d_i = p_1 p_2 \quad d_j = p_3$.

(ii) When $(d_i, d_j) \equiv (1, 2) \pmod{4}$. Then, K is a Pólya field if and only if either $d_i = p_1 p_2$ $d_j = 2$ or $d_i = p_1$ $d_j = 2p_2$. \Box

Remark 6.4. Building upon the results proven in the three previous theorems, we note that we give the Pólya fields in each case without mentioning that $e_2 \neq 4$. Moreover, all the cases studied were $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = -1$, $N\epsilon_1 = N\epsilon_2 = -1 \neq 1$ $N\epsilon_3 = 1, N\epsilon_1 = 1 \neq N\epsilon_2 = N\epsilon_3 = -1, N\epsilon_2 = 1 \neq N\epsilon_1 = N\epsilon_3 = -1,$ and $N\epsilon_1 = N\epsilon_2 = 1 \neq N\epsilon_3 = -1$. We mention that, there is no need to add the condition of $e_2 \neq 4$ since it is implicitly we have that $e_2 \neq 4$, which means that the prime 2 is not totally ramified in K/\mathbb{Q} in all mentioned cases above. We recommend the reader to refer to the beginning of the preliminaries section, as well as [Remark 3.1,](#page-2-2) for further details.

On the other hand, we would like to mention that in the upcoming theorems, we are going to determine the Pólya fields in the following cases: $N\epsilon_j \neq N\epsilon_i = N\epsilon_3 = 1$ where $i \neq j = 1, 2$ and $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$. Note that in these cases we can have either $e_2 = 4$ or $e_2 \neq 4$. As we are specifically interested in the case where the prime 2 is not totally ramified in K/\mathbb{Q} , so it is necessary to add the condition $e_2 \neq 4$.

THEOREM 6.5. Let $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ √ (d_2) , where d_1 and d_2 are two square-free integers such that $(d_1, d_2) = 1$, and let $N\epsilon_j \neq N\epsilon_i = N\epsilon_3 = 1$ where $e_2 \neq 4$ and $i \neq j = 1, 2$.

Assuming either $\sqrt{\epsilon_3} \in K$ or $\sqrt{\epsilon_i \epsilon_3} \in K$. So, K is a Pólya field if and only if one of the following assertions is satisfied:

Now we assume $\sqrt{\epsilon_3} \notin K$ and $\sqrt{\epsilon_i \epsilon_3} \notin K$. Then, K is a Pólya field if and only if one of the following conditions holds:

Proof. As $N\epsilon_j \neq N\epsilon_i = N\epsilon_3 = 1$ and $e_2 \neq 4$ with $i \neq j = 1, 2$. Then, we have the two following cases.

1. When either $\sqrt{\epsilon_3} \in K$ or $\sqrt{\epsilon_i \epsilon_3} \in K$ for $i \in \{1, 2\}$, so according to the [Theorem 5.1,](#page-8-0) we get that $\mathcal{P}_O(K) \simeq E_{t-3}$. Thence, K is a Pólya field if and only if $t = 3$. Therefore, we have the following cases:

(i) $(d_i, d_j) \equiv (1, 1) \pmod{4}$, then K is a Pólya field if and only if $d_i = p_1 p_2, q_1 q_2 d_j = p$.

(ii) $(d_i, d_j) \equiv (1, 2) \pmod{4}$. So, $d_i = p_1 p_2$, $q_1 q_2 d_j = 2$.

(iii) $(d_i, d_j) \equiv (2, 1) \pmod{4}$. Then, we get that $d_i = 2p_1$, $2q_1 d_j = p$.

(iv) $(d_i, d_j) \equiv (3, 1) \pmod{4}$. Therefore, K is a Pólya field if and only if $d_i = q d_j = p$.

2. And when both $\sqrt{\epsilon_3}$ and $\sqrt{\epsilon_i\epsilon_3} \notin K$ with $i \neq j=1,2$. By the [Theorem 5.1,](#page-8-0) we get that $\mathcal{P}_O(K) \simeq E_{t-4}$. So, K is a Pólya field if and only if $t=4$.

(i) We put $(d_i, d_j) \equiv (1, 1) \pmod{4}$. Then, K is a Pólya field if and only if either $d_i=p_1p_2, q_1q_2, d_j=pp'$ or $d_i=p_1p_2p_3, q_1q_2p'$, $d_j=p$.

(ii) When $(d_i, d_j) \equiv (1, 2) \pmod{4}$. Thus, we get that either $d_i = p_1 p_2$, $q_1 q_2 d_j = 2p$ or $d_i=p_1p_2p_3$, $q_1q_2p d_i=2$.

(iii) Let $(d_i, d_j) \equiv (2, 1) \pmod{4}$. Then, we have either $d_i = 2p_1p_2$, $2p_1q_1$, $2q_1q_2$ $d_j = p$ or $d_i=2p$, $2q d_i=p_1p_2$.

(iv) When $(d_i, d_j) \equiv (3, 1) \pmod{4}$, so we get that K is a Pólya field if and only if either $d_i = q_1 p_1 d_j = p_2$, or $d_i = q_1 d_j = p_1 p_2$. \Box

In the following theorem we give the Pólya fields of K such that $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ and $\sqrt{\epsilon_1 \epsilon_2} \in K$ and $\sqrt{\epsilon_1 \epsilon_3} \in K$ and $\sqrt{\epsilon_2 \epsilon_3} \in K$ (i.e. $E_K = \langle -1, \sqrt{\epsilon_1 \epsilon_2}, \sqrt{\epsilon_2 \epsilon_3}, \sqrt{\epsilon_1 \epsilon_3} \rangle$) where $e_2 \neq 4$.

THEOREM 6.6. Let $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ √ (d_2) , d_1 and d_2 be two square-free integers such that $(d_1, d_2) = 1$ and let $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ and $\sqrt{\epsilon_1 \epsilon_2} \in K$ and $\sqrt{\epsilon_1 \epsilon_3} \in K$ and $\sqrt{\epsilon_2 \epsilon_4}$ $\sqrt{\epsilon_2 \epsilon_3} \in K$ where $e_2 \neq 4$. Then, K is a Pólya field if and only if $d_1 = q_1$ and $d_2 = q_2$.

Proof. Since $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ and $\sqrt{\epsilon_1\epsilon_2} \in K$ and $\sqrt{\epsilon_2\epsilon_3} \in K$ and $\sqrt{\epsilon_1\epsilon_3} \in K$ such that $e_2 \neq 4$, so by [Theorem 5.1](#page-8-0) we have $\mathcal{P}_O(K) \simeq E_{t-3}$. Therefore, K is a field of Pólya if and only if $t = 3$. If $(d_i, d_j) \equiv (3, 3) \pmod{4}$ with $i \neq j = 1, 2$ therefore $d_K = (4d_1d_2)^2$ then we find that $d_1 = q_1$ and $d_2 = q_2$. If $(d_i, d_j) \equiv (1, 1) \pmod{4}$, we know that $d_K = (d_1 d_2)^2$ and since we have $t = 3$ and $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ then we find that this case can not occur. Similarly for the cases of $(d_i, d_j) \equiv (1, 2) \pmod{4}$ and $(d_i, d_j) \equiv (1, 3) \pmod{4}$ with $i \neq j \in \{1, 2\}$.

In the following theorem we give the Pólya fields of K in the two following cases: 1. $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ and $\sqrt{\epsilon_3} \in K$ or $\sqrt{\epsilon_1 \epsilon_2} \in K$ or $\sqrt{\epsilon_2 \epsilon_3} \in K$ or $\sqrt{\epsilon_1 \epsilon_3} \in K$ or $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \in K$ where $e_2 \neq 4$, in other words $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ and $E_K = \sqrt{1 - \epsilon_1}$ $\langle -1, \epsilon_1, \epsilon_2, \sqrt{\epsilon_3} \rangle$ or $E_K = \langle -1, \sqrt{\epsilon_1 \epsilon_2}, \epsilon_2, \epsilon_3 \rangle$ or $E_K = \langle -1, \epsilon_1, \epsilon_2, \sqrt{\epsilon_2 \epsilon_3} \rangle$ or $E_K = \langle -1, \epsilon_1, \epsilon_2, \sqrt{\epsilon_2 \epsilon_3} \rangle$ $\langle -1, \epsilon_1, \epsilon_2, \sqrt{\epsilon_1 \epsilon_3} \rangle$ or $E_K = \langle -1, \epsilon_1, \epsilon_2, \sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \rangle$ respectively.

2. $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ and $\sqrt{\epsilon_3} \notin K$ and $\sqrt{\epsilon_1\epsilon_2} \notin K$ and $\sqrt{\epsilon_1\epsilon_3} \notin K$ and $\sqrt{\epsilon_2 \epsilon_3} \notin K$ and $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \notin K$, i.e. $N \epsilon_1 = N \epsilon_2 = N \epsilon_3 = 1$ and $E_K = \langle -1, \epsilon_1, \epsilon_2, \epsilon_3 \rangle$.

THEOREM 6.7. Let $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ √ $\left(d_{2}\right) ,\,d_{1}\,$ and $d_{2}\,$ be two square-free integers such that $(d_1, d_2) = 1$ and let $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ and then $e_2 \neq 4$.

We suppose either $\sqrt{\epsilon_3} \in K$ or $\sqrt{\epsilon_1 \epsilon_2} \in K$ or $\sqrt{\epsilon_1 \epsilon_3} \in K$ or $\sqrt{\epsilon_2 \epsilon_3} \in K$ or We suppose entirely $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \in K$. Then, K is a Pólya field if and only if one of the following conditions holds:

Now we assume that $\sqrt{\epsilon_3} \notin K$ and $\sqrt{\epsilon_1 \epsilon_2} \notin K$ and $\sqrt{\epsilon_1 \epsilon_3} \notin K$ and $\sqrt{\epsilon_2 \epsilon_3} \notin K$ and $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \notin K$. So, K is a Pólya field if and only if one of the following conditions holds:

Proof. As $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ and $e_2 \neq 4$. Then, we have to distinguish the two following cases :

1. We assume either $\sqrt{\epsilon_3} \in K$, $\sqrt{\epsilon_1 \epsilon_2} \in K$ or $\sqrt{\epsilon_1 \epsilon_3} \in K$ or $\sqrt{\epsilon_2 \epsilon_3} \in K$ or $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \in K$ K. So, as stated in [Theorem 5.1,](#page-8-0) we get that $\mathcal{P}_O(K) \simeq E_{t-4}$. Then, K is a Pólya field if and only if $t = 4$. Then, we have the following cases :

(i) $(d_i, d_j) \equiv (1, 1) \pmod{4}$. Then, K is a Pólya field if and only if either $d_i =$ q_1q_2 d_j = p_1p_2 , q_3q_4 or the third item.

(ii) $(d_i, d_j) \equiv (1, 2) \pmod{4}$. Thus, we get the items [5.](#page-13-0) and [6.](#page-13-1)

(iii) $(d_i, d_j) \equiv (3, 3) \pmod{4}$. Then, we have $d_K = (4d_i d_j)^2$, so $d_i = p_1 q_1 \quad d_j = q_2$.

(iv) $(d_i, d_j) \equiv (1, 3) \pmod{4}$, then $d_K = (4d_i d_j)^2$. Consequently, we get that K is a Pólya field if and only if $d_i = p_1p_2 \quad d_j = q_1$.

2. Now we assume $\sqrt{\epsilon_3} \notin K$ and $\sqrt{\epsilon_1 \epsilon_2} \notin K$ and $\sqrt{\epsilon_1 \epsilon_3} \notin K$ and $\sqrt{\epsilon_2 \epsilon_3} \notin K$ and $\sqrt{\epsilon_1 \epsilon_2 \epsilon_3} \notin K$. Again, by [Theorem 5.1,](#page-8-0) we get that $\mathcal{P}_O(K) \simeq E_{t-5}$. Thus, K is a Pólya field if and only if $t = 5$. We distinguish the following cases.

(i) We suppose that $(d_i, d_j) \equiv (1, 1) \pmod{4}$. Then, K is a Pólya field if and only if $d_i = p_1p_2$ $d_j = p_3p_4p_5, q_1q_2p$, or $d_i = q_1q_2$ $d_j = p_1p_2p_3, q_3q_4p$

(ii) When $(d_i, d_j) \equiv (1, 2) \pmod{4}$. Thus, we get either $d_i = q_1 q_2 d_j = 2p_1 p_2, 2q_3 q_4, 2pq$ or the items [3.,](#page-13-2) [5.](#page-13-3) and [6.](#page-13-4)

(iii) We assume $(d_i, d_j) \equiv (3, 3) \pmod{4}$. So, we get that K is a Pólya field if and only if either $d_i = p_1q_1$ $d_j = p_2q_2$ or $d_i = q_1$ $d_j = p_1p_2q_2, q_2q_3q_4$.

(iv) If $(d_i, d_j) \equiv (1, 3) \pmod{4}$, then $d_K = (4d_i d_j)^2$. Therefore, we get K is a Pólya field if and only if either $d_i = p_1p_2, q_1q_2 \quad d_j = pq$ or $d_i = p_1p_2p_3, q_1q_2p \quad d_j = q. \quad \Box$

7. Conclusion

Let $K = \mathbb{Q}(\sqrt{2})$ $d_1,$ √ d_2 , where $d_1 > 1$ and $d_2 > 1$ are two square-free integers with Let $K = \mathcal{Q}(\sqrt{a_1}, \sqrt{a_2})$, where $a_1 > 1$ and $a_2 > 1$ are two square-free integers with
 $(d_1, d_2) = 1$ and $d_3 = d_1 d_2$. Let $k_1 = \mathcal{Q}(\sqrt{d_1}), k_2 = \mathcal{Q}(\sqrt{d_2})$ and $k_3 = \mathcal{Q}(\sqrt{d_3})$ be three quadratic subfields of $K = k_1 k_2 = \mathbb{Q}(\sqrt{d_1})\mathbb{Q}(\sqrt{d_2}) = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_2})$.

As a conclusion, we can say that in each case where k_1 and k_2 are Pólya fields, then $K = k_1 k_2$ is a Pólya field taking into account that, it is not necessary that k_3 must be a Pólya field.

As an example: $k_1 = \mathbb{Q}(\sqrt{p_1p_2})$ and $k_2 = \mathbb{Q}(\sqrt{q_1})$ where $N\epsilon_1 = N\epsilon_2 = 1$ are Pólya fields (see [Proposition 3.9\)](#page-4-2), but $k_3 = \mathbb{Q}(\sqrt{p_1p_2q_1})$ with $N\epsilon_3 = 1$ is not a Pólya field. From the head of the prevoius theorem it follows that $K = \mathbb{Q}(\sqrt{p_1p_2}, \sqrt{q_1})$ such that $d_1 = p_1 p_2$ and $d_2 = q_1$ with $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ is a Pólya field.

We mention that we can establish that k_1 or k_2 is not a Pólya field, and that both k_1 and k_2 are not Pólya fields, but $K = k_1 k_2$ is a Pólya field.

As an example: $k_1 = \mathbb{Q}(\sqrt{p_1q_1})$ is not a Pólya field and $k_2 = \mathbb{Q}(\sqrt{q_2})$ is a Pólya field (see [Proposition 3.9\)](#page-4-2). According to the above theorem, $K = \mathbb{Q}(\sqrt{pq_1}, \sqrt{q_2})$ such field (see Proposition 3.9). that $d_1 = p_1q_1$ and $d_2 = q_2$ with $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ is a Pólya field.

Another example: $k_1 = \mathbb{Q}(\sqrt{p_1q_1})$ and $k_2 = \mathbb{Q}(\sqrt{p_2q_2})$ are not Pólya fields. But it follows from the above theorem that $K = \mathbb{Q}(\sqrt{p_1q_1}, \sqrt{p_2q_2})$ such that $d_1 = p_1q_1$ and follows from the above theorem that $K = \mathbb{Q}(\sqrt{p_1q_1}, \sqrt{p_2q_2})$ such that $d_1 = p_1q_1$ and $d_2 = q_2$ with $N\epsilon_1 = N\epsilon_2 = N\epsilon_3 = 1$ is a Pólya field.

ACKNOWLEDGEMENT. I would like to express my deep gratitude to referees for a careful reading and useful comments.

REFERENCES

- [1] E. Benjamin, F. Sanborn, C. Snyder, Capitulation in unramified quadratic extension of real quadratic number fields, Glasgow. Math. J., 36 (1994), 385–392.
- [2] P. J. Cahen, J. L. Chabert, *Integer-valued polynomials*, Mathematical Surveys and Monographs, 48, Amer. Math. Soc., Providence, 1997.
- [3] E. Haught, Bicyclic Biquadratic Number Fields, Masters Thesis, VPI & SU, 1972.
- [4] B. Heidaryan, A. Rajaei, Some non-Pólya biquadratic fields with low ramification, Mat. Iberoaml, 33(3) (2017), 1037–1044.
- [5] D. Hilbert, The Theory of Algebraic Number Fields (English summary) Translated from the German and with a preface by Iain T. Adamson. With an introduction by Franz Lemmermeyer and Norbert Schappacher, Springer-Verlag, Berlin, 1998.
- [6] T. Kubota, Über Den Bizyklischen Biquadratischen Zahlkörper, Nagoya Math. J., 10 (1956), 65–85.
- [7] A. Leriche, Pólya fields, Pólya groups and Pólya extensions: A question of capitulation, J. Theor. Nombres Bordeaux, 23 (2011), 235–249.
- [8] A. Maarefparvar, Pólya group in some real biquadratic fields, J. Number Theory, 228 (2021), $1 - 7$.
- [9] A. Maarefparvar, A. Rajaei, Relative Pólya group and Pólya dihedral extensions of \mathbb{Q} , J. Number Theory, 207 (2020), 367–384.
- [10] A. Ostrowski, Über ganzwertige polynome in algebraischen zahlkörpren, J. Reine Angew. Math., 149 (1919), 117–124.
- [11] G. Pólya, Über ganzwertige polynome in algebraischen zahlkörpern, J. Reine Angew. Math., 149 (1919), 97–116.

16 On the Pólya fields of some real biquadratic fields

- [12] A. Scholz, Über die Löbarkeit der Gleichung $t^2 - du^2 = -4$, Math. Z, 39 (1934), 95–111.
- [13] C. B. Setzer, Units over totally real $C_2 \times C_2$ fields, J. Number Theory, 12 (1980), 160 –175.
- [14] C. W. W. Tougma, Some questions on biquadratic Pólya fields, J. Number Theory, 229 (2021), 386–398.
- [15] K. S. Williams, Integers of biquadratic fields, Canad. Math. Bull, 13 (1970), 519–526.
- [16] H. Zantema, Integer valued polynomials over a number field, Manuscr. Math, 40 (1982), 155– 203.

(received 26.10.2023; in revised form 21.03.2024; available online 05.09.2024)

Department of Mathematics, Faculty of Sciences and Technology, Moulay Ismail University, Errachidia, Morocco E-mail: saidelmadrari@gmail.com

ORCID iD:<https://orcid.org/0000-0003-1632>