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UPPER BLOW-UP TIME AND LOWER GROW-UP RATE TO
SOLUTION FOR A PSEUDO-PARABOLIC EQUATION

Abdelatif Toualbia and Nabila Barrouk

Abstract. In this paper, we consider a pseudo parabolic equation with weak-viscoelastic
term, where the exponent in the source term is variable. Using a differential inequality
technique, we prove that the solution with positive initial energy become unbounded at a
finite time, and find an upper bound for this time. A lower grow-up rate of solution is also
obtained.

1. Introduction

In this paper, we consider the following pseudo-parabolic equation with a weak-
viscoelastic term:

ut −∆u−∆ut + a (t)
∫ t

0
h (t− s)∆u (s) ds = |u|p(x)−2

u, in (0, T ]× Ω,

u (t, x) = 0, on (0, T ]× ∂Ω,

u (0, x) = u0 (x) , x ∈ Ω,

(1)

where Ω is a bounded domain in Rn, n ≥ 1, with a smooth boundary ∂Ω, ∆ is the
Laplace operator, and the viscoelastic term is represented as

∫ t

0
h (t− s)∆u (s) ds.

This term is called “weak-viscoelastic” because it is coupled with the time-weighted

function a (t). The term with a variable exponent, |u|p(x)−2
u, plays the role of a

source, and the dissipative term ∆ut is a linear strong damping term. Additionally,
we assume that u0 ∈ H1

0 (Ω) ∩ Lp(x) (Ω).
The exponent p (·) is a given continuous function defined on Ω and satisfies:2 < p− ≤ p (x) ≤ p+ <∞, if n = 1, 2,

2 < p− ≤ p (x) ≤ p+ ≤ 2n

n− 2
, if n ≥ 3,

(2)

where p+ = ess sup p (x), p− = ess inf p (x), and the Zhikov-Fan conditions hold:

p (x)− p (y) ≤ −A
log |x− y|

, for all x, y ∈ Ω with |x− y| < δ, (3)
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2 Blow-up time and lower grow-up rate

where A > 0 and 0 < δ < 1.
The relaxation function h and the weight function a are given functions satisfying

the following assumptions:
(A1) h : [0,∞) → [0,∞) is a C1 decreasing function satisfying:

1− a (t)

∫ t

0

h (s) ds ≥ 1− ∥a∥∞
∫ ∞

0

h (s) ds = K > 0. (4)

(A2) a : [0,∞) → [0,∞) is a C1 decreasing function (a′ (t) < 0).
The problem in (1) arises from many important mathematical models in engi-

neering and physical sciences. For example, see the bidirectional nonlinear shallow
water waves in [20], the vibration of a nonlinear viscoelastic rod in [10], and the ref-
erences therein. The equation in (1) can be used in the analysis of nonstationary
processes in semiconductors in the presence of sources. Additionally, equation (1)
appears as a nonclassical diffusion equation in fluid mechanics, solid mechanics, and
heat conduction, as discussed in [3, 11,18,23] and the references therein.

Obviously, in the absence of the weak-viscoelastic term and if p (x) = p = constant,
the equation in (1) reduces to the following pseudo-parabolic equation with a constant
exponent:

ut −∆u−∆ut = |u|p−2
u, in (0,∞)× Ω. (5)

For equation (5), many results have been obtained, such as existence and unique-
ness [1, 21], blow-up [17, 25], asymptotic behavior [16, 25], and so on. In [22], the
authors obtained the global existence of solutions under suitable assumptions and
provided a blow-up result with arbitrary energy levels when a(t) = 1 and p(x) = p =
constant in problem (1).

With the rapid development of mathematical theory, much attention has been
paid to the study of mathematical nonlinear models of pseudo-parabolic, hyperbolic,
and parabolic equations with variable exponents of nonlinearity. For instance, in [5],
the following nonlinear pseudo-parabolic equation with variable exponents was con-
sidered:

ut −∆m(x)u−∆ut = |u|p(x)−2
u, in (0,∞)× Ω, (6)

and it was proved that any solutions of this equation with nontrivial initial data blow
up in finite time in the H1(Ω)-norm. They also obtained an upper bound and a lower
bound for the blow-up time of the solution with negative initial energy. In another
study [13], Liao considered the same problem treated in [5] and obtained the blow-up
of the solution to (6), but with positive initial energy. Also, Himadan [9] considered
the following weak-viscoelastic parabolic equation with variable exponents:

ut−div
(
|∇u|q(x)−2 ∇u

)
+σ (t)

∫ t

0

h (t−s)∆u (s) ds = |u|p(x)−2
u, in (0,∞)×Ω. (7)

By using differential inequality techniques, he proved that the solution to the prob-
lem (7) blows up in finite time in the L2(Ω)-norm with positive initial energy. It is
worth mentioning some other literature concerning the theory of our type of equation,
namely, several studies [4, 12,15].

Let us mention that equations with variable exponents and weak-viscoelastic terms
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are usually referred to as equations with a nonstandard growth condition. This type
of equation has an extensive physical background, which appears in the study of
heat conduction, viscous flow in materials with memory, electric signals in telegraph
lines with nonlinear damping [1], the vibration of a nonlinear viscoelastic rod [10],
bidirectional nonlinear shallow water waves [20], and the velocity evolution of ion-
acoustic waves in a collisionless plasma [19], and so on.

The purposes of this paper are twofold. The first is to study blow-up phenomena,
and the second is to give lower bounds for the growth rate of solutions to the prob-
lem (1), which involves pseudo-parabolic, variable exponent, and weak-viscoelastic
terms. As far as we know, there are few results concerning viscoelastic pseudo-
parabolic equations. Specifically, this paper is organized as follows: In Section 2, we
present the necessary notation and background material needed for our work. In Sec-
tion 3, we prove, using differential inequality techniques, the blow-up phenomena for
the solutions to problem (1), assuming that the initial energy satisfies 0 < E(0) < E1.
In Section 4, we prove that the solution to (1) grows in the H1-norm on (0, Tmax),
and we provide lower bounds for the growth rate.

2. Preliminary results and tools

Throughout this paper, we denote by ∥.∥p the Lp (Ω) norm for 1 ≤ p ≤ ∞, we also

denote the inner product on the Hilbert space L2 (Ω) by ⟨., .⟩ . We will equip H1
0 (Ω)

with the norm

∥u∥H1
0 (Ω) =

√
∥u∥22 + ∥∇u∥22,

and the inner product

⟨u, v⟩H1
0 (Ω) = ⟨u, v⟩+ ⟨∇u,∇v⟩ , ∀u, v ∈ H1

0 (Ω) .

Firstly, let us recall some definitions, properties, and important lemmas related to
Lebesgue and Sobolev spaces with a variable exponent to state the main results of
this paper.

Definition 2.1. Let Ω be a domain in Rn and let p : Ω → [1,∞) be a measurable
function. The Lebesgue space Lp(.) (Ω) , with variable exponent p (.) is defined by

Lp(.) (Ω) =

{
u : Ω → R : u is measurable in Ω and

∫
|λu (x)|p(x) dx<∞ for some λ>0

}
.

The Luxemburg norm is given by

∥u∥p(.) = inf

{
λ > 0,

∫
Ω

∣∣∣∣u (x)λ

∣∣∣∣p(x) dx ≤ 1

}
.

We notice that variable exponent Lebesgue spaces resemble classical Lebesgue
spaces in many aspects: they are Banach spaces, the Holder inequality holds, they
are reflexive if 1 < p (x) < ∞. The variable exponent Sobolev space W 1,p(.) (Ω) is
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defined by W 1,p(.) (Ω) =
{
u ∈ Lp(.) (Ω) : ∇u exists and ∇u ∈ Lp(.) (Ω)

}
. This is a

Banach space with respect to the norm ∥u∥W 1,p(.)(Ω) = ∥u∥p(.) + ∥∇u∥p(.).
The space W

1,p(.)
0 (Ω) is defined to be the closure of C∞

0 (Ω) in W 1,p(.) (Ω) . The

definition of the space W
1,p(.)
0 (Ω) in the constant-exponent case is usualy different.

However, under the condition (3) the two definitions coincide (see [6]). The dual

space W
−1,p′(.)
0 (Ω) of W

1,p(.)
0 (Ω) is defined in the same way as in the case of classical

Sobolev spaces, where 1
p(x) +

1
p′(x) = 1.

Lemma 2.2 ([6, Poincaré’s inequality]). Suppose that p (.) satisfies the condition (3).

Then ∥u∥p(.) ≤ C ∥∇u∥p(.) , u ∈W
1,p(.)
0 (Ω), where C is a constant that depends only

on p (.) and Ω.

Lemma 2.3 ([6, Embedding proprety]). If p : Ω → [1,∞) is continuous and satisfies
the condition (2), then the embedding H1

0 (Ω) ↪→ Lp(.) (Ω) is continuous and compact.
So, there exists a C > 0 such that ∥u∥p(.) ≤ C ∥u∥H1

0 (Ω) , ∀u ∈ H1 (Ω).

Definition 2.4 (Weak solution). We say that the function u is a weak solution of
problem (1) on [0, T ] if u ∈ L∞ (0, T ;H1

0 (Ω) ∩ Lp(.) (Ω)
)
, ut ∈ L2

(
0, T ;H1

0 (Ω)
)
, and

u satisfies (1) in the following sense:
1. u satisfies the distributional identity

⟨ut, v⟩H1
0 (Ω) + ⟨∇u,∇v⟩ =

∫ t

0

a (t)h (t− s) ⟨∇u (s) ,∇v⟩ ds+
〈
|u|p(x)−2

u, v
〉
,

for all test functions v ∈ H1
0 (Ω) ∩ Lp(.) (Ω) .

2. u satisfies the initial condition u (0, x) = u0 (x) .

Definition 2.5 (Finite time blow-up). Let u (t, x) be a weak solution of problem (1).
We say u (t, x) blows-up in finite time if the maximal existence time Tmax is finite and
lim

t→Tmax

∥u∥H1
0 (Ω) = +∞.

By using a Faedo-Galerkin method and a Contraction the Mapping Principle as
in [1, 14], we have the following theorem.

Theorem 2.6 (Local existence). Let u0 ∈ H1
0 (Ω) ∩ Lp(.) (Ω) and assume that the

conditions (A1)-(A2) and (2) hold. Then the problem (1) admits a unique local weak
solution such that u ∈ L∞ (0, T ;H1

0 (Ω) ∩ Lp(.) (Ω)
)
, ut ∈ L2

(
0, T ;H1

0 (Ω)
)
.

3. Upper bound of the blow-up time

In this section, we derive an upper bound on the finite time blow-up of the solution
to (1). For this purpose, we need to consider the following energy functional:

E (t) =
1

2

(
1−a (t)

∫ t

0

h (s) ds

)
∥∇u∥22 −

∫
Ω

1

p (x)
|u|p(x) dx+1

2
a (t) (h ◦ ∇u) (t) , (8)
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where

(h ◦ ∇u) (t) =
∫ t

0

h (t− s) ∥∇u (t)−∇u (s)∥22 ds, ∀t ∈ [0, T ) .

The following lemma states one of the most important properties of the functional E.

Lemma 3.1. Let the assumptions (A1)-(A2) hold. Then we have the following esti-
mate:

E′ (t) =− ∥ut∥22 − ∥∇ut∥22 +
1

2
a (t) (h′ ◦ ∇u) (t)− 1

2
a (t)h (t) ∥∇u∥22

+
1

2
a′ (t) (h ◦ ∇u) (t) + 1

2
a′ (t)

∫ t

0

h (s) ds ∥∇u (t)∥22 ≤ 0, (9)

in particular, the functional E is decreasing.

Proof. Multiplying equation (1) by ut, integrating over Ω, and using the following
identity:∫

Ω

a (t)

∫ t

0

h (t− s)∆ku (s)ut (t) dsdx

=
(−1)

k+1

2

d

dt

[
a (t)

(
h ◦ ∇ku

)
(t)
]
+

(−1)
k

2

d

dt

[
a (t)

∫ t

0

h (s) ds

∫
Ω

∣∣∇ku (t)
∣∣2 dx]

+
(−1)

k

2
a (t)

(
h′ ◦ ∇ku

)
(t) +

(−1)
k+1

2
a (t)h (t)

∫
Ω

∣∣∇ku (t)
∣∣2 dx

+
(−1)

k

2
a′ (t)

(
h ◦ ∇ku

)
(t) +

(−1)
k

2
a′ (t)

∫ t

0

h (s) ds

∫
Ω

∣∣∇ku (t)
∣∣2 dx

we deduce that

E′ (t) =− ∥ut∥H1
0 (Ω) +

1

2
a (t) (h′ ◦ ∇u) (t)− 1

2
a (t)h (t) ∥∇u∥22 +

1

2
a′ (t) (h ◦ ∇u) (t)

+
1

2
a′ (t)

∫ t

0

h (s) ds ∥∇u∥22 ≤ 0.

The desired conclusions can be deduced immediately from the above estimate. □

We put

ψ (t) =

√(
1− a (t)

∫ t

0

h (s) ds

)
∥∇u∥22 + a (t) (h ◦ ∇u) (t).

Since (A1) holds, we have

ψ (t) ≥
√
K ∥∇u∥2 . (10)

It follows from (8) and Lemma 3.1 that

E (0) ≥ E (t) =
1

2
(ψ (t))

2 −
∫
Ω

1

p (x)
|u|p(x) dx.

We define the sets,

Ω+ = {x ∈ Ω : |u| ≥ 1} and Ω− = {x ∈ Ω : |u| < 1} . (11)
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It follows from the Sobolev embedding inequality (Lemma 2.3) and (10) that

E (0) ≥E (t) ≥ 1

2
(ψ (t))

2 − 1

p−

[∫
Ω−

|u|p(x) dx+

∫
Ω+

|u|p(x) dx

]

≥1

2
(ψ (t))

2 − 1

p−

[∫
Ω−

|u|p− dx+

∫
Ω+

|u|p+ dx

]

≥1

2
(ψ (t))

2 − 1

p−

[∫
Ω

|u|p− dx+

∫
Ω

|u|p+ dx

]
≥1

2
(ψ (t))

2 − 1

p−

[
B

p−
−

(∫
Ω

|∇u|2 dx
) p−

2

+B
p+

+

(∫
Ω

|∇u|2 dx
) p+

2

]

=
1

2
(ψ (t))

2 − 1

p−

[
B

p−
− ∥∇u∥p−

2 +B
p+

+ ∥∇u∥p+

2

]
≥1

2
(ψ (t))

2 −
B

p−
−

p− (K)
p−
2

(ψ (t))
p− −

B
p+

+

p− (K)
p+
2

(ψ (t))
p+ = f (ψ (t)) (12)

where B+, B− are the optimal constants satisfying the Sobolev embedding inequalities

∥u∥Lp+ (Ω) ≤ B+ ∥∇u∥2 and ∥u∥Lp− (Ω) ≤ B− ∥∇u∥2 ,
respectively, and the function f : [0,∞) → R defined by

f (λ) =
1

2
λ2 −

B
p−
−

p− (K)
p−
2

λp− −
B

p+

+

p− (K)
p+
2

λp+ . (13)

Then, we have the following lemma, which we will use it in the proof of Lemma 3.3,
and which is easily shown to hold. So we omit the proof.

Lemma 3.2. Let condition (2))= hold. With the function f : [0,∞[ → R defined
by (13), we have the following statements:

1. f (0) = 0 and lim
λ→∞

f (λ) = −∞.

2. The equation
df

dλ
= 0 has a unique positive solution λ0 satisfying

1−
B

p−
−

(K)
p−
2

λ
p−−2
0 −

p+B
p+

+

p− (K)
p+
2

λ
p+−2
0 = 0.

3. The function f (λ) is increasing for 0 < λ < λ0, decreasing for λ > λ0, and λ0 is
the absolute maximum point of f (λ) satisfying

f (λ0) =
(p− − 2)B

p−
−

2p− (K)
p−
2

λ
p−
0 +

(p+ − 2)B
p+

+

2p− (K)
p+
2

λ
p+

0 = E1 > 0. (14)

The following lemma will play an essential role in the proof of our main result. It
is similar to a lemma first used by Vitillaro [24].
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Lemma 3.3. Assume that the hypotheses (A1)-(A2) are satisfied, and condition (2)
holds. For any u0 ∈ H1

0 (Ω) ∩ Lp(.) (Ω) such that

0 ≤ E (0) <
(p− − 2)B

p−
−

2p− (K)
p−
2

λ
p−
0 +

(p+ − 2)B
p+

+

2p− (K)
p+
2

λ
p+

0 = E1,

if ∥∇u0∥2 > λ0, then there exists a unique λ1 > λ0 such that

ψ (t) ≥ λ1 for t > 0. (15)

and

∫
Ω

|u|p(x) dx ≥
B

p−
−

K
p−
2

λ
p−
1 +

B
p+

+

K
p+
2

λ
p+

1 . (16)

Proof. First, we have ψ (0) = ∥∇u0∥2 > λ0. Lemma 3.2 informs us that{
f (λ) is increasing for 0 < λ < λ0,

f (λ) is decreasing for λ > λ0,

and lim
λ→∞

f (λ) = −∞, then, it follows that there exists a unique constant λ1 > λ0

such that f (λ1) = E (0). Thus, from (12), we deduce that f (λ1) = E (0) ≥ f (ψ (0)).
Thus, we have ψ (0) > λ1. We will claim that ψ (t) > λ1. Conversely, suppose that
there exists a t∗ ∈ [0, T ), such that ψ (t∗) < λ1. By the continuity of the function t→
ψ (t), without loss of generality, we may assume that ψ (t) ∈ (λ0, λ1). Recalling (12),
it may be concluded thatf (λ1) = E (0) ≥ E (t∗), which contradicts (12). Hence, we
have ψ (t) > λ1 for all t > 0. Thus, (15) is established.

To prove (16), we use (8) and (9)

E (0) +

∫
Ω

1

p (x)
|u|p(x) dx ≥ 1

2

(
1− a (t)

∫ t

0

h (s) ds

)
∥∇u∥22 +

1

2
a (t) (h ◦ ∇u) (t)

which implies

∫
Ω

1

p (x)
|u|p(x) dx ≥ 1

2
λ21 − E (0) .

Since E (0) = f (λ1) , we have∫
Ω

1

p (x)
|u|p(x) dx ≥ 1

2
λ21 −

(
1

2
λ21 −

B
p−
−

p− (K)
p−
2

λ
p−
1 −

B
p+

+

p− (K)
p+
2

λ
p+

1

)

=
B

p−
−

p− (K)
p−
2

λ
p−
1 +

B
p+

+

p− (K)
p+
2

λ
p+

1 .

Because of p− < p (x) < p+, we deduce that∫
Ω

|u|p(x) dx ≥
B

p−
−

(K)
p−
2

λ
p−
1 +

B
p+

+

(K)
p+
2

λ
p+

1 ,

and the proof is complete. □

Remark 3.4. By combining (14) and (16), it is easily seen that

E1 =
(p− − 2)B

p−
−

2p− (K)
p−
2

λ
p−
0 +

(p+ − 2)B
p+

+

2p− (K)
p+
2

λ
p+

0 ≤ (p+ − 2)

2p−

[
B

p−
−

K
p−
2

λ
p−
0 +

B
p+

+

K
p+
2

λ
p+

0

]
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≤ (p+ − 2)

2p−

[
B

p−
−

K
p−
2

λ
p−
1 +

B
p+

+

K
p+
2

λ
p+

1

]
≤ (p+ − 2)

2p−

∫
Ω

|u|p(x) dx. (17)

Now, let us prove the finite time blow-up of solutions to (1).

Theorem 3.5. Suppose that the assumptions (A1)-(A2) and the conditions (2)-(3)
hold. For any u0 ∈ H1

0 (Ω) ∩ Lp(.) (Ω) such that 0 < E (0) < E1, if ∥∇u0∥2 > λ0,
then, the solution u (t, x) of the problem (1) exhibits blow-up in finite time Tmax in
the H1

0 (Ω)-norm. Moreover, an upper bound for the blow-up time is given by

Tmax ≤ 2 (F (0))
1− p+

2

(p+ − 2)C4
,

where C4 is a suitable positive constant specified below and F (0) = ∥u0∥H1
0 (Ω) .

Proof. We define the auxiliary function

F (t) = ∥u∥2H1
0 (Ω) =

∫
Ω

u2dx+

∫
Ω

|∇u|2 dx. (18)

Our objective is to estimate the blow-up time of F (t) . Multiply both sides of the
differential equation in (1) by u and integrate by parts, to deduce that∫

Ω

uutdx+

∫
Ω

∇u.∇utdx =

−
∫
Ω

|∇u|2 dx+

∫
Ω

a (t)

∫ t

0

h (t− s)∇u (t, x) .∇u (s, x) dsdx+

∫
Ω

|u|p(x) dx

By differentiating F (t) with respect to t, we have

F ′ (t) = 2

∫
Ω

uutdx+2

∫
Ω

∇u.∇utdx

=−2

∫
Ω

|∇u|2 dx+2

∫
Ω

a (t)

∫ t

0

h (t−s)∇u (t, x) .∇u (s, x) dsdx+2

∫
Ω

|u|p(x) dx. (19)

Next, we apply Young’s inequality(
1

C0
X

)
(C0Y ) ≤ 1

2C2
0

X2 +
C2

0

2
Y 2, for all X,Y ≥ 0,

to obtain ∫
Ω

∇u (t, x) .∇u (s, x) dsdx (20)

=

∫
Ω

|∇u (t, x)|2 dx−
∫
Ω

∇u (t, x) . (∇u (t, x)−∇u (s, x)) dx

≥
∫
Ω

|∇u (t, x)|2 dx−
∫
Ω

1

C0
|∇u (t, x)| × C0 |∇u (t, x)−∇u (s, x)| dx

≥2C2
0 − 1

2C2
0

∥∇u∥22 −
C2

0

2
∥∇u (t, x)− u (s, x)∥22 . (21)

It follows from (21) and (19) that

F ′ (t) ≥− 2

∫
Ω

|∇u|2 dx
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+ 2

∫
Ω

|u|p(x) dx+
2C2

0 − 1

C2
0

a (t) ∥∇u∥22
∫ t

0

h (s) ds− C2
0a (t) (h ◦ ∇u) (t) .

Let us assume that C2
0 ≥ 1

2 , and since a, h ≥ 0 (Assumptions (A1)-(A2)), we obtain

F ′ (t) ≥ −2

∫
Ω

|∇u|2 dx+ 2

∫
Ω

|u|p(x) dx− C2
0a (t) (h ◦ ∇u) (t) . (22)

We substitute for a (t) (h ◦ ∇u) (t) from (8), and hence (22) becomes

F ′ (t) ≥− 2

∫
Ω

|∇u|2 dx+ 2

∫
Ω

|u|p(x) dx

− C2
0

[
E (t)− 1

2

(
1− a (t)

∫ t

0

h (s) ds

)
∥∇u∥22 +

∫
Ω

1

p (x)
|u|p(x) dx

]
.

It follows frome (4) that

F ′ (t) ≥ −2

∫
Ω

|∇u|2 dx+2

∫
Ω

|u|p(x) dx−C2
0

[
E (t)−1

2
K ∥∇u∥22 +

∫
Ω

1

p (x)
|u|p(x) dx

]
≥
(
2−C

2
0

p+

)∫
Ω

|u|p(x) dx+
(
C2

0K

2
−2

)∫
Ω

|∇u|2 dx−C2
0E1+C

2
0H (t) ,

where H (t) = E1 − E (t) > 0.
Since H (t) > 0, we have

F ′ (t) ≥
(
2− C2

0

p+

)∫
Ω

|u|p(x) dx+

(
C2

0K

2
− 2

)∫
Ω

|∇u|2 dx− C2
0E1.

We then use (17) to obtain

F ′ (t) ≥
(
2−C

2
0

p+

)∫
Ω

|u|p(x) dx+
(
C2

0K

2
−2

)∫
Ω

|∇u|2 dx−C2
0

(p+−2)

2p−

∫
Ω

|u|p(x) dx,

so F ′ (t) ≥
(
2−
(
C2

0

p+
+C2

0

(p+−2)

2p−

))∫
Ω

|u|p(x) dx+
(
C2

0K

2
−2

)∫
Ω

|∇u|2 dx.

(23)

Choose C0 > 0 such that
(
2−

(
C2

0

p+
+ C2

0
(p+−2)
2p−

))
> 0 and

(
C2

0K
2 − 2

)
> 0 then

4
K < C2

0 <
2

1
p+

+
(p+−2)

2p−

. Taking the condition C2
0 ≥ 1

2 into account, we can choose a

positive constant C0 such that

max

(
1

2
,
4

K

)
< C2

0 <
2

1
p+

+ (p+−2)
2p−

(24)

holds, which implies that F ′ (t) ≥ 0.
The estimate F ′ (t) ≥ 0 is necessary to guarantee the blow-up of the solution

but is not sufficient. As we mentioned in the introduction, we need to construct a
differential inequality with respect to t which leads to a blow-up in finite time.

Then, substituting a1 = 2 − C2
0

p+
+ C2

0
(p+−2)
2p−

> 0, a =
C2

0K
2 − 2 > 0, in (23), we

obtain

F ′ (t) ≥ a1

∫
Ω

|u|p(x) dx+ a

∫
Ω

|∇u|2 dx.
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Recalling the sets (11), we obtain

F ′ (t) ≥ a1

(∫
Ω−

|u|p+ dx+

∫
Ω+

|u|p− dx

)
+ a

∫
Ω

|∇u|2 dx

≥ a1C1

(∫
Ω−

|u|2 dx

) p+
2

+

(∫
Ω+

|u|2 dx

) p−
2

+ a

∫
Ω

|∇u|2 dx, (25)

using the fact ∥u∥2 ≤ C ∥u∥r for all r ≥ 2.

The inequality (25) can be written as follows

F ′ (t) ≥ a1C1

(∫
Ω−

|u|2 dx

) p+
2

+

(∫
Ω+

|u|2 dx

) p−
p+


p+
2

+ a

∫
Ω

|∇u|2 dx,

≥ C2


(∫

Ω−

|u|2 dx

) p+
2

+

(∫
Ω+

|u|2 dx

) p−
p+


p+
2

+

∫
Ω

|∇u|2 dx

 (26)

where C2 = min (a1C1, a) .

We shall make use of the following inequality:

Xα + Y α + Zγ ≥ C (X + Y + Z)
α
, X, Y, Z > 0, γ ≥ 1

with X =
∫
Ω−

|u|2 dx, Y =
(∫

Ω+
|u|2 dx

) p−
p+
, Z =

∫
Ω
|∇u|2 dx and α = p+

2 , γ = 1.

Then, inequality (26) becomes

F ′ (t) ≥ C3

∫
Ω−

|u|2 dx+

(∫
Ω+

|u|2 dx

) p−
p+

+

∫
Ω

|∇u|2 dx


p+
2

≥ C3

(∫
Ω

|∇u|2 dx
) p+

2

. (27)

The Poincare inequality gives ∥∇u∥22 ≥ λ1 ∥u∥22 , where λ1 is the first eigenvalue of
the operator −∆ with zero Dirichlet condition. Thus, we have

∥∇u∥22 =
λ1

1 + λ1
∥∇u∥22 +

1

1 + λ1
∥∇u∥22 ≥ λ1

1 + λ1
∥u∥2H1

0 (Ω) =
λ1

1 + λ1
F (t) . (28)

It follows from (27) and (28) that

F ′ (t) ≥ C4 (F (t))
p+
2 , (29)

where C4 = C3

(
λ1

1+λ1

) p+
2

> 0.

By a simple integration of (29) over (0, t), we easily find that

F (t) ≥ 1(
(F (0))

1− p+
2 + (2−p+)C4t

2

) 2
p+−2

,



A. Toualbia, N. Barrouk 11

which implies that F (t) → ∞ as t→ T in H1
0 (Ω) , where

Tmax ≤ 2 (F (0))
1− p+

2

(p+ − 2)C4
.

This completes the proof. □

4. Lower bound the growth-rate

The purpose of this section is to prove the growth within (0, Tmax) of the solution
to (1), and to give lower bounds of the growth-rate. The following lemma is important
for the proof of the lower bound on the growth-rate.

Lemma 4.1 ([8]). Suppose that β, γ, δ > 0 and y (t) is a nonnegative and absolutely
continuous function satisfying

y′ (t) + δyβ (t) ≥ γ, 0 < t <∞;

then y (t) ≥ min

(
y (0) ,

(γ
δ

) 1
β

)
.

Theorem 4.2. If all conditions of Theorem 3.5 hold, then the solution u (t, x) to the
problem (1) grows within (0, Tmax) in H

1-norm, and we have

∥u (t)∥2H1
0 (Ω) ≥ ∥u0∥2H1

0 (Ω) exp

(
a

λ1
1 + λ1

t

)
.

Moreover, a lower bound of growth-rate is given by

∥u∥H1
0 (Ω) ≥ min

(
F (0) ,

(γ
δ

) 2
p+

)
,

where γ, δ are suitable positive constants specified below, a =
C2

0K
2 − 2 > 0 and λ1 is

the first eigenvalue of −∆ with zero Dirichlet condition.

Proof. Let us consider the same function F (t) as in (15), and according to (25), we
obtain

F ′ (t) ≥ a

∫
Ω

|∇u|2 dx, t ∈ (0, Tmax) (30)

because of a2

((∫
Ω−

|u|2 dx
) p+

2

+
(∫

Ω+
|u|2 dx

) p−
2

)
> 0.

The Poincare inequality gives ∥∇u∥22 ≥ λ1 ∥u∥22 , where λ1 is the first eigenvalue
of (−∆) . Thus, we have

∥∇u∥22 =
λ1

1 + λ1
∥∇u∥22 +

1

1 + λ1
∥∇u∥22 ≥ λ1

1 + λ1
∥u∥2H1

0 (Ω) =
λ1

1 + λ1
F (t) . (31)

It follows from (30) and (31) that

F ′ (t) ≥ a
λ1

1 + λ1
F (t) , t ∈ (0, Tmax) . (32)
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Integrating (32) from 0 to t, it follows that

F (t) ≥ F (0) exp

(
a

λ1
1 + λ1

t

)
, t ∈ (0, Tmax)

Thus, the solution u (t, x) to the problem (1) grows within (0, Tmax) in the H1-norm,
and we have

∥u (t)∥2H1
0 (Ω) ≥ ∥u0∥2H1

0 (Ω) exp

(
a

λ1
1 + λ1

t

)
.

Finally, we prove that the solution u (t, x) has a lower bound on its growth-rate in
the H1-norm. To this end, by applying (25) and (31), we obtain

F ′ (t)) ≥ a1C1

(∫
Ω−

|u|2 dx

) p+
2

+

(∫
Ω+

|u|2 dx

) p−
2

+ a
λ1

1 + λ1
F (t) ,

where a1 = 2−
(

C2
0

p+
+ C2

0
(p+−2)
2p−

)
= 2− b1 > 0. Then,

F ′(t) ≥ C1 (2− b1)

(∫
Ω−

|u|2 dx

) p+
2

+

(∫
Ω+

|u|2 dx

) p−
2

+ a
λ1

1 + λ1
F (t)

≥ −C1b1

(∫
Ω−

|u|2 dx

) p+
2

+

(∫
Ω+

|u|2 dx

) p−
2

+ a
λ1

1 + λ1
F (t)

≥ −C1b1

[(∫
Ω

|u|2 dx
) p+

2

+

(∫
Ω

|u|2 dx
) p−

2

]
+ a

λ1
1 + λ1

F (t) . (33)

Then, since
∫
Ω
|u|2 dx ≤

∫
Ω

(
|u|2 + |∇u|2

)
dx = F (t), (33) becomes

F ′ (t) ≥ −C1b1

[
(F (t))

p+
2 + (F (t))

p−
2

]
+ a

λ1
1 + λ1

F (t)

= −C1b1

[
(F (t))

p+
2 + (F (t))

p+
2 (F (t))

p−
2 − p+

2

]
+ a

λ1
1 + λ1

F (t)

= −C1b1

[(
1 + (F (t))

p−
2 − p+

2

)]
(F (t))

p+
2 + a

λ1
1 + λ1

F (t)

Furthermore, since p−
2 − p+

2 ≤ 0 and by using the fact that F (t) ≥ F (0) > 0
(F ′ (t) ≥ 0) , we have

F ′ (t) ≥ −C1b1

[(
1 + (F (0))

p−
2 − p+

2

)]
(F (t))

p+
2 + a

λ1
1 + λ1

F (0) = −δ (F (t))
p+
2 + γ,

where δ = C1b1

[(
1 + (F (0))

p−
2 − p+

2

)]
> 0, γ = a λ1

1+λ1
F (0) > 0. By Lemma 4.1, the

following holds

F (t) = ∥u∥H1
0 (Ω) ≥ min

(
F (0) ,

(γ
δ

) 2
p+

)
.

This completes the proof. □
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