MATEMATIČKI VESNIK MATEMATИЧКИ BECHИК Corrected proof Available online 09.09.2024

research paper оригинални научни рад DOI: 10.57016/MV-HGLA1043

ON gr-C-2^A-SECONDARY SUBMODULES

Thikrayat Alwardat, Khaldoun Al-Zoubi and Mohammed Al-Dolat

Abstract. Let Ω be a group with identity e, Γ be a Ω -graded commutative ring and \Im a graded Γ -module. In this article, we introduce the concept of gr-C- 2^A -secondary submodules and investigate some properties of this new class of graded submodules. A non-zero graded submodule S of \Im is said to be a gr-C- 2^A -secondary submodule if whenever $r, s \in h(\Gamma), L$ is a graded submodule of \Im , and $rs S \subseteq L$, then either $r S \subseteq L$ or $s S \subseteq L$ or $rs \in Gr(Ann_{\Gamma}(S))$.

1. Introduction

In this article we assume that Γ is a commutative Ω -graded ring with identity and \Im is a unitary graded Γ -module.

Let Ω be a group with identity e and Γ a commutative ring with identity 1_{Γ} . Then Γ is an Ω -graded ring if there exist additive subgroups Γ_g of Γ such that $\Gamma = \bigoplus_{g \in \Omega} \Gamma_g$ and $\Gamma_g \Gamma_h \subseteq \Gamma_{gh}$ for all $g, h \in \Omega$. Furthermore, $h(\Gamma) = \bigcup_{g \in \Omega} \Gamma_g$, (see [13]).

A left Γ -module \Im is called Ω -graded Γ -module if there exists a family of additive subgroups $\{\Im_{\alpha}\}_{\alpha\in\Omega}$ of \Im such that $\Im = \bigoplus_{\alpha\in\Omega} \Im_{\alpha}$ and $\Gamma_{\alpha}\Im_{\beta} \subseteq \Im_{\alpha\beta}$ for all $\alpha, \beta \in \Omega$. Even if an element of \Im belongs to $\bigcup_{\alpha\in\Omega}\Im_{\alpha} = h(\Im)$, it is called homogeneous. We refer to [9, 11–13] for basic properties and more information about graded rings and graded modules. By $L \leq_{\Omega} \Im$ we mean that L is a Ω -graded submodule of \Im .

Let Γ be a Ω -graded ring, \mathfrak{F} a graded Γ -module and S a graded submodule of \mathfrak{F} . Then $(S :_{\Gamma} \mathfrak{F})$ is defined as $(S :_{\Gamma} \mathfrak{F}) = \{a \in \Gamma | a \mathfrak{F} \subseteq S\}$. The annihilator of \mathfrak{F} is defined as $(0 :_{\Gamma} \mathfrak{F})$ and is denoted by $Ann_{\Gamma}(\mathfrak{F})$. Let Γ be an Ω -graded ring. The graded radical of a graded ideal L, denoted by Gr(L), is the set of all $t = \sum_{\alpha \in \Omega} t_{\alpha} \in \Gamma$, so that for every $\alpha \in \Omega$ there exists $n_{\alpha} > 0$ with $t_{\alpha}^{n_{\alpha}} \in L$, (see [15]). A proper graded submodule S of \mathfrak{F} is called a completely graded irreducible if $S = \bigcap_{\alpha \in \Delta} S_{\alpha}$, where $\{S_{\alpha}\}_{\alpha \in \Delta}$ is a family of graded submodules of \mathfrak{F} , then $S = S_{\beta}$ for some $\beta \in \Delta$.

The study of graded rings and modules has long attracted the attention of many researchers, as they have important applications in many fields such as geometry and

²⁰²⁰ Mathematics Subject Classification: 13A02, 16W50

Keywords and phrases: Graded classical 2-absorbing secondary submodules; graded 2-absorbing submodules; graded 2-absorbing primary submodules.

On qr-C- 2^A -secondary submodules

physics. For example, graded Lie algebra plays an important role in differential geometry, such as the Frolicher-Nijenhuis and Nijenhuis-Richardson brackets (see [10]). In addition, they solve many physical problems related to supermanifolds, supersymmetries and quantizations of systems with symmetry (see [8, 17]).

The notion of graded 2-absorbing ideals was introduced and studied in [1]. Al-Zoubi and Abu-Dawwas in [3] extended graded 2-absorbing ideals to graded 2-absorbing submodules. In [2], the authors introduced the concept of the graded 2-absorbing primary ideal, which is a generalization of the graded primary ideal. The notion of graded 2-absorbing primary submodules as a generalization of graded 2-absorbing primary ideals was introduced and studied in [7]. In [4, 16], the authors introduced the dual notion of graded 2-absorbing submodules (i.e. graded 2-absorbing (resp., graded strongly 2-absorbing) second submodules) of \Im and investigated some properties of these classes of graded modules. In this paper, we introduce the concept of graded classical 2-absorbing secondary submodules as a dual notion of graded 2-absorbing primary submodules. We investigate the basic properties and characteristics of graded classical 2-absorbing secondary submodules.

2. Results

DEFINITION 2.1. Let Γ be a Ω -graded ring and \Im a graded Γ -module. A non-zero graded submodule S of \Im is said to be graded classical 2-absorbing secondary (Abbreviated, $gr - C - 2^A$ -secondary) submodule of \Im if whenever $r, s \in h(\Gamma), L \leq_{\Omega} \Im$, and $rs S \subseteq L$, then $r S \subseteq L$ or $s S \subseteq L$ or $rs \in Gr(Ann_{\Gamma}(S))$. We say that \mathfrak{F} is a gr-C- 2^A -secondary module if \mathfrak{F} is a gr-C- 2^A -secondary sub-

module of itself.

THEOREM 2.2. Let S be a gr-C-2^A-secondary submodule of \mathfrak{F} , let $I = \bigoplus_{\alpha \in \Omega} I_{\alpha}$ and $J = \bigoplus_{\alpha \in \Omega} J_{\alpha}$ be a graded ideals of Γ . Then for every $\alpha, \beta \in \Omega$ and $L \leq_{\Omega} \mathfrak{F}$, with $I_{\alpha}J_{\beta}S \subseteq L$ either $I_{\alpha}S \subseteq L$ or $J_{\beta}S \subseteq L$ or $I_{\alpha}J_{\beta} \subseteq Gr(Ann_{\Gamma}(S))$.

Proof. Let $\alpha, \beta \in \Omega$ such that $I_{\alpha}J_{\beta}S \subseteq L$ for some $L \leq_{\Omega} \Im$. Assume that $I_{\alpha}J_{\beta} \not\subseteq$ $Gr(Ann_{\Gamma}(S))$. Then there exist $r_{\alpha} \in I_{\alpha}$ and $s_{\beta} \in J_{\beta}$ such that $r_{\alpha}s_{\beta} \notin Gr(Ann_{\Gamma}(S))$. Now since $r_{\alpha}s_{\beta}S \subseteq L$, we get $r_{\alpha}S \subseteq L$ or $s_{\beta}S \subseteq L$. We show that either $I_{\alpha}S \subseteq L$ or $J_{\beta}S \subseteq L$. On contrary, we suppose that $I_{\alpha}S \not\subseteq L$ and $J_{\beta}S \not\subseteq L$. Then there exist $r'_{\alpha} \in I_{\alpha}$ and $s'_{\beta} \in J_{\beta}$ such that $r'_{\alpha}S \not\subseteq L$ and $s'_{\beta}S \not\subseteq L$. Since $r'_{\alpha}s'_{\beta}S \subseteq L$ and S be a

a contradiction.

Case II: Suppose $s_{\beta} S \subseteq L$ but $r_{\alpha} S \not\subseteq L$. Then similar to the Case I, we get a contradiction.

Case III: Suppose $r_{\alpha} S \subseteq L$ and $s_{\beta} S \subseteq L$. Now $s_{\beta} S \subseteq L$ and $s'_{\beta} S \nsubseteq L$ imply $(s_{\beta} + s'_{\beta}) S \nsubseteq L$. Since $r'_{\alpha}(s_{\beta} + s'_{\beta}) S \subseteq L$ and $(s_{\beta} + s'_{\beta}) S \nsubseteq L$ and $r'_{\alpha} S \nsubseteq L$, we get $r'_{\alpha}(s_{\beta} + s'_{\beta}) \in Gr(Ann_{\Gamma}(S))$. Now as $r'_{\alpha}s'_{\beta} \in Gr(Ann_{\Gamma}(S))$, we get $r'_{\alpha}s_{\beta} \in Gr(Ann_{\Gamma}(S))$. Again $r_{\alpha} S \subseteq L$ and $r'_{\alpha} S \nsubseteq L$ imply $(r_{\alpha} + r'_{\alpha}) S \nsubseteq L$. Since $(r_{\alpha} + r'_{\alpha})s'_{\beta} S \subseteq L$ and $(r_{\alpha} + r'_{\alpha}) S \nsubseteq L$ and $s'_{\beta} S \nsubseteq L$, we have $(r_{\alpha} + r'_{\alpha})s'_{\beta} \in Gr(Ann_{\Gamma}(S))$. Since $r'_{\alpha}s'_{\beta} \in Gr(Ann_{\Gamma}(S))$, we get $r_{\alpha}s'_{\beta} \in Gr(Ann_{\Gamma}(S))$. Since $(r_{\alpha} + r'_{\alpha})(s_{\beta} + s'_{\beta}) S \subseteq L$ and $(r_{\alpha} + r'_{\alpha}) S \nsubseteq L$ and $(s_{\beta} + s'_{\beta}) S \nsubseteq L$, we get $(r_{\alpha} + r'_{\alpha})(s_{\beta} + s'_{\beta}) \in Gr(Ann_{\Gamma}(S))$. Since $r_{\alpha}s'_{\beta}, r'_{\alpha}s_{\beta}, r'_{\alpha}s'_{\beta} \in Gr(Ann_{\Gamma}(S))$, we have $r_{\alpha}s_{\beta} \in Gr(Ann_{\Gamma}(S))$, a contradiction. Thus $I_{\alpha}S \subseteq L$ or $J_{\beta}S \subseteq L$.

THEOREM 2.3. Let S be a gr-C-2^A-secondary submodule of \Im , then for each $a, b \in h(\Gamma)$ we have abS = aS or abS = bS or $ab \in Gr(Ann_{\Gamma}(S))$.

Proof. Let $a, b \in h(\Gamma)$, then $abS \subseteq abS$ implies that $aS \subseteq abS$ or $aS \subseteq abS$ or $ab \in Gr(Ann_{\Gamma}(S))$. Clearly, $abS \subseteq aS$ and $abS \subseteq bS$, so we have abS = aS or abS = bS or $ab \in Gr(Ann_{\Gamma}(S))$.

Let U and P be two graded submodules of a graded Γ -module. To prove that $U \subseteq P$, it suffices to show that if V is a completely graded irreducible submodule of \Im such that $P \subseteq V$, then $U \subseteq V$ (see [4]). A proper graded ideal L of Γ is called a graded 2-absorbing primary (abbreviated, $gr-2^A$ -primary) ideal if whenever $a, b, c \in h(\Gamma)$ with $abc \in L$, then $ab \in L$ or $ac \in Gr(L)$ or $bc \in Gr(L)$.

THEOREM 2.4. Let S be a $gr-C-2^A$ -secondary submodule of a graded Γ -module \Im . Then $Ann_{\Gamma}(S)$ is a $gr-2^A$ -primary ideal of Γ .

Proof. Let $r, s, t \in h(\Gamma)$ wit $rst \in Ann_{\Gamma}(S)$. Assume that $rs \notin Ann_{\Gamma}(S)$ and $rt \notin Gr(Ann_{\Gamma}(S))$. We show that $st \in Gr(Ann_{\Gamma}(S))$. There exist completely irreducible submodule J_1 and J_2 of \mathfrak{I} such that $rs S \notin J_1$ and $rt S \notin J_2$. Since $rst S = 0 \subseteq J_1 \cap J_2$, $st S \subseteq (J_1 \cap J_2 :\mathfrak{I})$. Since S is $gr-C-2^A$ -secondary submodule of \mathfrak{I} , we have $rs S \subseteq J_1 \cap J_2$ or $rt S \subseteq J_1 \cap J_2$ or $st \in Gr(Ann_{\Gamma}(S))$. If $rs S \subseteq J_1 \cap J_2$ or $rt S \subseteq J_1 \cap J_2$ or $rt S \subseteq G_1 \cap J_2$, then $rs S \subseteq J_1 \cap rt S \subseteq J_2$ which are contradictions. Therefore $st \in Gr(Ann_{\Gamma}(S))$.

A proper graded ideal L of Γ is a graded 2-absorbing (abbreviated, $gr-2^A$) ideal of Γ if whenever $a, b, c \in h(\Gamma)$ with $abc \in L$, then $ab \in L$ or $ac \in L$ or $bc \in L$ (see [1]).

COROLLARY 2.5. Let S be a gr-C-2^A-secondary submodule of a graded Γ -module \Im . Then $Gr(Ann_{\Gamma}(S))$ is a gr-2^A ideal of Γ .

Proof. By Theorem 2.4, $Ann_{\Gamma}(S)$ is $gr-2^A$ -primary ideal of Γ . So by [2, Theorem 2.3], $Gr(Ann_{\Gamma}(S))$ is $gr-2^A$ ideal of Γ .

The following example shows that the converse of Theorem 2.4 is not true in general.

EXAMPLE 2.6. Let $\Gamma = \mathbb{Z}$ and $\Omega = \mathbb{Z}_2$, then Γ is a Ω -graded ring with $\Gamma_0 = \mathbb{Z}$ and $\Gamma_1 = \{0\}$. Consider $\mathfrak{I} = \mathbb{Z}_{pq} \oplus \mathbb{Q}$ as a \mathbb{Z} -module, where p, q are two prime integers, \mathfrak{I}

is a Ω -graded module with $\mathfrak{F}_0 = \mathbb{Z}_{pq} \oplus \{0\}$ and $\mathfrak{F}_1 = \{\overline{0}\} \oplus \mathbb{Q}$. Then $Ann_{\Gamma}(\mathfrak{F}) = \{0\}$ is a $gr\cdot 2^A$ -primary ideal of \mathbb{Z} . But \mathfrak{F} is not $gr\cdot C\cdot 2^A$ -secondary \mathbb{Z} -module, since $pq\mathfrak{F} \subseteq \{\overline{0}\} \oplus \mathbb{Q}$, but $pM = p\mathbb{Z}_{pq} \oplus \mathbb{Q} \nsubseteq \{\overline{0}\} \oplus \mathbb{Q}$ and $q\mathfrak{F} = q\mathbb{Z}_{pq} \oplus \mathbb{Q} \oiint \{\overline{0}\} \oplus \mathbb{Q}$ and $pq \notin Gr(Ann_{\Gamma}(\mathfrak{F}))$.

A graded domain Γ is called a *gr*-Dedekind ring if every graded ideal of Γ factorises into a product of graded prime ideals (see [19]).

A graded Γ -module \Im is called a *gr*-comultiplication module if for every graded submodule *S* of \Im there exists a graded ideal *P* of Γ such that $S = (0 :_{\Im} P)$, or, equivalently, for each graded submodule *S* of \Im , we have $S = (0 :_{\Im} Ann_{\Gamma}(S))$ (see [5]).

The gr-C- 2^A -secondary submodules of a gr-comultiplication module over a gr-Dedekind domain are described in the following theorem.

THEOREM 2.7. Let Γ be a gr-Dedekind domain, and \Im be a gr-comultiplication Γ module, if S is gr-C-2^A-secondary submodule of \Im , then $S = (0 :_{\Im} Ann_{\Gamma}^{n}(L))$ or $S = (0 :_{\Im} Ann_{\Gamma}^{n}(L_{1})Ann_{\Gamma}^{m}(L_{2}))$, where L, L_{1}, L_{2} are graded minimal submodules of \Im and n, m are positive integers.

Proof. By Theorem 2.4, since S is $gr-C\cdot 2^A$ -secondary submodule of \mathfrak{F} , then $Ann_{\Gamma}(S)$ is a $gr\cdot 2^A$ -primary ideal of Γ . Using [18, Theorem 4.1] and [19, Lemma 1.1], we have either $Ann_{\Gamma}(S) = I^n$ or $Ann_{\Gamma}(S) = I_1^n I_2^m$, where I, I_1, I_2 are graded maximal ideals of Γ . First assume $Ann_{\Gamma}(S) = I^n$. If $(0:_{\mathfrak{F}} I) = 0$, then $(0:_{\mathfrak{F}} I^n) = 0$, and so we conclude that S = 0, a contradiction. Now by [5, Theorem 3.9], since I is graded maximal ideal of Γ , we have $(0:_{\mathfrak{F}} I)$ is graded minimal submodule of \mathfrak{F} . This implies that $S = (0:_{\mathfrak{F}} Ann_{\Gamma}^n(L))$, where $L = (0:_{\mathfrak{F}} I)$. Now assume that $Ann_{\Gamma}(S) = I_1^n I_2^m$. If $(0:_{\mathfrak{F}} I_1) = 0$ and $(0:_{\mathfrak{F}} I_2) = 0$, then S = 0, a contradiction. Thus either $(0:_{\mathfrak{F}} I_1) \neq 0$ or $(0:_{\mathfrak{F}} I_2) \neq 0$. Hence one can see that either $S = (0:_{\mathfrak{F}} Ann_{\Gamma}^n(L_1)Ann_{\Gamma}^m(L_2))$ or $S = (0:_{\mathfrak{F}} Ann_{\Gamma}^n(L_1))$ or $S = (0:_{\mathfrak{F}} Ann_{\Gamma}^m(L_2))$, where $L_1 = (0:_{\mathfrak{F}} I_1)$ and $L_2 = (0:_{\mathfrak{F}} I_2)$ are graded minimal submodules of \mathfrak{F} .

For a graded Γ -submodule S of \mathfrak{F} , the graded second radical of S is defined as the sum of all gr-second Γ -submodules of \mathfrak{F} contained in S, and is denoted by GSec(S). If S does not contain any gr-second Γ -submodule, then $GSec(S) = \{0\}$. The graded second spectrum of \mathfrak{F} is the collection of all gr-second Γ submodules and is represented by the symbol $GSpec^s(\mathfrak{F})$. The set of all gr-prime Γ -submodules of \mathfrak{F} is called the graded spectrum of \mathfrak{F} and is denoted by $GSpec(\mathfrak{F})$. The mapping $\psi: GSpec^s(\mathfrak{F}) \to GSpec(\Gamma/Ann_{\Gamma}(\mathfrak{F}))$ is defined by $\psi(S) = Ann_{\Gamma}(S)/Ann_{\Gamma}(\mathfrak{F})$ is called the natural mapping of $GSpec^s(\mathfrak{F})$, see [16]. A graded submodule S of \mathfrak{F} is called a graded strongly 2-absorbing second (abbreviated, gr-S- 2^A -second) submodule of \mathfrak{F} if whenever $a, b \in h(\Gamma), S_1, S_2$ are completely graded irreducible submodules of \mathfrak{F} , and $abS \subseteq S_1 \cap S_2$, then $aS \subseteq S_1 \cap S_2$ or $bS \subseteq S_1 \cap S_2$ or $ab \in Ann_{\Gamma}(S)$, see [4].

It is clear that every gr-S- 2^A -second submodule is a gr-C- 2^A -secondary submodule of \Im , but the converse is generally not true. This is illustrated by the following examples.

EXAMPLE 2.8. Let $\Omega = \mathbb{Z}_2$ and $\Gamma = \mathbb{Z}$ be a Ω -graded ring with $\Gamma_0 = \mathbb{Z}$ and $\Gamma_1 = \{0\}$. Let $\Im = \mathbb{Z}_{p^{\infty}} = \{\frac{a}{p^n} + \mathbb{Z} : a, n \in \mathbb{Z}, n \ge 0\}$ be a graded Γ -module with $\Im_0 = \mathbb{Z}_{p^{\infty}}$ and $\mathfrak{F}_1 = \{0_{\mathbb{Z}_{p^{\infty}}}\} = \{\mathbb{Z}\}\)$, where p is a fixed prime number. Consider the graded submodule $N = \langle \frac{1}{p^3} + \mathbb{Z} \rangle$ of \mathfrak{F} . Then N is $gr-C-2^A$ -secondary submodule which is not a $qr-S-2^A$ -second submodule.

THEOREM 2.9. Let \mathfrak{F} be a gr-comultiplication Γ -module, and the natural map ψ of $GSpec^{s}(S)$ is surjective, if S is a gr-C-2^A-secondary submodule of \mathfrak{F} , then GSec(S) is a gr-S-2^A-second submodule of \mathfrak{F} .

Proof. Let S be a $gr-C-2^A$ -secondary submodule of \mathfrak{F} . By Corollary 2.5, $Gr(Ann_{\Gamma}(S))$ is $gr-2^A$ ideal of Γ. By [16, Lemma 4.7], $Gr(Ann_{\Gamma}(S)) = Ann_{\Gamma}(GSec(S))$. Therefore, $Ann_{\Gamma}(GSec(S))$ is $gr-2^A$ ideal of Γ. Using [16, Proposition 3.7], GSec(S) is $gr-S-2^A$ -second Γ-submodule of \mathfrak{F} .

Let Γ be a Ω -graded ring, a graded Γ -module \Im is a *gr*-sum-irreducible if $\Im \neq 0$ and the sum of any two proper graded submodule of \Im is always a proper graded submodule (see [6]).

THEOREM 2.10. Let S be a gr-C-2^A-secondary submodule of \mathfrak{S} . Then $r S = r^2 S, \forall r \in h(\Gamma) \setminus Gr(Ann_{\Gamma}(S))$. The converse hold, if S is a gr-sum-irreducible submodule of \mathfrak{S} .

Proof. Let $r \in h(\Gamma) \setminus Gr(Ann_{\Gamma}(S))$. Then $r^{2} \in h(\Gamma) \setminus Gr(Ann_{\Gamma}(S))$. Thus by Theorem 2.3, we have $r S = r^{2} S$. Conversely, let S be a gr-sum-irreducible submodule of \mathfrak{F} and $rs S \subseteq L$, for some $r, s \in h(\Gamma)$ and $L \leq_{\Omega} \mathfrak{F}$. Suppose that $rs \notin Gr(Ann_{\Gamma}(S))$. We show that $rS \subseteq L$ or $sS \subseteq L$. Since $rs \notin Gr(Ann_{\Gamma}(S))$, we have $r, s \notin Gr(Ann_{\Gamma}(S))$. Thus $rS = r^{2}S$ by assumption. Let $x \in S$, then $rx \in rS = r^{2}S$. So $\exists y \in S$ such that $rx = r^{2}y$. This implies that $x - ry \in (0 :_{S} r) \subseteq (L :_{S} r)$. Thus $x = x - ry + ry \in (L :_{S} r) + (L :_{S} s)$. Hence $S \subseteq (L :_{S} r) + (L :_{S} s)$. Clearly, $(L :_{S} r) + (L :_{S} s) \subseteq S$, as S is gr-sum-irreducible submodule of \mathfrak{F} , $(L :_{S} r) = S$ or $(L :_{S} s) = S$, i.e $rS \subseteq L$ or $sS \subseteq L$, as needed.

A graded Γ -module \Im is called *gr*-multiplication, if for every graded submodule S of \Im , there exists a graded ideal K of Γ such that $S = K\Im$ (see [14]).

THEOREM 2.11. Let $S \leq_{\Omega} \Im$. Then we have the following. (a) If S is a $gr-C-2^A$ -secondary submodule of \Im , then IC is a $gr-C-2^A$ -secondary submodule of \Im , for all graded ideal I of Γ , with $I \not\subseteq Ann_{\Gamma}(S)$.

(b) If \Im is a gr-multiplication gr-C-2^A-secondary module, then every non-zero graded submodule of \Im is a gr-C-2^A-secondary submodule of \Im .

Proof. (a) Let I be a graded ideal of Γ , with $I \not\subseteq Ann_{\Gamma}(S)$. Then IC is a nonzero graded submodule of \mathfrak{F} . Let $r, s \in h(\Gamma)$, L is graded submodule of \mathfrak{F} , and $rs IC \subseteq L$, then $rs S \subseteq (L :_{\mathfrak{F}} I)$, thus $r IC \subseteq L$ or $s IC \subseteq L$ or $rs \in Gr(Ann_{\Gamma}(S)) \subseteq$ $Gr(Ann_{\Gamma}(IC))$, as desired.

(b) This follows from part (a).

THEOREM 2.12. Let Γ be Ω -graded ring and \Im , \Im' be two graded Γ -module. Let $\psi : \Im \to \Im'$ be a graded monomorphism.

(a) If S is a gr-C-2^A-secondary submodule of \mathfrak{S} , then $\psi(S)$ is a gr-C-2^A-secondary submodule of \mathfrak{S}' .

(b) If S' is a gr-C-2^A-secondary submodule of $\psi(\mathfrak{S})$, then $\psi^{-1}(S')$ is a gr-C-2^A-secondary submodule of \mathfrak{S} .

Proof. (a) As $S \neq 0$, and ψ is a graded monomorphism, we have $\psi(S) \neq 0$, let $r, s \in h(\Gamma), L' \leq_{\Omega} \mathfrak{I}'$, and $rs \psi(S) \subseteq L'$. Then $rs S \subseteq \psi^{-1}(L')$. Since S is $gr-C-2^{A}$ -secondary submodule of $\mathfrak{I}, rS \subseteq \psi^{-1}(L')$ or $sS \subseteq \psi^{-1}(L')$ or $rs \in Gr(Ann_{\Gamma}(S))$. Therefore, $r\psi(S) \subseteq \psi(\psi^{-1}(L')) = \psi(\mathfrak{I}) \cap L' \subseteq L'$ or $s\psi(S) \subseteq \psi(\psi^{-1}(L')) = \psi(\mathfrak{I}) \cap L' \subseteq L'$ or $rs \in Gr(Ann_{\Gamma}(\psi(S)))$, as desired.

(b) If $\psi^{-1}(S') = 0$, then $\psi(\mathfrak{F}) \cap S' = \psi \psi^{-1}(S') = \psi(0) = 0$. So S' = 0, which is a contradiction. Therefore $\psi^{-1}(S') \neq 0$. Let $r, s \in h(\Gamma)$, $L \leq_{\Omega} \mathfrak{F}$, and $rs \psi^{-1}(S') \subseteq L$. Then $rs S' = rs(\psi(\mathfrak{F}) \cap S') = rs \psi \psi^{-1}(S') \subseteq \psi(L)$. As S' is $gr-C-2^A$ -secondary submodule of $\psi(\mathfrak{F})$, $rS' \subseteq \psi(L)$ or $sS' \subseteq \psi(L)$ or $rs \in Gr(Ann_{\Gamma}(S'))$. Thus $r \psi^{-1}(S') \subseteq \psi^{-1}\psi(L) = L$ or $s \psi^{-1}(S') \subseteq \psi^{-1}\psi(L) = L$ or $rs \in Gr(Ann_{\Gamma}(\psi^{-1}(S')))$, as needed.

References

- K. Al-Zoubi, R. Abu-Dawwas, S. Çeken, On graded 2-absorbing and graded weakly 2-absorbing ideals, Hacet. J. Math. Stat., 48(3) (2019), 724–731.
- [2] K. Al-Zoubi, N. sharafat, On graded 2-absorbing primary and graded weakly 2-absorbing primary ideals, J. Korean Math. Soc., 54(2) (2017), 675–684.
- [3] K. Al-Zoubi, R. Abu-Dawwas, On graded 2-absorbing and weakly graded 2-absorbing submodules, J. Math. Sci. Adv. Appl., 28 (2014), 45–60.
- [4] K. Al-Zoubi, M. Al-Azaizeh, On graded 2-absorbing second submodules of graded modules over graded commutative rings, Kragujevac J. Math., 48(1) (2024), 55–66.
- [5] H. Ansari-Toroghy, F. Farshadifar, Graded comultiplication modules, Chiang Mai J. Sci., 38(3) (2011), 311–320.
- [6] S. E. Atani, R.E. Atani, Graded multiplication modules and the graded ideal θ_g(M), Turkish J. Math., 35(1) (2011), 1–9.
- [7] E. Y. Celikel, On graded 2-absorbing primary submodules, Int. J. Pure Appl. Math., 109(4) (2016), 869–879.
- [8] P. Deligne, Quantum Fields and Strings: A course for Mathematicians, AMS IAS, 1999.
- [9] R. Hazrat, Graded Rings and Graded Grothendieck Groups, Cambridge University Press, Cambridge, 2016.
- [10] I. Kolar, P. W. Michor, J. Slovak, Natural Operations in Differential Geometry, Springer Science and Business Media, 2013.
- [11] C. Nastasescu, F. Van Oystaeyen, Graded and filtered rings and modules, Lecture notes in mathematics 758, Berlin-New York: Springer-Verlag, 1982.
- [12] C. Nastasescu, F. Van Oystaeyen, Graded Ring Theory, Mathematical Library 28, North Holand, Amsterdam, 1982.
- [13] C. Nastasescu, F. Van Oystaeyen, Methods of Graded Rings, LNM 1836. Berlin-Heidelberg: Springer-Verlag, 2004.
- [14] K. H. Oral, U. Tekir, A. G. Agargun, On graded prime and primary submodules, Turk. J. Math., 35 (2011), 159–167.
- [15] M. Refai, K. Al-Zoubi, On graded primary ideals, Turk. J. Math., 28(3) (2004), 217–229.

- [16] M. Refai, R. Abu-Dawwas, On generalizations of graded second submodules, Proyecciones (Antofagasta), 39(6), 1537–1554.
- [17] A. Rogers, Supermanifolds: Theory and Applications, World Sci. Publ., 2007.
- [18] F. Soheilnia, A. Y. Darani, On graded 2-absorbing and graded weakly 2-absorbing primary ideals, Kyungpook Math. J., 57(4) (2017), 559–580.
- [19] F. Van Oystaeyen, Generalized Rees rings and arithmetical graded rings, J. Algebra, 82(1) (1983), 185–193.

(received 22.03.2023; in revised form 03.05.2024; available online 09.09.2024)

Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan *E-mail:* tdalwardat21@sci.just.edu.jo

ORCID iD: https://orcid.org/0000-0003-1641-5182

Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan *E-mail*: kfzoubi@just.edu.jo

ORCID iD: https://orcid.org/0000-0001-6082-4480

Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan *E-mail*: mmaldolat@just.edu.jo

ORCID iD: https://orcid.org/0000-0003-2738-2072