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MULTIPLE HOMOCLINIC SOLUTIONS FOR THE DISCRETE
p(X)-LAPLACIAN PROBLEMS OF KIRCHHOFF TYPE
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Abstract. In this paper we consider the discrete anisotropic difference equation with
variable exponent using critical point theory. The study of nonlinear difference equations
has now attracted special attention as they have important applications in various research
areas such as numerical analysis, computer science, mechanical engineering, cellular neural
networks and population growth, cybernetics, etc. In many studies, the authors consider
Dirichlet, Neumann or Robin type boundary conditions. However, in this paper, we consider
a homoclinic boundary condition, which means that the value of the solution is equal to a
constant at infinity. Here we assume that the value of the solution vanishes at infinity.
In this paper, we are also interested in the existence of at least one non-trivial homoclinc
solution. To achieve this, we apply firstly the direct variational method and secondly the
well-known Mountain pass technique, known as the Mountain pass theorem of Ambrosetti
and Rabinowitz, to obtain the existence of at least one non-trivial homoclinic solution.

1. Introduction

In this note, we consider the following anisotropic difference equation of Kirchhoff
type with homoclinic condition at the boundary{

−M(I(u))
[
∆(a(k−1,∆u(k−1)))−r(k)ϕp(k)(u(k))

]
= λf(k, u(k)), k ∈ Z

u(k) → 0, |k| → ∞,
(1)

where

I(u) =
∑
k∈Z

A(k − 1,∆u(k − 1)) +
∑
k∈Z

r(k)

p(k)
|u(k)|p(k),

∆u(k−1) = u(k)−u(k−1) is the forward difference operator; u(k) ∈ R for all k ∈ Z.
ϕ is an homomorphism defined by ϕp(k)(y) = |y|p(k)−2y, M : (0,∞) → (0,∞) is a
non-decreasing continuous function and λ is a positive real number.
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2 The discrete p(x)-Laplacian problems of Kirchhoff type

In the last few years, the study of nonlinear difference equations has attracted spe-
cial attention due to their important applications in various research areas such as nu-
merical analysis, computer science, mechanical engineering, cellular neural networks
and population growth, cybernetics, etc. For recent advances in discrete problems,
we refer to [2, 3, 6, 20,23,24] and the references therein.

To our knowledge, there are only a few papers in the literature that deal with the
weak homoclinic solutions of the discrete difference equation with the p(k)-Laplacian
operator of Kirchhoff type. Recently, Guiro et al. [10] proved the existence of weak
homoclinic solutions under competition phenomena between parameters for the fol-
lowing problem using the direct variational method{

−∆(a (k − 1,∆u(k − 1))) + α(k)|u(k)|p(k)−2u(k) = δf(k, u(k)), k ∈ Z
lim|k|→∞ u(k) = 0.

(2)

In [17] Mihailescu et al. investigated the following problem{
∆
(
φp(.) (∆u(k − 1))

)
− V (k)|u(k)|q(k)−2u(k) + f(k, u(k)) = 0, k ∈ Z

lim|k|→∞ u(k) = 0,
(3)

which is a special case of the problem (1). In their work, they rely on the theory
of critical point theory in combination with suitable variational methods, mainly
based on the Mountain pass lemma, to prove the existence of at least one non-trivial
homoclinic solution.

Note that there are some works dealing with problems like (2) and (3) in the
p-Laplacian case (see e.g. [11, 13,14]).

In the literature, the Mountain pass theorem of Ambrosetti and Rabinowitz [5]
was applied to find solutions for various Kirchhoff type equations. In [4], for example,
Alves et al. studied the Kirchhoff equations using the variational method and the
Mountain pass theorem under the following conditions. There exists a constant m0

such that m(t) ≥ m0, ∀t > 0, and∫ t

0

m(s)ds ≥ tm(t), ∀t ≥ 0. (4)

Subsequently, using (4) and Polynomial growth condition, Afrouzi et al. in [1] and
Chung in [7] proposed the solvability of degenerate Kirchhoff equations. A standard
way to deal with problems on unbounded domains is to introduce coercive weight
functions due to Omana and Willem [18]. In this paper, we follow the ideas developed
in [8,16,21,22] for the study of anisotropic PDEs under the above conditions to prove
the existence of homoclinic solutions to the problem (1). More precisely, the classical
minimization methods and the Mountain pass lemma are used.

We point out that in Theorem 3.2 and Theorem 4.1 an exact estimate of the
parameter λ is given.

This paper is organized as follows. In Section 2, we provide some necessary back-
ground material. In Section 3 and Section 4, we give the results of the existence of
homoclinic solutions of (1).
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2. Mathematical background

In this section we provide some tools that are used throughout the paper. We intro-
duce the spaces

lp(.) :=

{
u : Z −→ R : ρp(.)(u) =

∑
k∈Z

|u(k)|p(k) < ∞

}
,

lr(.),p(.) :=

{
u : Z −→ R : ρr(.),p(.)(u) =

∑
k∈Z

r(k)|u(k)|p(k) < ∞

}
and

H
1,p(.)
r(.) :=

{
u : Z −→ R : ρr(.),1,p(.) =

∑
k∈Z

r(k)|u(k)|p(k) +
∑
k∈Z

|∆u(k)|p(k) < ∞

}
,

endowed respectevly with the Luxembourg norm

∥u∥p(.) := inf

{
ν > 0;

∑
k∈Z

∣∣∣∣u(k)ν

∣∣∣∣p(k) ≤ 1

}
,

∥u∥r(.),p(.) := inf

{
ν > 0;

∑
k∈Z

r(k)

∣∣∣∣u(k)ν

∣∣∣∣p(k) ≤ 1

}
and ∥u∥r(.),1,p(.) := ∥u∥r(.),p(.) + ∥∆u∥p(.).
The data a respect the following conditions a(k, .) : R −→ R is continuous ∀k ∈ Z
and there exists a mapping A : Z× R −→ R which satisfies

a(k, ξ) =
∂

∂ξ
A(k, ξ), A(k, 0) = 0, ∀k ∈ Z. (5)

We also assume that there exists a positive constant C1 > 1 such that

|a(k, ξ)| ≤ C1

(
j(k) + |ξ|p(k)−1

)
, (6)

for all ξ ∈ R, where j(k) ∈ lp
′(.) with

1

p(k)
+

1

p′(k)
= 1, and

|ξ|p(k) ≤ a(k, ξ)ξ ≤ p(k)A(k, ξ), ∀ξ ∈ R. (7)

There exists a positive constant C2 > 1 such that for almost every k ∈ Z and every
ξ, η ∈ R with ξ ̸= η,

(a(k, ξ)− a(k, η)) .(ξ − η) ≥

{
C2|ξ − η|p(k) if |η − ξ| ≥ 1

C2|ξ − η|p−
if |η − ξ| < 1.

(8)

For the function M : (0,∞) −→ (0,∞), we suppose that it’s continuous, non-
decreasing and there exist positive numbers R1, R2 with R1 ≤ R2 and α > 1 such that

R1t
α−1 ≤ M(t) ≤ R2t

α−1 for t > t∗ > 0; (9)
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and there also exists a constant M0 > 0 such that

M(t) ≥ M0, ∀t ≥ 0. (10)

Suppose that there exists a function r : Z −→ R such that

r(k) ≥ r0 > 0 for all k ∈ Z and r(k) −→ ∞ as |k| → ∞. (11)

Moreover, the continuous functions f , F : Z× R −→ R, with F defined by

F (k, ξ) =

∫ ξ

0

f(k, s)ds, k ∈ Z, ξ ∈ R, (12)

are such that

lim
s→0

|f(k, s)|
|s|p(k)−1

= 0,uniformly for all k ∈ Z. (13)

Example 2.1. As example of functions which satisfies assumptions (5)-(9), we can
give the following.

•. A(k, ξ) =
1

p(k)

((
1 + |ξ|2

) p(k)
2 − 1

)
, where a(k, ξ) =

(
1 + |ξ|2

) p(k)−2
2 ξ, k∈Z, ξ∈R.

•. A(k, ξ) =
1

p(k)
|ξ|p(k), where a(k, ξ) = |ξ|p(k)−2ξ; ξ ∈ R; k ∈ Z with p(k) ≥ 2.

•. M(t) = atα−1 + b with a and b two positive constants.

In this paper we assume that the function p(.) : Z −→ [2,∞). One denotes by
p− = inf

k∈Z
p(k) and p+ = sup

k∈Z
p(k).

Remark 2.2 ([9, 10]). Let u ∈ H
1,p(.)
r(.) , then lim|k|→∞ u(k) = 0.

Proposition 2.3 ([9, 17]). If u ∈ lp(.) and p+ < ∞ then the following
properties hold.

1. ∥u∥p(.) > 1 ⇒ ∥u∥p
−

p(.) ≤ ρp(.)(u) ≤ ∥u∥p
+

p(.);

2. ∥u∥p(.) < 1 ⇒ ∥u∥p
+

p(.) ≤ ρp(.)(u) ≤ ∥u∥p
−

p(.);

3. ∥un∥p(.) → 0 ⇔ ρp(.)(un) → 0 as n → ∞.

Proposition 2.4 ([10]). If u∈H1,p(.)
r(.) and p+<∞ then the following properties hold.

1. ∥u∥r(.),1,p(.) > 1 ⇒ ∥u∥p
−

r(.),1,p(.) ≤ ρr(.),1,p(.)(u) ≤ ∥u∥p
+

r(.),1,p(.);

2. ∥u∥r(.),1,p(.) < 1 ⇒ ∥u∥p
+

r(.),1,p(.) ≤ ρr(.),1,p(.)(u) ≤ ∥u∥p
−

r(.),1,p(.);

3. ∥un∥r(.),1,p(.) → 0 ⇔ ρr(.),1,p(.)(un) → 0 as n → ∞.

Theorem 2.5 ([9]). Let u ∈ lp(.) and v ∈ lp
′(.) with

1

p(k)
+

1

p′(k)
= 1, ∀k ∈ Z. Then∑

k∈Z
|u(k)||v(k)| ≤

(
1

p−
+

1

(p′)−

)
∥u∥p(.)∥v∥p′(.).
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Let us recall some results on critical point theory.

Definition 2.6 ([19]). Let X be a reflexive Banach space. We say that a functional
I : X −→ R satisfy the Palais-Smale (PS) condition if every sequence {un} such that
{I(un)} is bounded and I ′(un) −→ 0, has a convergent subsequence.

Theorem 2.7 ([15]). Let X be a reflexive Banach space. If a functional I ∈ C1(X,R)
is weakly lower semi-continous and coercive, then there exists u0 ∈ X such that
I(u0) = infu∈XI(u) and u0 is also a critical point of I, i.e. I ′(u0) = 0. Moreover, if
I is strictly convex, then the critical point is unique.

Theorem 2.8 ([15]). Let I satisfy (PS) condition. Suppose that

1. I(0) = 0;

2. there exist ρ > 0 and α > 0 such that I(u) ≥ α for all u ∈ X, with ∥u∥ = ρ;

3. there exists u1 ∈ X with ∥u1∥ ≥ ρ such that I(u1) < α.

Then I has a critical value c ≥ α. Moreover c can be characterized as

c = inf
g∈Γ

max
u∈g([0,1])

I(u), where Γ = {g ∈ C([0, 1], X) : g(0) = 0, g(1) = u1}.

3. Existence of solutions by direct variational method

Definition 3.1. A weak homoclinic solution for problem (1) is a function u ∈ H
1,p(.)
r(.)

such that

M (I(u))

[∑
k∈Z

a(k − 1,∆u(k − 1))∆v(k − 1) +
∑
k∈Z

r(k)|u(k)|p(k)−2u(k)v(k)

]
=

λ
∑
k∈Z

f(k, u(k))v(k); for any v ∈ H
1,p(.)
r(.) .

The main result of this paper is given by the following theorem.

Theorem 3.2. Assume that condition (9)-(13) are fulfilled. Then, problem (1) has
at least one weak homoclinic solution for all λ > 0 with αp− > p+.

For each λ > 0, the functional corresponding to problem (1) is defined as Jλ :

H
1,p(.)
r(.) −→ R,

Jλ(u) = M̂

(∑
k∈Z

A(k − 1,∆u(k − 1)) +
∑
k∈Z

r(k)

p(k)
|u(k)|p(k)

)
− λ

∑
k∈Z

F (k, u(k),

where M̂(ξ) =

∫ ξ

0

M(s)ds and F (ξ) =

∫ ξ

0

f(s)ds with ξ ∈ R.

We begin the proof of Theorem 3.2 with some basic properties on functional Jλ.
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Lemma 3.3. The functional Jλ is well defined on H
1,p(.)
r(.) and is of class C1(H

1,p(.)
r(.) ,R)

with the derivative given by

⟨J ′
λ(u), v⟩ = M (I(u))

[∑
k∈Z

a(k − 1,∆u(k − 1))∆v(k − 1) +
∑
k∈Z

r(k)|u(k)|p(k)−2u(k)v(k)

]
− λ

∑
k∈Z

f(k, u(k))v(k),

for all u, v ∈ H
1,p(.)
r(.) .

Proof. For any u ∈ H
1,p(.)
r(.) and λ > 0, let

Φ(u) = M̂(I(u)) = M̂

(∑
k∈Z

A(k − 1,∆u(k − 1)) +
∑
k∈Z

r(k)

p(k)
|u(k)|p(k)

)
and Ψ(u) =

∑
k∈Z

F (k, u(k)).

Then, Jλ(u) := Φ(u)− λΨ(u). From (5)-(6), we deduce that

|I(u)| ≤

∣∣∣∣∣∑
k∈Z

A(k − 1,∆u(k − 1)) +
∑
k∈Z

r(k)

p(k)
|u(k)|p(k)

∣∣∣∣∣
≤
∑
k∈Z

∫ ∆u(k−1)

0

|a(k − 1, s)|ds+ 1

p−

∑
k∈Z

r(k)|u(k)|p(k)

≤
∑
k∈Z

∫ ∆u(k−1)

0

C1

(
j(k − 1) + |s|p(k−1)−1

)
ds+

1

p−

∑
k∈Z

r(k)|u(k)|p(k)

≤ C1

∑
k∈Z

(
|j(k − 1)||∆u(k − 1)|+ |∆u(k − 1)|p(k−1)

p(k − 1)

)
+

1

p−

∑
k∈Z

r(k)|u(k)|p(k)

≤ C1

(
1

p−
+

1

(p′)−

)
∥j∥p′(.)∥u∥p(.) +

C1

p−

∑
k∈Z

(
r(k)|u(k)|p(k) + |∆u(k − 1)|p(k−1)

)
≤ C1

(
1

p−
+

1

(p′)−

)
∥j∥p′(.)∥u∥p(.) +

C1

p−
ρr(.),1,p(.)(u) < ∞.

Moreover, we use (9) to get

|Φ(u)| ≤ |M̂(I(u))| ≤

∣∣∣∣∣
∫ I(u)

0

M(s)ds

∣∣∣∣∣ ≤ R2

α
|I(u)|α < ∞.

Using (13) as in [11], there exists δ > 0 such that for k ∈ Z and |t| ≤ δ, |f(k, t)| ≤
|t|p(x)−1. Then,

|Ψ(u)| =

∣∣∣∣∣∑
k∈Z

F (k, u(k)

∣∣∣∣∣ ≤∑
k∈Z

|F (k, u(k)| ≤
∑
|k|≤h

|F (k, u(k)|+
∑
|k|>h

|F (k, u(k)| < ∞.

We can conclude that the functional Jλ is well defined on H
1,p(.)
r(.) . From [9] and [12],
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we have

⟨Φ′(u), v⟩ = M(I(u))

[∑
k∈Z

a(k−1,∆u(k−1))∆v(k−1) +
∑
k∈Z

r(k)|u(k)|p(k)−2u(k)v(k)

]
and ⟨Ψ′(u), v⟩ =

∑
k∈Z

f(k, u(k))v(k). □

Assume that ⟨J ′
λ(u), v⟩ = 0, which is equivalent to saying

−M(I(u))
∑
k∈Z

[
∆a(k − 1,∆u(k − 1))− r(k)ϕp(k)(u)− λf(k, u(k))

]
v(k) = 0, (14)

for all v ∈ H
1,p(.)
r(.) .

For any k ∈ Z, we define eh ∈ H
1,p(.)
r(.) by putting eh(k) = δhk for k ∈ Z such

that δhk = 1 if k = h and δhk = 0 if k ̸= h. Taking v(k) = eh in the equality (14),
we obtain −M(I(u))

[
∆a(k − 1,∆u(k − 1))− r(k)ϕp(k)(u)

]
−λf(k, u(k)) = 0, k ∈ Z.

Therefore, the critical point u of Jλ satisfies the problem (1).

Lemma 3.4. The functional Jλ : H
1,p(.)
r(.) −→ R is weakly lower semi-continuous.

Proof. For any u ∈ H
1,p(.)
r(.) , let

I(u) :=
∑
k∈Z

A(k − 1,∆u(k − 1)) +
∑
k∈Z

r(k)

p(k)
|u(k)|p(k) = φ(u) + φ̃(u)

where φ(u) =
∑
k∈Z

A(k − 1,∆u(k − 1)) and φ̃(u) =
∑
k∈Z

r(k)

p(k)
|u(k)|p(k).

The functional φ̃ is completely continuous and weakly lower semi-continuous. We
have to prove the semi-continuity of φ.

From (5) and (8), φ is convex. Thus, it is enough to show that φ is lower semi-

continuous. Let us fix u ∈ H
1,p(.)
r(.) and ϵ > 0. According to the convexity of the

functional φ, we have φ(v) ≥ φ(u) + ⟨φ′(u), v − u⟩, for any v ∈ H
1,p(.)
r(.) . From [9,12],

we obtain

φ(v) ≥ φ(u) +
∑
k∈Z

a(k − 1,∆u(k − 1)) (∆v(k − 1)−∆u(k − 1))

≥ φ(u)−
∑
k∈Z

|a(k − 1,∆u(k − 1)||∆v(k − 1)−∆u(k − 1)|

≥ φ(u)− C1

∑
k∈Z

|j(k − 1) + |∆u(k − 1)|p(k−1)−1||∆(v(k − 1)− u(k − 1))|.

Set h(k − 1) = j(k − 1) + |∆u(k − 1)|p(k−1)−1, we obtain φ(v) ≥ φ(u) − ϵ, for all

v ∈ H
1,p(.)
r(.) such that ∥u− v∥r(.),1,p(.) < β =

ϵ

S(p−, (p′)−, C1)
.

We conclude that the functional I is weakly lower semi-continuous. As M̂ is
continuous and non-decreasing, we deduce that the functional Jλ is also weakly lower
semi-continuous. □
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Proposition 3.5. Suppose that assumptions (9)-(13) hold and αp− > p+. Then Jλ
is coercive and bounded from below for all λ > 0.

Proof. Let ∥u∥r(.),1,p(.) > 1; according to (9)-(13), we have

Jλ(u) = M̂

(∑
k∈Z

A(k−1,∆u(k−1))+
∑
k∈Z

r(k)

p(k)
|u(k)|p(k)

)
−λ
∑
k∈Z

F (k, u(k))

≥
∫ 1

p+
ρr(.),1,p(.)(u)

0

R1t
α−1−λ

∑
k∈Z

1

p(k)
|u(k)|p(k)−λ

∑
|k|≤h

F (k, u(k))

≥
∫ 1

p+
ρr(.),1,p(.)(u)

0

R1t
α−1−λ

(∑
k∈Z

1

p(k)
|u(k)|p(k)+

∑
k∈Z

1

r0p−
|∆u(k−1)|p(k−1)

)
−C̃

≥ R1

α

1

(p+)α
(ρr(.),1,p(.)(u))

α− λ

r0p−
ρr(.),1,p(.)(u)−C̃.

Finally, we use Proposition 2.4 to get

Jλ(u) ≥
R1

α

1

(p+)α
∥u∥αp

−

r(.),1,p(.) −
λ

r0p−
∥u∥p

+

r(.),1,p(.) − C̃. (15)

Since αp− > p+, Jλ(u) → ∞ as ∥u∥r(.),1,p(.) → ∞; then, the functional Jλ is coercive.

For all u in H
1,p(.)
r(.) such that ∥u∥r(.),1,p(.) < 1, we obtain

Jλ(u) ≥
R1

α

1

(p+)α
(ρr(.),1,p(.)(u))

α − λ

r0p−
ρr(.),1,p(.)(u)− C̃

≥ R1

α

1

(p+)α
∥u∥αp

+

r(.),1,p(.) −
λ

r0p−
∥u∥p

−

r(.),1,p(.) − C̃ ≥ −C > −∞.

Namely, Jλ is bounded from below. □

Proof of Theorem 3.2. By Theorem 2.7, it follows that problem (1) has at least
one weak homoclinic solution for all λ > 0 with αp− > p+.

Proposition 3.6. Suppose that (9)-(13) are satisfied with αp− = p+. Then, there

exists λ(0) > 0 such that for any λ < λ(0), the functional Jλ is coercive on H
1,p(.)
r(.) .

Proof. According to (15) and as αp− = p+, we get

Jλ(u) ≥
R1

α

1

(p+)α
∥u∥αp

−

r(.),1,p(.) −
λ

r0p−
∥u∥p

+

r(.),1,p(.) − C̃

≥
(
R1

α

1

(p+)α
− λ

r0p−

)
∥u∥p

+

r(.),1,p(.) − C̃.

We put λ(0)=
R1

α

p−r0
(p+)α

. Since λ∈(0, λ(0)), then Jλ(u)→∞ as ∥u∥r(.),1,p(.)→∞. □

Therefore, we immediately deduce the following result.

Corollary 3.7. Assume that condition (9)-(13) are fulfilled with αp− = p+. Then,
there exists λ(0) > 0 such that for any λ ∈ (0, λ(0)), problem (1) has at least one weak
homoclinic solution.
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Proof. Indeed, the functional Jλ is continuous differentiable in the sense of Gâteaux.
The assertion follows then from Proposition 3.6 and Theorem 2.7. □

4. Existence of solution by Mountain pass lemma

In this section, we deal with the existence of nontrivial weak homoclinic solutions for
the problem (1).

We introduce firstly some assumptions.

(f0) There exist µ > αp+ and t0 > 0 such that

0 ≤ µF (k, t) ≤ f(k, t)t, |t| ≥ t0, for all k ∈ Z and t ∈ R.

(f1) There exists t0 > 0 such that F (k, t) > 0, for all k ∈ Z and all |t| ≥ t0.

Our main result is the following theorem.

Theorem 4.1. Suppose that (5)-(13) and (f0)-(f1) are satisfied.

Then, there exists λ(1) > 0 such that for each λ ∈ (0, λ(1)), problem (1) has at
least one nontrivial weak homoclinic solutions.

We need the following auxiliary result for the proof of the main result.

Lemma 4.2. (a)
(
H

1,p(.)
r(.) , ∥.∥1,p(.),r(.)

)
is a reflexive separable Banach space.

(b) Suppose that there is a sequence {un} ⊂ H
1,p(.)
r(.) such that un ⇀ u H

1,p(.)
r(.) , then

the sequence {un} satisfies un −→ u in lp(.).

Proof. From [8,17], it is known that lp(.) is a separable Banach space if p+ < ∞ and

reflexive if 1 < p− ≤ p+ < ∞. Consider the mapping u → (u,∆u), the space H
1,p(.)
r(.)

is a closed subspace of l
p(.)
r(.) × lp(.). By [8, Proposition 1.4.4], H

1,p(.)
r(.) is separable if

p+ < ∞ and reflexive if 1 < p− ≤ p+ < ∞.

To have (b), let un ⇀ u in H
1,p(.)
r(.) . Write vn = un − u then vn ⇀ 0 in H

1,p(.)
r(.) . By

Banach-Steinhaus theorem, ∥vn∥r(.),1,p(.) is uniformly bounded.

In the sequel, we follows the results in [13,14]. Let

H
1,p(.)
r(.),J :=

v : J=[−h, h]Z → R : ρr(.),1,p(.)=
∑
|k|≤h

r(k)|v(k)|p(k)+
∑
|k|≤h

|∆v(k)|p(k)< ∞

 .

The sequence {vn} is bounded in H
1,p(.)
r(.),J which implies that {vn} is bounded in l

p(.)
J

where l
p(.)
J is the set of all functions v : J −→ R such that

∥v∥J,p(.) = inf
{
ν > 0; ρp(.)(

v

ν
) ≤ 1

}
.
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By the uniqueness of the weak limit, we deduce that vn → 0 in J . So, there is N ∈ N
such that ∑

|k|≤h

|vn(k)|p(k) <
ϵ

3
, for all n > N. (16)

Since ∥vn∥r(.),1,p(.) is uniformly bounded, there existsK>0 such that ∥vn∥r(.),1,p(.)≤K.
Let

K̃ :=

{
Kp+ if ∥vn∥r(.),1,p(.) > 1

Kp− if ∥vn∥r(.),1,p(.) < 1.

Using (11), we obtain
1

r(k)
≤ ϵ

K̃
for all k ∈ (−∞,−h)Z ∪ (h,∞)Z. Then,∑

|k|>h

|vn(k)|p(k) <
2ϵ

K̃

∑
|k|>h

r(k)|vn(k)|p(k) <
2ϵ

3
. (17)

From (16) and (17), there exists N ∈ N such that for all n > N∑
k∈Z

|vn(k)|p(k) =
∑
|k|>h

|vn(k)|p(k) +
∑
|k|≤h

|vn(k)|p(k) < ϵ.

Note that ϵ is arbitrary then ρp(.)(vn) −→ 0 as n → ∞. From Proposition 2.3 the
result follows. □

Lemma 4.3. Assume that (8) and (9) are satisfied and αp− > p+. Then, for all
λ > 0, the functional Jλ satisfies the Palais-Smale condition.

Proof. Let λ > 0 be fixed. Consider {un} ⊂ H
1,p(.)
r(.) be such that Jλ(un) is bounded

and J ′
λ(un) −→ 0. This fact and Proposition 3.5 imply that the sequence {un} is

bounded. By using the preceding result, Lemma 4.2 and passing to a subsequence,

we have un ⇀ u in H
1,p(.)
r(.) and un −→ u in lp(.) . Then, for any ϵ > 0, there exists

N ∈ N such that

∥un − u∥p(.) < ϵ n > N. (18)

Taking g(k, un) = (f(k, un)− f(k, u))(un − u), we obtain∑
k∈Z

|g(k, un)| ≤
∑
k∈Z

|f(k, un)− f(k, u)||un − u|

≤
∑
k∈Z

|f(k, un)||un − u|+
∑
k∈Z

|f(k, u)||un − u|.

We use Discrete Hölder type inequality and (18) to obtain∑
k∈Z

|g(k, un) ≤ 2C1∥un − u∥p(.) < 2C1ϵ if n > N.

Therefore,

lim
n→∞

∑
k∈Z

g(k, un) = 0, and lim
n→∞

⟨J ′
λ(un)− J ′

λ(u), un − u⟩ = 0. (19)
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⟨J ′
λ(un), un−u⟩ = M(I(un))

[∑
k∈Z

a(k−1,∆un(k−1))∆(un−u)+
∑
k∈Z

r(k)ϕ(un)(un−u)

]
−λ
∑
k∈Z

f(k, un(k))(un−u)

and

⟨J ′
λ(un), un−u⟩ = M(I(u))

[∑
k∈Z

a(k−1,∆u(k−1))∆(un−u)+
∑
k∈Z

r(k)ϕ(u)(un−u)

]
−λ
∑
k∈Z

f(k, u(k))(un−u).

From (8) and (9), we deduce that

⟨J ′
λ(un)−J ′

λ(u), un−u⟩≥M0

(∑
k∈Z

[a(k−1,∆un(k−1))−a(k−1,∆u(k−1))] (∆un−∆u)

)
+
∑
k∈Z

M0r(k) (ϕ(un)−ϕ(u)) (un−u)−λ
∑
k∈Z

g(k, un)

≥M0

(∑
k∈Z

C2|∆(un−u)|p(x)+
∑
k∈Z

r(k)|un−u|p(x)
)
−λ
∑
k∈Z

g(k, un)

≥M0

(∑
k∈Z

|∆(un−u)|p(x)+
∑
k∈Z

r(k)|un−u|p(x)
)
−λ
∑
k∈Z

g(k, un)

≥M0ρr(.),1,p(.)(un−u)−λ
∑
k∈Z

g(k, un).

Letting n −→ ∞, from (19) and Proposition 2.4, we obtain ρr(.),1,p(.)(un − u) −→ 0;

then un −→ u in H
1,p(.)
r(.) . This show that Jλ satisfies (PS) condition. □

Remark 4.4. For the special case αp− = p+, for all λ ∈ (0, λ(0)), the functional Jλ
satisfies (PS) condition.

Lemma 4.5. (A1) There exists λ(1) > 0 and two positive real numbers θ and η such

that for each λ ∈ (0, λ(1)), Jλ(u) ≥ η > 0 for all u ∈
{
u ∈ H

1,p(.)
r(.) : ∥u∥r(.),1,p(.) = θ

}
.

(A2) There exists u ∈ H
1,p(.)
r(.) such that for any λ > 0, ∥u∥r(.),1,p(.) > θ, Jλ(u) < 0.

Proof. To have (A1), for h ∈ N, taking k0 ∈ [−h, h] and set

Sθ

(
H

1,p(.)
r(.)

)
:=
{
u ∈ H

1,p(.)
r(.) : ∥u∥r(.),1,p(.) = θ

}
,

with θ ∈ (0, 1). According to (9)-(13), we obtain

Jλ(u) = M̂

(∑
k∈Z

A(k − 1,∆u(k − 1)) +
∑
k∈Z

r(k)

p(k)
|u(k)|p(k)

)
− λ

∑
k∈Z

F (k, u(k)
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≥ R1

α

1

(p+)α
(ρr(.),1,p(.)(u))

α − λ

r0p−
ρr(.),1,p(.)(u)− λ(2h+ 1)|F (k0, u(k0))|.

For u ∈ Sθ

(
H

1,p(.)
r(.)

)
, by Proposition 2.4, we get

Jλ(u) ≥
R1

α

1

(p+)α
∥u∥αp

+

r(.),1,p(.) −
λ

r0p−
∥u∥p

−

r(.),1,p(.) − λ(2h+ 1)|F (k0, u(k0))|

≥ R1

α

1

(p+)α
(θ)αp

+

− λ

r0p−
θp

−
− λ(2h+ 1)|F (k0, u(k0))|

≥ θp
−
[
R1

α

1

(p+)α
(θ)αp

+−p−
− λ

(
1

r0p−
+ (2h+ 1)|F (k0, u(k0))|θ−p−

)]
.

Take

λ(1) =

R1

α

1

(p+)α
(θ)αp

+−p−

1

r0p−
+ (2h+ 1)|F (k0, u(k0))|θ−p−

,

then, for all λ ∈ (0, λ(1)) and u ∈ Sθ

(
H

1,p(.)
r(.)

)
, Jλ(u) ≥ η > 0.

To obtain (A2), from (f0) and (f1), one has F (k, t) ≥ F (k, t0)

tµ0
tµ > 0 for all t ≥ t0.

For δ > 1 and nonnegative u ∈ H
1,p(.)
r(.) , set Ω1 := {k ∈ Z, u(k) ≥ t0} and Ω2 := {k ∈

Z, δu(k) ≥ t0}, we obtain∑
k∈Z

F (k, δu(k)) ≥
∑
k∈Ω2

F (k, δu(k)) ≥ δµ

tµ0

∑
k∈Ω2

F (k, t0)u(k)
µ

≥ δµ

tµ0

∑
k∈Ω1

F (k, t0)u(k)
µ ≥ δµ

∑
k∈Ω1

F (k, t0) > 0. (20)

Recall that Φ(u) = M̂(I(u)) = M̂

(∑
k∈Z

A(k − 1,∆u(k − 1)) +
∑
k∈Z

r(k)

p(k)
|u(k)|p(k)

)
.

For all t ∈ R such that |t| ≥ t0, from (9), we have M̂(t) ≤ R2

α
tα. Take w ∈ H

1,p(.)
r(.) \{0}.

We have

Jλ(tw) = M̂(I(tw))− λ
∑
k∈Z

F (k, tw)

≤ R2

α

(∑
k∈Z

A(k − 1,∆tw(k − 1)) +
∑
k∈Z

r(k)

p(k)
|tw(k)|p(k)

)α

− λ
∑
k∈Z

F (k, tw).

For each λ > 0, combining (5)-(6) and (20), we deduce that there exists a constant
C̃ > 0 such that

Jλ(tw) ≤
R2

α

[
(C̃ +

1

r0p−
)

(∑
k∈Z

r(k)|tw(k)|p(k) + |∆tw(k − 1)|p(k−1)

)]α
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− λ
∑
k∈Ω1

F (k, t0)t
µ

≤ R2

α

(
C̃ +

1

r0p−

)α

tαp
+

(∑
k∈Z

r(k)|w(k)|p(k) + |∆w(k − 1)|p(k−1)

)α

− λ
∑
k∈Ω1

F (k, t0)t
µ.

Since µ > αp+, for sufficiently large t > 1, we assert that Jλ(tw) < 0 = Jλ(0).
Then, for each λ > 0 and θ > 0, there exists t > 1 such that ∥ũ∥r(.),1,p(.) > θ and

Jλ(ũ) < 0. □

Finally, we give the proof of Theorem 4.1. From Lemma 4.5 and the fact Jλ(0) = 0
and as Jλ satisfies the assumptions of Theorem 2.8, problem (1) has at least one
nontrivial weak homoclinic solution.

Remark 4.6. In the special case αp− = p+, arguing again as above, but taking
into account Lemma 4.5 and the proof of Theorem 4.1, we can show that for every
λ ∈ (0, λ(0)) ∩ (0, λ(1)) ̸= ∅, the same conclusion still holds without any additional
assumption. Hence, the problem (1) has at least one nontrivial weak homoclinic
solution.
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sité Joseph KI-ZERBO, 03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso

E-mail: leizon71@yahoo.fr

ORCID iD: https://orcid.org/0000-0001-9108-4577
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