
MATEMATIČKI VESNIK
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UNITS OF THE SEMISIMPLE GROUP ALGEBRAS OF GROUPS OF
ORDER 162

N. Abhilash, E. Nandakumar, G. Mittal and R. K. Sharma

Abstract. In this paper, we consider all the non-metabelian groups of order 162 and
characterize the structure of the unit group of the corresponding group algebras. Overall,
there are 55 non-isomorphic groups having order 162 and 11 among them are non-metabelian.
We study the unit group of the semisimple group algebras over any finite field whose char-
acteristic does not divide the order of these eleven groups.

1. Introduction

The group algebra, denoted by KG over the field K with pk elements for a prime
number p and k ∈ Z+, is the linear combination of elements from G with coefficients
from K, where G is a finite group. From Maschke’s theorem [12] it follows that the
group algebra KG is semisimple if char(K) ∤ n. Consequently, KG is isomorphic to
the direct sum of matrix algebras over division rings according to the Wedderburn
decomposition theorem [12], i.e, KG ∼= M(n1, D1)⊕ · · · ⊕M(nl, Dl), ni, l ∈ Z+. The
structure of the unit group ofKG can be derived directly from the above isomorphism.
Recall that the unit group consists of all invertible elements in KG and is denoted by
U(KG). For some of the notable recent research on the structure of the unit group,
see [13, 15, 20]. Research in this direction is important because of the applications of
units in number theory [8], coding theory [9], etc.

With respect to the study of the unit group of all group algebras, the groups
can be categorized into two divisions: metabelian and non-metabelian. The first
case has been studied in detail by Bakshi et al. in [4]. Therefore, we only need to
deal with the non-metabelian groups. Pazderski [17] identified the possible orders of
non-metabelian groups. With the help of [17] one can easily find that the smallest
non-metabelian group has order 24, and the unit groups of the corresponding group
algebras are studied by Khan et al. [10] and Maheshwari et al. [11]. In the same
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2 Units of the semisimple group algebras of groups of order 162

direction, Mittal et al. and Arvind et al. classified the unit group of group algebras of
non-metabelian groups up to order 120 in [3,13,16,18]. Recently, Abhilash et al. [1,2]
and Mittal et al. [14] have completed the work for all groups up to order 144.

Using [17] it can be identified that there are non-metabelian groups of order
162. The number of non-isomorphic groups of order 162 is 55, of which 11 are non-
metabelian (see Section 3). The aim of this paper is to consider these 11 groups and
compute the unit groups of their group algebras using the Wedderburn decomposition
(see [12]).

The flow of this paper is as follows. The important definitions, results and the 11
non-metabelian groups studied in this paper are introduced in Section 2 and Section 3,
respectively. In addition, results on the unit groups of semisimple group algebras
are proved in Section 3. The fourth section concludes the paper. Finally, in the
appendix, we present the semi-direct products involved in the construction of various
non-isomorphic groups that play a role in our work.

2. Preliminaries

This section contains the prerequisite definitions and results required to prove the
main results. The following notations hold throughout this paper.

K finite field of order q = pk with characteristic p and k ≥ 1
Kd extension field of K with degree of extension d, d ∈ N
G finite group of order n with p ∤ n
e exponent of the group G
ω primitive e-th root of unity over K
G Galois group of K(ω) over K
TG,K collection of all s such that σ(ω) = ωs, where σ ∈ G
Cx conjugacy class of x
[x, y] denote the commutator x−1y−1xy of x, y ∈ G
1 identity element of G

Definition 2.1 ([6]). (i) For any prime p, an element x ∈ G is said to be p′-element
if order of x is not divisible by p.

(ii) For any p′-element x ∈ G, the cyclotomic K-class of γx =
∑

h∈Cx
h is the set

SK(γx) = {γxs | s ∈ TG,K}.

The proposition given below discusses about the total count of cyclotomic K-
classes, whereas Lemma 2.3 discusses the number of elements in a particular cyclo-
tomic K-class.

Proposition 2.2 ([6]). The set of simple components of KG/J(KG) and the set of
cyclotomic K-classes in G, where J(KG) is the Jacobson radical of KG, are in 1-1
correspondence.
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Lemma 2.3 ([6]). Let l be the number of cyclotomic K-classes in G. If K(1),K(2), . . .,
K(l) are the simple components of Z

(
KG/J(KG)

)
and S1, S2, . . ., Sl are the cyclo-

tomic K-classes of G, then |Si| = [K(i) : K] with a suitable ordering of the indices,
assuming that G is cyclic.

In order to uniquely characterize the Wedderburn decompositions of the semisim-
ple group algebras, we need the following result. See [12, Chapter 3] for its proof.

Lemma 2.4. (i) Let KG be a semisimple group algebra and let N ⊴ G. Then KG ∼=
K (G/N ) ⊕∆(G,N ), where ∆(G,N ) is an ideal of KG generated by the set {n − 1 :
n ∈ N}.
(ii) If N = G′ in part (i), then K (G/G′) is the sum of all commutative simple com-
ponents of KG and ∆(G,G′) is the sum of all others.

Furthermore, we discuss a necessary condition for the dimension of the matrix
algebra in the Wedderburn decomposition (see [5]).

Lemma 2.5. If ⊕t
i=1Mni

(Ki) is the summand of the semisimple group algebra KG
and p is the characteristic of K, where Ki is a finite field extension of K for each i.
Then p does not divide any of the ni.

Next, we discuss two very important results which help us to find the unique
Wedderburn decomposition. For the proof of Lemma 2.6 we refer to [19].

Lemma 2.6. Let p1 and p2 be two primes. Let Fq1 be a field with q1 = pk1
1 elements

and let Fq2 be a field with q2 = pk2
2 elements, where k1, k2 ≥ 1. Let both the group

algebras Fq1G,Fq2G be semisimple. Suppose that Fq1G ∼= ⊕t
i=1M(ni,Fq1), ni ≥ 1 and

M
(
n,Fqr2

)
is a Wedderburn component of the group algebra Fq2G for some r ≥ 2 and

any positive integer n, i.e. Fq2G ∼= ⊕s−1
i=1M(mi,Fq2,i)⊕M(n,Fqr2

), mi ≥ 1. Here, Fq2,i

is a field extension of Fq2 . Then M (n,Fq1) must be a Wedderburn component of the
group algebra Fq1G and it appears at least r times in the Wedderburn decomposition
of Fq1G.

Lemma 2.7 ([3, Corollary 3.8]). Let KG be a finite semisimple group algebra. Then
if there exists an irreducible representation of degree n over K, then one of the Wed-
derburn components of KG is Mn(K). Moreover, if there exist k irreducible repre-
sentations of degree n over K, then Mn(K)k is a summand of the group algebra KG.

If G has j conjugacy classes, then the representatives of the conjugacy classes
are denoted by g1(= 1), g2, g3, . . . , gj in this paper. Furthermore, let K = Fq and
Ki = Fqi for i ≥ 2.

3. Unit groups

In this section, we discuss the structure of the unit group of the group algebras of
non-metabelian groups of order 162. We recall that a group is non-metabelian if its
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derived subgroup is non-abelian. There are 55 non-isomorphic groups of order 162
(this is known via GAP software [7]) and out of these 55, the following eleven are
non-metabelian:

1. G1:=((C3 × C3 × C3)⋊ C3)⋊ C2

2. G2:=((C9 × C3)⋊ C3)⋊ C2

3. G3:=((C9 × C3)⋊ C3)⋊ C2

4. G4:=((C9 × C3)⋊ C3)⋊ C2

5. G5:=((C3 × C3 × C3)⋊ C3)⋊ C2

6. G6:=((C9 × C3)⋊ C3)⋊ C2

7. G7:=((C9 × C3)⋊ C3)⋊ C2

8. G8:=(C3 · ((C3 × C3)⋊ C3))⋊ C2

9. G9:=C3 × (((C3 × C3)⋊ C3)⋊ C2)

10. G10:=((C9 × C3)⋊ C3)⋊ C2

11. G11:=(C3 × ((C3 × C3)⋊ C3))⋊ C2

Despite having similar structures, the groups G1 and G5 are not isomorphic to each
other due to the different group actions involved in their semi-direct product. This
can be seen as follows. The structure of both the groups G1 and G5 involve an action
of C2 on the group G := (C3 × C3 × C3)⋊ C3. The presentation of G is

⟨f1, f2, f3, f4 | f3
1 , [f2, f1]f

−1
3 , [f3, f1]f

−1
4 , [f4, f1], f

3
2 , [f3, f2], [f4, f2], f

3
3 , [f4, f3], f

3
4 ⟩.

The group actions corresponding to G1 and G5 are given below: (let Aut(G) denote
the automorphism group of a group G)
• We consider σ1 ∈ Aut((C3 × C3 × C3) ⋊ C3) which maps f1, f2, f3, f4 to f2

1 f
2
4 ,

f2f3, f2
3 , f4, respectively. Also, we can note that σ1 is an element of order 2 in

Aut((C3×C3×C3)⋊C3). Therefore, the group action C2 7→ Aut((C3×C3×C3)⋊C3)
generates G1 via σ1.

• We consider σ2 ∈ Aut((C3 × C3 × C3) ⋊ C3) f1, f2, f3, f4 to f2
1 f3f4, f

2
2 f

2
3 , f3, f

2
4 ,

respectively. Also, σ2 is an element of order 2 in Aut((C3 × C3 × C3) ⋊ C3). The
group action C2 7→ Aut((C3 × C3 × C3)⋊ C3) generates G5 via σ2.

Similarly, we can see that the groups G2,G3,G4,G6,G7,G10 are not isomorphic to
each other due to the different group actions involved in their semi-direct product
(please see appendix for more details). Therefore, all the eleven groups mentioned
above are non-isomorphic.

3.1 G1 := ((C3 × C3 × C3)⋊ C3)⋊ C2

The group G1 has the following presentation:

G1 = ⟨x1, x2, x3, x4, x5 | x2
1,[x2, x1], [x3, x1]x

−1
3 , [x4, x1]x

−1
5 x−1

4 , [x5, x1], x
3
2, [x3, x2]x

−1
4 ,

[x4, x2], [x5, x2], x
3
3, [x4, x3]x

−1
5 , [x5, x3], x

3
4, [x5, x4], x

3
5⟩.

The sizes (S), orders (O) and the representatives (R) of the 22 conjugacy classes of
G1 are:

R 1 x1 x2 x3 x4 x5 x1x2 x1x4 x1x5 x2
2 x2x3 x2x4 x2

5

S 1 9 3 18 6 1 9 9 9 3 18 3 1
O 1 2 3 3 3 3 6 6 6 3 9 3 3
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x1x
2
2 x1x2x3 x1x2x4 x2

2x3 x2
2x5 x2x4x5 x1x

2
2x3 x1x

2
2x5 x2

2x
2
4

9 9 9 18 3 3 9 9 3
6 6 6 9 3 3 6 6 3

It is clear that the exponent of G1 is 18.

Theorem 3.1. The unit group of the group algebra KG1 is as follows:
1. For q ≡ {1, 7, 13} mod 18, U(KG1) ∼= K∗6 ⊕GL2(K)3 ⊕GL3(K)12 ⊕GL6(K).

2. For q ≡ {5, 11, 17} mod 18, U(KG1) ∼= K∗2 ⊕ K2
∗2 ⊕ GL2(K) ⊕ GL2(K2) ⊕

GL3(K2)
6 ⊕GL6(K).

Proof. The group algebra KG1 is Artinian and semisimple. We observe that the
commutator subgroup G′

1
∼= (C3 × C3) ⋊ C3 and G1

G′
1

∼= C6. Since q = pk and p > 3,

we split the proof in the following 2 cases.

Case 1. q ≡ {1, 7, 13} mod 18. In this case, TG,K = {1, 7, 13}. So, for any g ∈ G1, we
have SK(γg) = {γgt | t ∈ TG,K} ⇒ SK(γg) = {γg, γg7 , γg13}. Further, we note that G1

contains elements of orders 1, 2, 3, 6, 9. For any element g ∈ G1 of order 2 or 3 or 6, we
note that g7 = g13 = g. This means that for such elements, we have SK(γg) = {γg}.
Furthermore, if g is any element of G1 of order 9, then it can be verified that g7 and
g13 belong to the conjugacy class of g. Consequently, SK(γg) = {γg} for any g ∈ G1 of
order 9. Therefore, we conclude that the cardinality of every cyclotomic K-class is 1.
So, the decomposition of the group algebra by using Proposition 2.2 and Lemma 2.3
is KG1

∼= K ⊕21
i=1 Mni(K), ni ≥ 1. By applying Lemma 2.4 (ii), we further deduce

that KG1
∼= K6 ⊕16

i=1 Mni(K), ni ≥ 2. Since the dimensions of both the sides are

same, we end up with 156 =
∑16

i=1 n
2
i . This equation has 13 different solutions. By

incorporating Lemma 2.5, we conclude that p can not be 5 and 7. This means that
we are remaining with 6 choices of ni’s given as follows:

(214, 6, 8), (212, 33, 9), (210, 34, 4, 8), (210, 45, 6), (26, 34, 46), (23, 312, 6).

Here, the notation ab means the b-tuple (a, a, · · · , b-times). We observe that the
subgroup N := ⟨x5⟩ is normal in G1 and F = G1/N ∼= (C3 × C3)⋊ C6. Using [4], we
note that the Wedderburn decomposition of KF for this case is KF ∼= K6⊕M2(K)3⊕
M6(K). Due to Lemma 2.4 (i), we are remaining with (214, 6, 8), (210, 45, 6), (23, 312, 6)
choices of ni’s. Next, we define the group homomorphism f : G1 → GL3(F7), where
F7 is a finite field having 7 elements, as follows:

x1 7→

0 1 0
1 0 0
0 0 1

, x2 7→

1 0 0
0 1 0
0 0 4

, x3 7→

0 0 1
1 0 0
0 1 0

, x4 7→

1 0 0
0 2 0
0 0 4

, x5 7→2I3,

where I3 is 3×3 identity matrix. One can verify that f is an irreducible representation
of G1 of degree 3. Therefore, Lemma 2.7 implies that M3(F7) must be a summand of
F7G1. This confirms that (23, 312, 6) is the final choice of the values of ni’s. Therefore,
we have KG1

∼= K6 ⊕M2(K)3 ⊕M3(K)12 ⊕M6(K).

Case 2. q ≡ {5, 11, 17} mod 18. In this case, the cyclotomic K-classes corresponding
to g3, g6, g7 and g8, respectively, include g10, g13, g14 and g9. Further, the cyclotomic
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K-classes corresponding to g11, g12, g15, g16 and g18, respectively, include g17, g22,
g20, g21 and g19, while the rest of the gi’s form individual classes. Therefore, per
Proposition 2.2, Lemma 2.3 and Lemma 2.4 (ii), the decomposition for this scenario
is given by KG1

∼= K2 ⊕K2
2 ⊕2

i=1 Mni
(K)⊕9

i=3 Mni
(K2), ni > 1 which means 156 =

n2
1+n2

2+2
∑9

i=3 n
2
i . Also, [4] implies thatKF ∼= K2⊕K2

2⊕M2(K)⊕M2(K2)⊕M6(K).
Thus, Lemma 2.4 (i) derives that KG1

∼= K2⊕K2
2 ⊕M2(K)⊕M6(K)⊕M2(K2)⊕6

i=1

Mni
(K2) and 54 =

∑6
i=1 n

2
i , where ni ≥ 2. By using the simple substitution, we

observe that the only possible choice of ni’s fulfilling above is (36).

3.2 G2 := ((C9 × C3)⋊ C3)⋊ C2

The group G2 has the following presentation:

G2 = ⟨x1, x2, x3,x4, x5 | x2
1, [x2, x1], [x3, x1]x

−1
3 , [x4, x1]x

−2
5 x−1

4 , [x5, x1], x
3
2x

−1
5 ,

[x3, x2]x
−1
4 , [x4, x2], [x5, x2], x

3
3, [x4, x3]x

−2
5 , [x5, x3], x

3
4, [x5, x4], x

3
5⟩.

The sizes, orders and the representatives of the 22 conjugacy classes of G2 are given
below:

R 1 x1 x2 x3 x4 x5 x1x2 x1x4 x2
2 x2x3 x2x4 x2x5 x2

5

S 1 9 3 18 6 1 9 9 3 18 3 3 1
O 1 2 9 3 3 3 18 6 9 9 9 9 3

x1x
2
2 x1x2x3 x1x2x4 x1x

2
4 x2

2x3 x2
2x5 x1x

2
2x3 x2

2x
2
5 x1x

2
2x3x5

9 9 9 9 18 3 9 3 9
18 18 18 6 9 9 18 9 18

It is clear that the exponent of G2 is 18.

Theorem 3.2. The unit group of the group algebra KG2 is given below:
1. For q ≡ {1} mod 18, U(KG2) ∼= K∗6 ⊕GL2(K)3 ⊕GL3(K)12 ⊕GL6(K).

2. For q ≡ {5, 11} mod 18, U(KG2) ∼= K∗2⊕K2
∗2⊕GL2(K)⊕GL2(K2)⊕GL3(K6)

2⊕
GL6(K).

3. For q ≡ {7, 13} mod 18, U(KG2) ∼= K∗6 ⊕GL2(K)3 ⊕GL3(K3)
4 ⊕GL6(K).

4. For q ≡ {17} mod 18, U(KG2) ∼= K∗2⊕K2
∗2⊕GL2(K)⊕GL2(K2)⊕GL3(K2)

6⊕
GL6(K).

Proof. The group algebra KG2 is Artinian and semisimple. We observe that the
commutator subgroup G′

2
∼= (C3 × C3) ⋊ C3 and G2

G′
2

∼= C6. Since q = pk and p > 3,

we split the proof in the following 4 cases.
Case 1. q ≡ {1} mod 18. In this case, the cardinality of every cyclotomic K-class
is 1. We proceed exactly on the similar lines of Case 1. of previous theorem to
note that (214, 6, 8), (210, 45, 6), (23, 312, 6) are the only possible choices of ni’s (this
group also has a normal subgroup generated by x5 with factor group isomorphic to
(C3×C3)⋊C6). To this end, we define the group homomorphism f : G2 → GL3(F19)



N. Abhilash, E. Nandakumar, G. Mittal, R. K. Sharma 7

as follows:

x1 7→

0 1 0
1 0 0
0 0 1

, x2 7→

6 0 0
0 6 0
0 0 4

, x3 7→

0 0 1
1 0 0
0 1 0

, x4 7→

1 0 0
0 11 0
0 0 7

, x5 7→7I3.

The group homomorphism f is an irreducible representation of G2 of degree 3. There-
fore, Lemma 2.7 implies that M3(F19) must be a summand of F19G2. This confirms
that (23, 312, 6) is the only possible choice of the values of ni’s. Therefore, we have
KG2

∼= K6 ⊕M2(K)3 ⊕M3(K)12 ⊕M6(K).

Case 2. q ≡ {5, 11} mod 18. In this case, the cyclotomic K-class corresponding to g3
includes g9, g11, g12, g19, g21 and g7 includes g14, g15, g16, g20, g22. Similarly, g6 includes
g13, g8 includes g17 and g10 includes g18, while rest of the gi’s form individual classes.
Therefore, per Proposition 2.2, Lemma 2.3 and Lemma 2.4 (ii), the decomposition is

KG2
∼= K2⊕K2

2 ⊕2
i=1Mni(K)⊕Mn3(K2)⊕5

i=4Mni(K6) and 156 =
∑2

i=1 n
2
i +2 ·n2

3+

6
∑5

i=4 n
2
i , where ni > 1. The possible choices of ni’s fulfilling above equation are

(2, 6, 2, 3, 3), (3, 3, 3, 2, 4), (3, 7, 5, 2, 2), (3, 9, 3, 2, 2), (6, 8, 2, 2, 2). We observe that the
subgroup N := ⟨x5⟩ is normal in G2 and F = G2/N ∼= (C3 × C3) ⋊ C6. Using [4],
we recall that KF ∼= K2 ⊕ K2

2 ⊕ M2(K) ⊕ M2(K2) ⊕ M6(K). Therefore, M2(K)
and M6(K) must be the Wedderburn components of KG2 per Lemma 2.4 (i). So,
(2, 6, 2, 3, 3) is the required choice, which means that KG2

∼= K2 ⊕ K2
2 ⊕ M2(K) ⊕

M2(K2)⊕M3(K6)
2 ⊕M6(K).

Case 3. q ≡ {7, 13} mod 18. In this case, the cyclotomic K-class corresponding
to g3 includes g11, g12 and that of g9 includes g19, g21. Similarly, the cyclotomic K-
class corresponding to g7 includes g15, g16 and that of g14 includes g20, g22. The rest
of the gi’s form individual classes. Therefore, per Proposition 2.2, Lemma 2.3 and
Lemma 2.4 (ii), the decomposition for this scenario is given by KG2

∼= K6 ⊕4
i=1

Mni
(K) ⊕8

i=5 Mni
(K3), ni > 1 with 156 =

∑4
i=1 n

2
i + 3

∑8
i=5 n

2
i . Again, using [4],

we note that KF ∼= K6 ⊕ M2(K)3 ⊕ M6(K). This and Lemma 2.4 (i) imply that
KG2

∼= K6 ⊕M2(K)3 ⊕M3(K3)
4 ⊕M6(K).

Case 4. q ≡ {17} mod 18. In this case, the cyclotomic K-class corresponding to
g3 includes g21 and g6 includes g13. Similarly, g7 incudes g22 and g8 includes g17.
Also, the cyclotomic K-class corresponding to g11 includes g9 and g10 includes g18.
Moreover, g15 includes g14 and g16 includes g20. Similarly, g12 includes g19, while the
rest of the gi’s form individual classes. Therefore, per Proposition 2.2, Lemma 2.3
and (Lemma 2.4 (ii), the decomposition for this case is given by KG2

∼= K2⊕K2
2 ⊕2

i=1

Mni
(K)⊕9

i=3 Mni
(K2), ni > 1 ⇒ 156 = n2

1 + n2
2 +

∑9
i=3 2 · n2

i . The possible choices
of ni’s fulfilling above are given below:

(22, 22, 32, 43), (2, 22, 35, 5), (2, 6, 2, 36), (32, 23, 3, 43), (32, 22, 34, 5), (3, 5, 25, 4, 5),

(3, 7, 26, 5), (3, 9, 26, 3), (42, 23, 32, 42), (4, 6, 25, 42)(4, 8, 25, 32), (52, 22, 35), (6, 8, 27).

We observe that the subgroup N := ⟨x5⟩ is normal in G2 and F = G2/N ∼= (C3 ×
C3)⋊ C6. Due to case 2 of Theorem 3.1, we know that KF ∼= K2 ⊕K2

2 ⊕M2(K)⊕
M2(K2)⊕M6(K). Therefore, M2(K) and M6(K) must be a Wedderburn component
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of KG2. So, (2, 6, 2, 36) is the required choice, which means that KG2
∼= K2 ⊕K2

2 ⊕
M2(K)⊕M2(K2)⊕M3(K2)

6 ⊕M6(K).

3.3 G3 := ((C9 × C3)⋊ C3)⋊ C2

The group G3 has the following presentation:

G3 = ⟨x1, x2, x3,x4, x5 | x2
1, [x2, x1], [x3, x1]x

−1
3 , [x4, x1]x

−1
5 x−1

4 , [x5, x1], x
3
2x

−1
5 ,

[x3, x2]x
−1
4 , [x4, x2], [x5, x2], x

3
3, [x4, x3]x

−1
5 , [x5, x3], x

3
4, [x5, x4], x

3
5⟩.

The sizes, orders and the representatives of the 22 conjugacy classes of G3 are given
below:

R 1 x1 x2 x3 x4 x5 x1x2 x1x4 x1x5 x2
2 x2x3 x2x4 x2

5

S 1 9 3 18 6 1 9 9 9 3 18 3 1
O 1 2 9 3 3 3 18 6 6 9 3 9 3

x1x
2
2 x1x2x3 x1x2x4 x2

2x3 x2
2x5 x2x4x5 x1x

2
2x3 x1x

2
2x5 x2

2x
2
4

9 9 9 18 3 3 9 9 3
18 18 18 3 9 9 18 18 9

It is clear that the exponent of G3 is 18.

Theorem 3.3. The unit group of the group algebra KG3 is given below:
1. For q ≡ {1} mod 18, U(KG3) ∼= K∗6 ⊕GL2(K)3 ⊕GL3(K)12 ⊕GL6(K).

2. For q ≡ {5, 11} mod 18, U(KG3) ∼= K∗2⊕K2
∗2⊕GL2(K)⊕GL2(K2)⊕GL3(K6)

2⊕
GL6(K).

3. For q ≡ {7, 13} mod 18, U(KG3) ∼= K∗6 ⊕GL2(K)3 ⊕GL3(K3)
4 ⊕GL6(K).

4. For q ≡ {17} mod 18, U(KG3) ∼= K∗2⊕K2
∗2⊕GL2(K)⊕GL2(K2)⊕GL3(K2)

6⊕
GL6(K).

Proof. The group algebra KG3 is Artinian and semisimple. We observe that the
commutator subgroup G′

3
∼= (C3 × C3)⋊ C3 and G3

G′
3

∼= C6.

Case 1. q ≡ {1} mod 18. In this case, the cardinality of every cyclotomic K-class
is 1. Therefore, by proceeding on the similar lines of Case 1. of Theorem 3.2 and
considering the group homomorphism from G3 to GL3(F19) as

x1 7→

0 1 0
1 0 0
0 0 1

, x2 7→

9 0 0
0 9 0
0 0 4

, x3 7→

0 0 1
1 0 0
0 1 0

, x4 7→

1 0 0
0 7 0
0 0 11

, x5 7→7I3,

we can conclude that KG3
∼= K6 ⊕ M2(K)3 ⊕ M3(K)12 ⊕ M6(K). The rest of the

proof can be done in similar ways of Theorem 3.2.

3.4 G4 := ((C9 × C3)⋊ C3)⋊ C2

The group G4 has the following presentation:

G4 = ⟨x1, x2, x3,x4, x5 | x2
1, [x2, x1]x

−1
4 x−1

2 , [x3, x1]x
−1
3 , [x4, x1]x

−1
4 , [x5, x1], x

3
2x

−2
4 ,
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[x3, x2]x
−1
5 , [x4, x2], [x5, x2], x

3
3, [x4, x3], [x5, x3], x

3
4, [x5, x4], x

3
5⟩.

The sizes, orders and the representatives of the 21 conjugacy classes of G4 are given
below:

R 1 x1 x2 x3 x4 x5 x1x5 x2
2 x2x3 x3x4 x4x5 x2

5

S 1 27 6 6 2 1 27 6 6 6 2 1
O 1 2 9 3 3 3 6 9 9 3 3 3

x1x
2
5 x2

2x3 x2x
2
3 x2x3x4 x2x

2
4 x2

3x4 x4x
2
5 x2x3x

2
4 x2

2x3x
2
4

27 6 6 6 6 6 2 6 6
6 9 9 9 9 3 3 9 9

It is clear that the exponent of G4 is 18.

Theorem 3.4. The unit group of the group algebra KG4 is given below:
1. For q ≡ {1} mod 18, U(KG4) ∼= K∗2 ⊕GL2(K)13 ⊕GL3(K)4 ⊕GL6(K)2.

2. For q ≡ {5, 11} mod 18, U(KG4) ∼= K∗2 ⊕ GL2(K)4 ⊕ GL2(K
3
3 ) ⊕ GL3(K2)

2 ⊕
GL6(K2).

3. For q ≡ {7, 13} mod 18, U(KG4) ∼= K∗2 ⊕ GL2(K)4 ⊕ GL2(K
3
3 ) ⊕ GL3(K)4 ⊕

GL6(K)2.

4. For q ≡ {17} mod 18, U(KG4) ∼= K∗2 ⊕GL2(K)13 ⊕GL3(K2)
2 ⊕GL6(K2).

Proof. The group algebra KG4 is Artinian and semisimple. We observe that the
commutator subgroup G′

4
∼= (C9 × C3)⋊ C3 and G4

G′
4

∼= C2.

Case 1. q ≡ {1} mod 18. In this case, the cardinality of every cyclotomic K-class
is 1. Therefore, the decomposition of the group algebra is KG4

∼= K2 ⊕19
i=1 Mni

(Ki),

where 160 =
∑19

i=1 n
2
i , ni > 1. We consider the normal subgroup N1 = ⟨x5⟩ of G4

with G4/N1
∼= (C9 × C3) ⋊ C2. Using [4], we see that K(G4/N1) ∼= K2 ⊕ M2(K)13.

This and Lemma 2.4 (i) imply that KG4
∼= K2 ⊕M2(K)13 ⊕6

i=1 Mni
(K) with 108 =∑6

i=1 n
2
i , ni > 1. Next, we consider the normal subgroup N2 := ⟨x4⟩ of G4. The

corresponding factor group G4/N2
∼= ((C3 × C3) ⋊ C3) ⋊ C2. Again, by [4], we

know that K(G4/N2) ∼= K2 ⊕ M2(K)4 ⊕ M3(K)4. This and Lemma 2.4 (i) give

KG4
∼= K2 ⊕M2(K)13 ⊕M3(K)4 ⊕2

i=1 Mni(K), with 72 =
∑2

i=1 n
2
i , ni > 1. The last

equation has a unique solution given by (62).

Case 2. q ≡ {5, 11} mod 18. In this case, the cyclotomic K-class of g3 includes
g8, g17, whereas g9 includes g16, g20 and g14 includes g15, g21. Similarly, g7, g13 come
under same class, g6, g12 come under same class and g11, g19 come under same class.
The rest of the gi’s form individual classes. The decomposition for this scenario is
given by KG4

∼= K2⊕4
i=1Mni

(K)⊕7
i=5Mni

(K2)⊕10
i=8Mni

(K3) with 160 =
∑4

i=1 n
2
i +

2
∑7

i=5 n
2
i + 3

∑10
i=8 n

2
i where ni > 1. Using [4], we know that K(G4/N1) ∼= K2 ⊕

M2(K)4 ⊕M2(K3)
3. This and Lemma 2.4 (i) derive that KG4

∼= K2 ⊕M2(K)4 ⊕3
i=1

Mni(K2)⊕M2(K3)
3, which means 54 =

∑3
i=1 n

2
i . The last equation has two solutions

namely (2, 52) and (32, 6). Using Lemma 2.6, ifM5(K2) is the Wedderburn component
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in this case, then M5(K) must be a Wedderburn component in case 1 which is not
so. Hence, (24, 32, 6, 23) is the unique choice.

Case 3. q ≡ {7, 13} mod 18. In this case, the cyclotomic K-class of g3 includes
g8, g17, whereas g9 includes g16, g20 and g14 includes g15, g21. Other representatives
forms individual classes. The group algebra KG4 decomposes as follows: KG9

∼=
K2 ⊕10

i=1 Mni(K) ⊕13
i=11 Mni(K3) with 160 =

∑10
i=1 n

2
i + 3

∑13
i=11 n

2
i , ni > 1. By

following the procedure as in the previous case (i.e., by considering the same normal
subgroup N1 and using the Wedderburn decomposition of K(G4/N1) for this case),
we can show that KG4

∼= K2 ⊕M2(K)4 ⊕M2(K3)
3 ⊕M3(K)4 ⊕M6(K)2.

Case 4. q ≡ {17} mod 18. By following the procedure as in previous cases, one can
show the result in this case. This completes the proof.

3.5 G5 := ((C3 × C3 × C3)⋊ C3)⋊ C2

The group G5 has the following presentation:

G5 = ⟨x1, x2, x3,x4, x5 | x2
1, [x2, x1]x

−1
2 , [x3, x1]x

−1
3 , [x4, x1]x

−2
5 , [x5, x1]x

−1
5 , x3

2,

[x3, x2]x
−1
4 , [x4, x2]x

−1
5 , [x5, x2], x

3
3, [x4, x3], [x5, x3], x

3
4, [x5, x4], x

3
5⟩.

The sizes, orders and the representatives of the 13 conjugacy classes of G5 are given
below:

R 1 x1 x2 x3 x4 x5 x1x4 x2x3 x3x5 x2
4 x1x

2
4 x2

2x3 x2
3x4

S 1 27 18 6 3 2 27 18 6 3 27 18 6
O 1 2 3 3 3 3 6 9 3 3 6 9 3

It is clear that the exponent of G5 is 18.

Theorem 3.5. The unit group of the group algebra KG5 is given below:
1. For q ≡ {1, 7, 13} mod 18, U(KG5) ∼= K∗2 ⊕GL2(K)4 ⊕GL3(K)4 ⊕GL6(K)3.

2. For q ≡ {5, 11, 17} mod 18, U(KG5) ∼= K∗2 ⊕GL2(K)4 ⊕GL3(K2)⊕GL6(K)3.

Proof. The group algebra KG5 is Artinian and semisimple. We observe that the
commutator subgroup G′

5
∼= (C3 × C3 × C3) ⋊ C3 and G5

G′
5

∼= C2. Since q = pk and

p > 3, we split the proof in the following 2 cases.
Case 1. q ≡ {1, 7, 13} mod 18. In this case, the cardinality of every cyclotomic K-
class is 1. Therefore, the decomposition of the group algebra by using Proposition 2.2
and Lemma 2.3 is KG5

∼= K ⊕12
i=1 Mni

(K), ni ≥ 1. By applying Lemma 2.4 (ii), we
further deduce that KG5

∼= K2 ⊕11
i=1 Mni

(K), ni ≥ 2. Since the dimensions of both

the sides are same, we end up with 160 =
∑11

i=1 n
2
i . We observe that the subgroup

N1 := ⟨x5⟩ is normal in G5 and F1 = G5/N1
∼= ((C3 × C3)⋊ C3)⋊ C2. Using [4], we

note that K(G4/N1) ∼= K2⊕M2(K)4⊕M3(K)4. This and Lemma 2.4 (i) deduce that

KG5
∼= K2⊕M2(K)4⊕M3(K)4⊕3

i=1Mni(K) with
∑3

i=1 n
2
i = 108. The last equation

has two solutions given by (22, 10) and (63). Also, by incorporating Lemma 2.5, we
conclude M10(K) can not be a Wedderburn component as p can be 5. This means
that (24, 34, 63) is the only possible choice of the values of ni’s.



N. Abhilash, E. Nandakumar, G. Mittal, R. K. Sharma 11

Case 2. q ≡ {5, 11, 17} mod 18. In this case, the cyclotomic K-class corresponding
to g5 includes g10 and g7 includes g11, while the rest of the gi’s form individual classes.
Therefore, per Proposition 2.2, Lemma 2.3 and Lemma 2.4 (ii), the decomposition in

this case is KG5
∼= K2 ⊕7

i=1 Mni
(K) ⊕9

i=8 Mni
(K2), ni > 1, where 160 =

∑7
i=1 n

2
i +

2
∑9

i=8 n
2
i . Using [4], we recall that KF1

∼= K2 ⊕ M2(K)4 ⊕ M3(K)2. From this
and Lemma 2.4 (i), for KG, (26, 10, 32) and (24, 63, 32) are the only choices. Also,
by Lemma 2.5, M5(K) can not be a Wedderburn component as p can be 5. So,
(24, 63, 32) is the unique value of ni’s.

3.6 G6 := ((C9 × C3)⋊ C3)⋊ C2

The group G6 has the following presentation:

G6 = ⟨x1, x2,x3, x4, x5 | x2
1, [x2, x1]x

−1
2 , [x3, x1]x

−2
5 x−1

3 , [x4, x1]x
−2
5 , [x5, x1]x

−1
5 , x3

2,

[x3, x2]x
−1
4 , [x4, x2]x

−1
5 , [x5, x2], x

3
3x

−1
5 , [x4, x3], [x5, x3], x

3
4, [x5, x4], x

3
5⟩.

By constructing the table of conjugacy classes as in the case of previous groups, we
can note that the exponent of G6 is 18 and it has 13 conjugacy classes.

Theorem 3.6. The unit group of the group algebra KG6 is given below:

1. For q ≡ {1} mod 18, U(KG6) ∼= K∗2 ⊕GL2(K)4 ⊕GL3(K)4 ⊕GL6(K)3.

2. For q ≡ {5, 11} mod 18, U(KG6) ∼= K∗2 ⊕GL2(K)4 ⊕GL3(K2)
2 ⊕GL6(K3).

3. For q ≡ {7, 13} mod 18, U(KG6) ∼= K∗2 ⊕GL2(K)4 ⊕GL3(K)4 ⊕GL6(K3).

4. For q ≡ {17} mod 18, U(KG6) ∼= K∗2 ⊕GL2(K)4 ⊕GL3(K2)
2 ⊕GL6(K)3.

Proof. We note that the decompositions can be calculated using the same procedure
as in Theorems 3.5 and 3.4. Therefore, we skip the proof. □

3.7 G7 := ((C9 × C3)⋊ C3)⋊ C2

The group G7 has the following presentation:

G7 = ⟨x1, x2,x3, x4, x5 | x2
1, [x2, x1]x

−1
2 , [x3, x1]x

−1
3 , [x4, x1], [x5, x1]x

−1
5 , x3

2,

[x3, x2]x
−1
4 , [x4, x2]x

−1
5 , [x5, x2], x

3
3, [x4, x3]x

−2
5 , [x5, x3], x

3
4, [x5, x4], x

3
5⟩.

We can note that the exponent of G7 is 18 and it has 13 conjugacy classes. The proof
of the following theorem follows similarly as that of Theorem 3.6.

Theorem 3.7. The unit group of the group algebra KG7 is given below:

1. For q ≡ {1} mod 18, U(KG7) ∼= K∗2 ⊕GL2(K)4 ⊕GL3(K)4 ⊕GL6(K)3.

2. For q ≡ {5, 11} mod 18, U(KG7) ∼= K∗2 ⊕GL2(K)4 ⊕GL3(K2)
2 ⊕GL6(K3).

3. For q ≡ {7, 13} mod 18, U(KG7) ∼= K∗2 ⊕GL2(K)4 ⊕GL3(K)4 ⊕GL6(K3).

4. For q ≡ {17} mod 18, U(KG7) ∼= K∗2 ⊕GL2(K)4 ⊕GL3(K2)
2 ⊕GL6(K)3.
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3.8 G8 := (C3 · ((C3 × C3)⋊ C3))⋊ C2

The group G8 has the following presentation:

G8 = ⟨x1, x2, x3, x4, x5 | x2
1, [x2, x1]x

−1
5 x−1

2 , [x3, x1]x
−1
5 x−1

3 , [x4, x1]x
−2
5 , [x5, x1]x

−1
5 ,

x3
2x

−2
5 , [x3, x2]x

−1
4 , [x4, x2]x

−1
5 , [x5, x2], x

3
3x

−2
5 , [x4, x3], [x5, x3], x

3
4, [x5, x4], x

3
5⟩.

By constructing the table of conjugacy classes as in the case of previous groups, we
can note that the exponent of G8 is 18 and it has 13 conjugacy classes.

Theorem 3.8. The unit group of the group algebra KG8 is given below:
1. For q ≡ {1} mod 18, U(KG8) ∼= K∗2 ⊕GL2(K)4 ⊕GL3(K)4 ⊕GL6(K)3.

2. For q ≡ {5, 11} mod 18, U(KG8) ∼= K∗2 ⊕GL2(K)4 ⊕GL3(K2)
2 ⊕GL6(K3).

3. For q ≡ {7, 13} mod 18, U(KG8) ∼= K∗2 ⊕GL2(K)4 ⊕GL3(K)4 ⊕GL6(K3).

4. For q ≡ {17} mod 18, U(KG8) ∼= K∗2 ⊕GL2(K)4 ⊕GL3(K2)
2 ⊕GL6(K)3.

Proof. The proof is similar to that in Theorems 3.5 and 3.4. We therefore omit it. □

3.9 G9 := C3 × (((C3 × C3)⋊ C3)⋊ C2)

One can note that the exponent of the group (C3 ×C3)⋊C3)⋊C2 is 6. This means
that the exponent of G9 is 6.

Theorem 3.9. The unit group of the group algebra KG9 is given below:
1. For q ≡ {1} mod 6, U(KG9) ∼= K∗6 ⊕GL2(K)12 ⊕GL3(K)12.

2. For q ≡ {5} mod 6, U(KG9) ∼= K∗2 ⊕K∗
2
2 ⊕GL2(K)4 ⊕GL2(K2)

4 ⊕GL3(K2)
6.

Proof. Since G9 is a direct product of two groups, its decomposition can be deduced
using decompsition of the groups (C3×C3)⋊C3)⋊C2 and C3 through tensor product
as in [13]. □

3.10 G10 := ((C9 × C3)⋊ C3)⋊ C2

The group G10 has the following presentation:

G10 = ⟨x1, x2, x3, x4, x5 | x2
1, [x2, x1], [x3, x1]x

−1
3 , [x4, x1]x

−1
4 , [x5, x1], x

3
2x

−1
5 , [x3, x2],

[x4, x2], [x5, x2], x
3
3, [x4, x3]x

−1
5 , [x5, x3], x

3
4, [x5, x4], x

3
5⟩.

By constructing the table of conjugacy classes as in the case of previous groups, we
can note that the exponent of G10 is 18 and it has 30 conjugacy classes.

Theorem 3.10. The unit group of the group algebra KG10 is given below:
1. For q ≡ {1} mod 18, U(KG10) ∼= K∗6 ⊕GL2(K)12 ⊕GL3(K)12.

2. For q ≡ {5, 11} mod 18, U(KG10) ∼= K∗2⊕K∗
2
2⊕GL2(K)4⊕GL2(K2)

4⊕GL3(K6)
2.

3. For q ≡ {7, 13} mod 18, U(KG10) ∼= K∗6 ⊕GL2(K)12 ⊕GL3(K3)
4.

4. For q ≡ {17} mod 18, U(KG10) ∼= K∗2⊕K∗
2
2⊕GL2(K)4⊕GL2(K2)

4⊕GL3(K2)
6.
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Proof. The group algebra KG10 is Artinian and semisimple. We observe that the
commutator subgroup G′

10
∼= (C3 × C3)⋊ C3 and G10

G′
10

∼= C6.

Case 1. q ≡ {1} mod 18. In this case, the cardinality of every cyclotomic K-class
is 1. Therefore, the decomposition of the group algebra by using Proposition 2.2 and
Lemma 2.3 is KG9

∼= K⊕29
i=1Mni

(K), ni ≥ 1. By applying Lemma 2.4 (ii), we further
deduce that KG9

∼= K6 ⊕24
i=1 Mni

(K), ni ≥ 2. Since the dimensions of both the sides

are same, we end up with 156 =
∑24

i=1 n
2
i . This equation has 5 different solutions

given as (223, 8), (220, 33, 7), (219, 45), (218, 33, 42, 5), (212, 312).

By incorporating Lemma 2.5, we conclude that p can not be 5 and 7. This means
that we are remaining with 3 choices of ni’s. We define the group homomorphism
f : G10 → GL3(F19) as follows:

x1 7→

18 0 0
0 0 18
0 18 0

, x2 7→

4 0 0
0 4 0
0 0 4

, x3 7→

0 0 1
1 0 0
0 1 0

, x4 7→

1 0 0
0 7 0
0 0 11

, x5 7→7I3.

The group homomorphism f is an irreducible representation of G10 of degree 3.
Therefore, Lemma 2.7 implies that M3(F19) must be a summand of F19G10. This
confirms that (212, 312) is the only possible choice of the values of ni’s.
The rest of the cases can be done on the similar lines of the cases of Theorem 3.4. □

3.11 G11 := (C3 × ((C3 × C3)⋊ C3))⋊ C2

The group G11 has the following presentation:

G11 = ⟨x1, x2, x3, x4, x5 | x2
1, [x2, x1]x

−1
2 , [x3, x1]x

−1
3 , [x4, x1]x

−1
4 , [x5, x1], x

3
2, [x3, x2],

[x4, x2], [x5, x2], x
3
3, [x4, x3]x

−1
5 , [x5, x3], x

3
4, [x5, x4], x

3
5⟩.

By constructing the table of conjugacy classes as in the case of previous groups, we
can note that the exponent of G11 is 6 and it has 21 conjugacy classes.

Theorem 3.11. The unit group of the group algebra KG11 is given below:
1. For q ≡ {1} mod 6, U(KG11) ∼= K∗2 ⊕GL2(K)13 ⊕GL3(K)4 ⊕GL6(K)2.

2. For q ≡ {5} mod 6, U(KG11) ∼= K∗2 ⊕GL2(K)13 ⊕GL3(K2)
2 ⊕GL6(K2).

Proof. The group algebra KG11 is Artinian and semisimple. We observe that the
commutator subgroup G′

11
∼= C3 × ((C3 × C3)⋊ C3) and

G11

G′
11

∼= C2.

Case 1. q ≡ {1} mod 6. In this case, the cardinality of every cyclotomic K-class is 1.
Therefore, the decomposition of the group algebra is KG11

∼= K⊕20
i=1Mni(K), ni ≥ 1.

By applying Lemma 2.4 (ii), we further deduce that KG11
∼= K2⊕19

i=1Mni
(K), ni ≥ 2.

Since the dimensions of both the sides are same, we end up with 160 =
∑19

i=1 n
2
i .

We observe that the subgroup N1 := ⟨x5⟩ is normal in G11 and F1 = G11/N1
∼=

(C3 × C3 × C3) ⋊ C2. Using [4] and Lemma 2.4 (i), we reach at KG11
∼= K2 ⊕

M2(K)13 ⊕6
i=1 Mni

(K), ni ≥ 2. Again consider the subgroup N2 := ⟨x2⟩ which is
normal in G11 and F2 = G11/N2

∼= ((C3 × C3) ⋊ C3) ⋊ C2. Again using [4] and
Lemma 2.4 (i), we conclude that KG11

∼= K2 ⊕M2(K)13 ⊕M3(K)4 ⊕M6(K)2.

Case 2. q ≡ {5} mod 6 can be shown by analogy with Case 2. Theorem 3.5.
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4. Conclusion

We have studied the unit group of semisimple group algebras of non-metabelian groups
of order 162, and this paper completes the study of unit groups of semisimple group
algebras of all groups up to order 162 except those of groups of order 150 and 160.
It is clear that as the size of the group increases, new techniques are needed to
uniquely characterize the unit groups. This paper motivates the researchers to find
an algorithm that computes the Wedderburn decomposition of a semisimple group
algebra of any finite group.

Acknowledgement. The authors are sincerely thankful to the reviewer for pro-
viding many thoughtful comments and suggestions that have immensely helped in
improving the content of this paper.
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Appendix

Group actions involved in the semi-direct product

In this section, we discuss the group actions involved in the semi-direct products of
the groups G2,G3,G4,G6,G7,G10. Basically, we explain the homomorphisms from C2

to (C9×C3)⋊C3, which generate each group. Using GAP, it can be noted that there
are 4 non-isomorphic groups having similar structure given by (C9 × C3) ⋊ C3. We
call them as H1, H2, H3 and H4. The presentations of these groups H1, H2, H3 and
H4 can be written as:

H1 = ⟨f1, f2, f3, f4 | f3
1 f

−1
4 , [f2, f1]f

−1
3 , [f3, f1], [f4, f1], f

3
2 , [f3, f2], [f4, f2], f

3
3 , [f4, f3], f

3
4 ⟩,

H2 = ⟨f1, f2, f3, f4 | f3
1 , [f2, f1]f

−1
3 , [f3, f1]f

−1
4 , [f4, f1], f

3
2 f

−1
4 , [f3, f2], [f4, f2], f

3
3 , [f4, f3], f

3
4 ⟩,

H3 = ⟨f1, f2, f3, f4 | f3
1 , [f2, f1]f

−1
3 , [f3, f1]f

−1
4 , [f4, f1], f

3
2 f

−2
4 , [f3, f2], [f4, f2], f

3
3 , [f4, f3], f

3
4 ⟩,

H4 = ⟨f1, f2, f3, f4 | f3
1 , [f2, f1]f

−1
4 , [f3, f1], [f4, f1], f

3
2 , [f3, f2], [f4, f2], f

3
3 f

−1
4 , [f4, f3], f

3
4 ⟩.

Finally, we discuss the group actions corresponding to the groups G2,G3,G4,G6,G7

and G10.
• We consider σ3 ∈ Aut(H1) which maps f1, f2, f3, f4 to f2

1 f
2
4 , f2f3, f

2
3 , f4, respec-

tively. Also σ3 is an element of order 2 in Aut(H1). Therefore, the group homomor-
phism C2 7→ H1 generates G2 via σ3.

• We consider σ4 ∈ Aut(H2) which maps f1, f2, f3, f4 to f2
1 f

2
2 f

2
3 , f2, f

2
3 f4, f4, respec-

tively. Moreover, we consider σ5 ∈ Aut(H2) which maps f1, f2, f3, f4 to f2
1 f

2
3 f

2
4 , f

2
2 ,

f3, f
2
4 , respectively. We note that the order of elements σ4, σ5 ∈ Aut(H2) is 2. Hence,

the group homomorphism C2 7→ H2 generates G3 via σ4 and the group homomorphism
C2 7→ H2 generates G4 via σ5.

• We consider σ6 ∈ Aut(H3) which maps f1, f2, f3, f4 to f1, f2, f3, f4 to f2
1 , f

2
2 f

2
4 ,

f3f
2
4 , f

2
4 , respectively. Moreover, we consider σ7 ∈ Aut(H2) which maps f1, f2, f3, f4

to f2
1 , f

2
2 f

2
4 , f3f

2
4 , f

2
4 , respectively. Also, the order of elements σ6, σ7 ∈ Aut(H3) is 2.

Therefore, the group homomorphism C2 7→ H3 generates G6 via σ6 and the group
homomorphism C2 7→ H3 generates G7 via σ7.

• By considering σ8 ∈ Aut(H4) which maps f1, f2, f3, f4 to f2
1 , f

2
2 f

2
4 , f3, f4, respec-

tively, we note that the group homomorphism C2 7→ H4 generates G10 via σ8.
Therefore, due to the different group actions mentioned above, we observe that

the groups G2,G3,G4,G6,G7,G10 are non-isomorphic to each other.
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