MATEMATIČKI VESNIK MATEMATИЧКИ BECHИК Corrected proof Available online 09.09.2024

research paper оригинални научни рад DOI: 10.57016/MV-HBUM1359

THREE WEAK SOLUTIONS FOR A p(x)-LAPLACIAN EQUATION

Mohsen Alimohammady, Asieh Rezvani and Ismail Aydin

Abstract. We study the existence of three weak solutions to the Dirichlet boundary condition for a p(x)-Laplacian equation. Using a variational method and the three critical point theorem, we would show the existence and multiplicity of the solutions. For this purpose, we focus on a generalized variable exponent Lebesgue-Sobolev space.

1. Introduction

In this article we study the following problem:

$$\begin{cases} -div[O(x, |\nabla u|)\nabla u] + |u|^{p(x)-2}u = \lambda(a(x)|u|^{q(x)-2} - b(x)|u|^{r(x)-2})u & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1)

where Ω is a bounded domain of \mathbb{R}^N with a sufficiently smooth boundary. Let λ be a positive real parameter and p, q and r be real continuous functions on $\overline{\Omega}$ with $1 < q(x) < r(x) < p(x) < p^*(x)$, where $p^*(x) = \frac{Np(x)}{N - p(x)}$ and p(x) < N for all $x \in \overline{\Omega}$, $O(x,\xi)$ is of type $|\xi|^{p(x)-2}$. $\Delta_{p(x)}u := div(|\nabla u|^{p(x)-2}\nabla u)$ denotes the p(x)-Laplacian operator (for details see [2, 8, 15]). We consider the following conditions. $(H_1) \ O: \overline{\Omega} \times [0, \infty) \to \mathbb{R}$ is a continuous function such that

$$C_1 t^{p(x)-2} \le O(x,t) \le C_2 t^{p(x)-2},$$

for all $t \ge 0$ and for all $x \in \overline{\Omega}$, where C_1 , C_2 are positive constants and $p \in C(\overline{\Omega})$ such that $1 < p(x) < p^*(x)$ for all $x \in \overline{\Omega}$.

 (H_2) a and b are positive functions in $L^{\infty}(\bar{\Omega})$ and there exists $\varepsilon > 0$ for all $x \in \bar{\Omega}$, such that $\varepsilon < a(x)$ and $\varepsilon < b(x)$.

 $(H_3) ||a||_{\infty} < ||b||_{\infty}.$

²⁰²⁰ Mathematics Subject Classification: 35A15, 35J35, 46E35

Keywords and phrases: p(x)-Laplacian; variational method; three solutions; Sobolev space.

Many results have been obtained on this kind of problems. For literature in [11], the authors studied the existence of at least one positive radial solution for the problem:

$$\begin{cases} -\triangle_{p(x)}u + R(x)|u|^{p(x)-2}u = a(x)|u|^{q(x)-2}u - b(x)|u|^{r(x)-2}u & x \in B, \\ u > 0 & x \in B, \\ u = 0 & x \in \partial B, \end{cases}$$

where B is the unit ball centered at the origin in \mathbb{R}^N , $N \geq 3$. In [15], V. F. Uta considered the existence of minimum action solutions and the concentration of the spectrum in a bounded interval for the following problem using the Mountain pass theorem and the Nehari manifold technique:

$$\begin{cases} -div[\Phi(x,|\nabla u|)\nabla u] = \lambda(g(x)|u|^{q(x)-2}u + |u|^{r(x)-2}u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

In [13], I. D. Stircu, studied the existence at least two weak solutions for the following problem using the Mountain pass theorem:

$$\begin{cases} -div[\Phi(x,|\nabla u|)\nabla u] + |u|^{p(x)-2}u = \lambda|u|^{r(x)-2}u - h(x)|u|^{s(x)-2}u & \text{in }\Omega, \\ u = 0 & \text{on }\partial\Omega \end{cases}$$

Ismail Aydin and Cihan Unal in [1] have found the existence of at least three weak solutions to the following Steklov problem using the three critical points theorem:

$$\begin{cases} div(a(x)|\nabla u|^{p(x)-2}\nabla u) = b(x)|u|^{p(x)-2}u & \text{in }\Omega, \\ a(x)|\nabla u|^{p(x)-2}\frac{\partial u}{\partial v} = \lambda f(x,u) & \text{on }\partial\Omega. \end{cases}$$

In [14], S. Taarabti, Z. E. Allali and K. B. Haddouch studied the following p(x)biharmonic problem using the three critical points theorem:

$$\begin{cases} \Delta_{p(x)}^2 + a(x)|u|^{p(x)-2}u = \beta V(x)f(x,u) & \text{in } \Omega, \\ \frac{\partial u}{\partial v} = \frac{\partial}{\partial v}(|\Delta u|^{p(x)-2}\Delta u) = 0 & \text{on } \partial\Omega \end{cases}$$

Here, we study the existence and multiplicity of the solutions for the problem (1)by using the variational method and the three critical point theorem.

2. Preliminaries

We recall some necessary definitions and propositions concerning the Lebesgue and Sobolev spaces. Let Ω be a bounded domain of \mathbb{R}^N . Set $C_+(\Omega) := \{s \in C(\overline{\Omega}); s(x) > 1, \forall x \in \overline{\Omega}\}$. For any continuous function $s : \Omega \to (1, \infty), s^- := \inf_{x \in \Omega} s(x)$ and $s^+ := \sup_{x \in \Omega} s(x)$. For $s \in C_+(\overline{\Omega}), L_{s(x)}(\Omega) := \{u : \Omega \to \mathbb{R} \text{ is a measurable function:}$
$$\begin{split} &\int_{\Omega} |u|^{s(x)} dx < +\infty \}, \text{ endowed with the norm } \|u\|_{s(x)} \coloneqq \inf \left\{ \mu > 0 : \int_{\Omega} \left| \frac{u(x)}{\mu} \right|^{s(x)} dx \leq 1 \right\}. \\ &L_{s(x)}(\Omega) \text{ is well known that is a separable reflexive Banach space } [3,7,9]. \\ &\text{ The modular of the } L_{s(x)}(\Omega) \text{ is defined by } \sigma_{s(x)}(u) \coloneqq \int_{\Omega} |u(x)|^{s(x)} dx. \end{split}$$

PROPOSITION 2.1 ([5,8]). $(L_{s(x)}(\Omega), \|.\|_{s(x)})$ is separable, uniformly convex, reflexive Banach space and its conjugate space is $(L_{s'(x)}(\Omega), \|.\|_{s'(x)})$, where $\frac{1}{s(x)} + \frac{1}{s'(x)} = 1$, $\forall x \in \Omega$. For all $u \in L_{s(x)}(\Omega)$ and $w \in L_{s'(x)}(\Omega)$, we have

$$\left|\int_{\Omega} uw \, dx\right| \le \left(\frac{1}{s^{-}} + \frac{1}{s'^{-}}\right) \|u\|_{s(x)} \|w\|_{s'(x)} \le 2\|u\|_{s(x)} \|w\|_{s'(x)}.$$

Proposition 2.2 ([6,9]). Suppose that $u, u_n \in L_{s(x)}(\Omega)$, we have

$$\begin{aligned} \|u\|_{s(x)} &< 1 \Rightarrow \|u\|_{s(x)}^{s'} \leq \sigma_{s(x)}(u) \leq \|u\|_{s(x)}^{s}. \\ \|u\|_{s(x)} &> 1 \Rightarrow \|u\|_{s(x)}^{s'} \leq \sigma_{s(x)}(u) \leq \|u\|_{s(x)}^{s^+}. \\ \|u\|_{s(x)} &< 1(resp, = 1; > 1) \Leftrightarrow \sigma_{s(x)}(u) < 1(resp, = 1; > 1). \\ \|u_n\|_{s(x)} &\to 0(resp, \to +\infty) \Leftrightarrow \sigma_{s(x)}(u_n) \to 0(resp, \to +\infty). \\ \lim_{n \to \infty} \|u_n - u\|_{s(x)} = 0 \Leftrightarrow \lim_{n \to \infty} \sigma_{s(x)}(u_n - u) = 0. \end{aligned}$$

The Sobolev space $W^{1,s(x)}(\Omega)$, $W^{1,s(x)}(\Omega) := \{ u \in L_{s(x)}(\Omega) : |\nabla u| \in L_{s(x)}(\Omega) \}$ is a separable and reflexive Banach spaces with norm $||u||_{1,s(x)} = ||u||_{s(x)} + ||\nabla u||_{s(x)}$. For more details, we refer to [4,9].

On $W_0^{1,s(x)}(\Omega)$, we may consider the following equivalent norm $||u||_{s(x)} = ||\nabla u||_{s(x)}$, where $W_0^{1,s(x)}(\Omega)$ is the closure of $C_0^{\infty}(\Omega)$ with respect to the following norm:

$$\|u\| = \inf\left\{\mu > 0: \int_{\Omega} \left(\left|\frac{\nabla u(x)}{\mu}\right|^{s(x)}\right) dx \le 1\right\}.$$

It is known that $W_0^{1,s(x)}(\Omega) := \left\{ u; u \Big|_{\partial\Omega} = 0, u \in L^{s(x)}(\Omega), |\nabla u| \in L^{s(x)}(\Omega) \right\}$. For more details, we refer to [2,4,15].

PROPOSITION 2.3 ([5, Sobolev Embedding]). For $s, s' \in C_+(\bar{\Omega})$ and $1 < s'(x) < s^*(x)$ for all $x \in \bar{\Omega}$, there is a continuous compact embedding $W_0^{1,s(x)}(\Omega) \hookrightarrow L_{s'(x)}(\Omega)$, which is continuous and compact. Therefore, there is a constant $c_0 > 0$ such that $\|u\|_{s'(x)} \leq c_0 \|u\|$.

PROPOSITION 2.4 ([10, Poincare Inequality]). There is a constant c > 0 such that $||u||_{s(x)} \leq C ||\nabla u||_{s(x)}$, for all $u \in W_0^{1,s(x)}(\Omega)$.

REMARK 2.5. From Proposition 2.4, $\|\nabla u\|_{s(x)}$ and $\|u\|_{1,s(x)}$ are equivalent norms on $W_0^{1,s(x)}(\Omega)$.

3. Main results

Before to the proceed the results, we need some notions.

DEFINITION 3.1. $u \in W_0^{1,p(x)}(\Omega)$ is called a *weak solution* for (1) if

$$\int_{\Omega} O(x, |\nabla u(x)|) \nabla u(x) \nabla h(x) dx + \int_{\Omega} |u(x)|^{p(x)-2} u(x) h(x) dx$$

$$=\lambda \int_{\Omega} [a(x)|u(x)|^{q(x)-2}u(x)h(x) - b(x)|u(x)|^{r(x)-2}u(x)h(x)]dx,$$

for all $h \in W_0^{1,p(x)}(\Omega)$. In what follows

$$A_0(x,z) := \int_0^z O(x,t)t \, dt,$$

$$A : W_0^{1,p(x)}(\Omega) \to \mathbb{R} \quad \text{by} \quad A(u) := \int_\Omega A_0(x, |\nabla u(x)|) dx.$$

and

The energy functional associated to problem (1) can obtained by

$$J(u) = \int_{\Omega} A_0(x, |\nabla u|) dx + \int_{\Omega} \frac{1}{p(x)} |u|^{p(x)} dx - \lambda \int_{\Omega} \frac{a(x)}{q(x)} |u|^{q(x)} dx + \lambda \int_{\Omega} \frac{b(x)}{r(x)} |u|^{r(x)} dx,$$

for all $u \in W_0^{1,p(x)}(\Omega)$. It is well defined, C^1 functional and for all $u, h \in W_0^{1,p(x)}(\Omega)$,

$$\langle J'(u),h\rangle = \int_{\Omega} O(x,|\nabla u|)\nabla u.\nabla h dx + \int_{\Omega} |u|^{p(x)-2} uh dx \\ -\lambda \int_{\Omega} a(x)|u|^{q(x)-2} uh dx + \lambda \int_{\Omega} b(x)|u|^{r(x)-2} uh dx.$$

Therefore, critical points of this energy functional are week solutions for the problem (1). We consider $\Omega \subset \mathbb{R}^N (N > 3)$ as a bounded domain with smooth boundary and $p \in C_+(\Omega)$ such that

$$1 < q^{-} \le q(x) \le q^{+} < r^{-} \le r(x) \le r^{+} < p^{-} \le p(x) \le p^{+} < p^{*}(x)$$
(2)

THEOREM 3.2 ([12]). Let X be a separable and reflexive real Banach space, $\Phi : X \to \mathbb{R}$ is a continuous Gateaux differentiable and sequentially weakly lower semicontinuous functional whose Gateaux derivative admits a continuous inverse on X', $\Psi : X \to \mathbb{R}$ is a continuous Gateaux differentiable functional whose Gateaux derivative is compact. Suppose the following assertions:

- (i) $\lim_{\|u\|\to\infty} (\Phi(u) + \lambda \Psi(u)) = \pm \infty$, for all $\lambda > 0$,
- (ii) There exist $e \in \mathbb{R}$ and $u_0, u_1 \in X$ such that $\Phi(u_0) < e < \Phi(u_1)$,

(*iii*)
$$\inf_{u \in \Phi^{-1}(-\infty,e]} \Psi(u) > \frac{(\Phi(u_1) - e)\Psi(u_0) + (e - \Phi(u_0))\Psi(u_1)}{\Phi(u_1) - \Phi(u_0)}$$

Then there exist an open interval $\Lambda \subset (0, +\infty)$ and a positive real number γ such that the equation $\Phi'(u) + \lambda \Psi'(u) = 0$ admits at least three solutions in X whose norms are less than γ , for all $\lambda \in \Lambda$.

THEOREM 3.3. If (2) and (H_1) - (H_3) hold. Then, there exist an open interval $\Lambda \subset (0, +\infty)$ and a positive real number γ such that for any $\lambda \in \Lambda$, the problem (1) has at least three solutions in $W_0^{1,p(x)}(\Omega)$ whose norms are less than γ .

PROPOSITION 3.4 ([1]). Let us define the functional $\Phi: W_0^{1,p(x)}(\Omega) \to \mathbb{R}$ by $\Phi(u) = \int_{\Omega} A_0(x, |\nabla u|) dx + \int_{\Omega} \frac{1}{p(x)} |u|^{p(x)} dx,$

 $\langle \Psi$

for all $u \in W_0^{1,p(x)}(\Omega)$. Then, we have (i) $\Phi : W_0^{1,p(x)}(\Omega) \to \mathbb{R}$ is sequentially weakly lower semicontinuous and $\Phi \in \mathbb{R}$ $C^{1}(W_{0}^{1,p(x)}(\Omega),\mathbb{R})$. Moreover, the derivative operator Φ' of Φ define as

$$\langle \Phi'(u), h \rangle = \int_{\Omega} O(x, |\nabla u|) \nabla u \nabla h dx + \int_{\Omega} |u|^{p(x)-2} u h dx.$$

for all $u, h \in W_0^{1,p(x)}(\Omega)$.

(ii) $\Phi': W_0^{1,p(x)}(\Omega) \to (W_0^{1,p(x)}(\Omega))^*$ is a continuous, bounded and strictly monotone operator.

(iii) The mapping $\Phi': W_0^{1,p(x)}(\Omega) \to (W_0^{1,p(x)}(\Omega))^*$ is of (S_+) type, i.e., if $u_n \rightharpoonup u$ as $n \to \infty$ and $\limsup_{n \to \infty} \langle \Phi'(u_n), u_n - u \rangle \leq 0$ implies $u_n \to u$.

(iv)
$$\Phi': W_0^{1,p(x)}(\Omega) \to (W_0^{1,p(x)}(\Omega))^*$$
 is a homeomorphism.

Let

$$\Psi(u) = \int_{\Omega} \frac{a(x)}{q(x)} |u|^{q(x)} dx - \int_{\Omega} \frac{b(x)}{r(x)} |u|^{r(x)} dx.$$

$$(u), h = \int_{\Omega} a(x) |u|^{q(x)-2} uh \, dx - \int_{\Omega} b(x) |u|^{r(x)-2} uh \, dx.$$

We have

Therefore, Ψ is a C^{1-} function on $W_{0}^{1,p(x)}(\Omega)$ and by [3], Ψ' satisfied the condition (S_+) . By using H_2 and the compact Sobolev embedding $W_0^{1,s(x)}(\Omega) \hookrightarrow L_{q(x)}(\Omega)$ and $W_0^{1,s(x)}(\Omega) \hookrightarrow L_{r(x)}(\Omega)$. It is direct to see that Ψ' is compact.

Proof (Proof of Theorem 3.3). To prove this theorem, we first verify the condition (i) of Theorem 3.2

$$\Phi(u) = \int A_0(x, |\nabla u|) dx + \int_{\Omega} \frac{1}{p(x)} |u|^{p(x)} dx = \int_{\Omega} \left[\int_0^{|\nabla u|} O(x, t) t \, dt \right] + \int_{\Omega} \frac{1}{p(x)} |u|^{p(x)} dx$$

$$\geq \int_{\Omega} \left[C_1 \int_0^{|\nabla u|} t^{p(x)-1} dt \right] dx + \int_{\Omega} \frac{1}{p(x)} |u|^{p(x)} dx \ge \frac{C_1}{p^+} \int_{\Omega} |\nabla u|^{p(x)} dx + \frac{1}{p^+} \int |u|^{p(x)} dx$$
Set $C_2 = \min\{\frac{C_1}{p_1}, \frac{1}{p_2}\}$. If $\sigma_{-(x)}(u) := \int_{\Omega} |u(x)|^{p(x)} dx$ and $\sigma_{-(x)}(u) > 1$, by Proposi-

Set $C_2 = \min\{\frac{1}{p^+}, \frac{1}{p^+}\}$. If $\sigma_{p(x)}(u) := \int_{\Omega} |u(x)|^{p(x)} dx$ and $\sigma_{s(x)}(u) > 1$, by Propositive 2.1 Proposition 2.1 Pro tion 2.4, Proposition 2.2 and (2)

$$\Phi(u) \ge C_2 \|u\|^{p^-}.$$
(3)

On the other hand,

$$\begin{split} \Psi(u) &= \int_{\Omega} \frac{a(x)}{q(x)} |u|^{q(x)} dx - \int_{\Omega} \frac{b(x)}{r(x)} |u|^{r(x)} dx \\ &\geq \frac{1}{q^+} \int_{\Omega} a(x) |u|^{q(x)} dx - \frac{\|b\|_{\infty}}{r^-} \int_{\Omega} |u|^{r(x)} dx \geq -\frac{\|b\|_{\infty}}{r^-} \int_{\Omega} |u|^{r(x)} dx. \end{split}$$
 If $\sigma_p(u) > 1$, by Proposition 2.4, Proposition 2.2 and (2)

$$\Psi(u) \ge -\frac{\|b\|_{\infty}}{r^{-}} \|u\|^{r^{+}}.$$
(4)

By (3), (4) and for any $\lambda > 0$, we obtain $\Phi(u) + \lambda \Psi(u) \ge C_2 ||u||^{p^-} - \lambda \frac{||b||_{\infty}}{r^-} ||u||^{r^+}$. Since (2), then $\lim_{\|u\|\to\infty} (\Phi(u) + \lambda \Psi(u)) = \infty$, for all $\lambda > 0$ and (i) of Theorem 3.2 is verified.

Choosing $k < d^{p^-}|\Omega|$, $0 < e < \frac{k}{p^+}$, $u_0(x) = 0$ and $u_1(x) = d$ such that d > 1, then

$$\Phi(u_0) = \Psi(u_0) = 0 \quad \text{and} \quad \Phi(u_1) = \int_{\Omega} \frac{1}{p(x)} d^{p(x)} dx \ge \frac{d^p}{p^+} |\Omega| > e.$$

Thus $\Phi(u_0) < e < \Phi(u_1)$. Then (ii) of Theorem 3.2 is verified.

On the other hand, by (H_3) , (2), d > 1 and choosing $\frac{d^{q^+}}{q^-} < \frac{d^{r^-}}{r^+}$,

$$-\frac{(\Phi(u_{1})-e)\Psi(u_{0})+(e-\Phi(u_{0}))\Psi(u_{1})}{\Phi(u_{1})-\Phi(u_{0})} = -e\frac{\Psi(u_{1})}{\Phi(u_{1})}$$

$$= -e\frac{\int_{\Omega}\frac{a(x)}{q(x)}d^{q(x)}dx - \int_{\Omega}\frac{b(x)}{r(x)}d^{r(x)}dx}{\int_{\Omega}\frac{1}{p(x)}d^{p(x)}dx} > -e\frac{\frac{\|a\|_{\infty}}{q^{-}}d^{q^{+}}|\Omega| - \frac{\|a\|_{\infty}}{r^{+}}d^{r^{-}}|\Omega|}{\frac{d^{p^{+}}}{p^{-}}|\Omega|}$$

$$= -e\frac{(\frac{d^{q^{+}}}{q^{-}} - \frac{d^{r^{-}}}{r^{+}})\|a\|_{\infty}}{\frac{d^{p^{+}}}{p^{-}}} > 0.$$
(5)

Let $u \in W_0^{1,p(x)}(\Omega)$ such that $\Phi(u) \leq e$ and $e < C_2$. By (3) and Proposition 2.2, we have $C_2 ||u||^{p^-} \leq \Phi(u) \leq e$. So

$$\|u\| \le \left(\frac{e}{C_2}\right)^{\frac{1}{p^-}} < 1.$$
(6)

From (H_2) , (2), (4) and (6)

$$-\inf_{u\in\Phi^{-1}(-\infty,e]}\Psi(u) = \sup_{u\in\Phi^{-1}(-\infty,e]} -\Psi(u) \le \sup[\frac{\|b\|_{\infty}}{r^{-}}\|u\|^{r^{+}} - \frac{\varepsilon}{q^{+}}\|u\|^{q^{-}}] \le 0.$$
(7)

Then by (5) and (7)

$$\begin{split} & -\inf_{u\in\Phi^{-1}(-\infty,e]}\Psi(u) < -\frac{(\Phi(u_1)-e)\Psi(u_0) + (e-\Phi(u_0))\Psi(u_1)}{\Phi(u_1) - \Phi(u_0)},\\ & \inf_{u\in\Phi^{-1}(-\infty,e]}\Psi(u) > \frac{(\Phi(u_1)-e)\Psi(u_0) + (e-\Phi(u_0))\Psi(u_1)}{\Phi(u_1) - \Phi(u_0)}. \end{split}$$

and

This completes the proof.

References

 I. Aydin, C. Unal, Three solutions to a Steklov problem involving the weighted p(.)-Laplacian, Rocky Mt. J. Math., (2021), 67–76.

- [2] I. Aydin, C. Unal, Compact embeddings of weighted variable exponent Sobolev spaces and existence of solutions for weighted p(.)-Laplacian, Complex Var. Elliptic Equ., 66(10) (2021), 1755–1773.
- [3] G. Che, H. Chen, Infinitely many solutions for Kirchhoff equations with sign-changing Potential and Hatree nonlinearity, J. Math., 131 (2018), 1–17.
- [4] F. Correa, G. Figueiredo, On a p-Kirchhoff equation via Krasnoselskii, s genus, Appl. Math. Lett., 22 (2009), 819–822.
- [5] X. L. Fan, D. Zhao, On the spaces L^{p(x)}(Ω) and W^{(m,p(x))}(Ω), J. Math. Anal. Appl., 263(2) (2001), 424–446.
- [6] M. K. Hamdani, A. Harrabi, F. Mtiri, D. D. Repovs, Existence and multiplicity results for a new p(x)-Kirchhoff problem, Nonlinear Anal., (2020), 1–15.
- [7] M. K. Hamdani, J. Zuo, N. T. Chung, D. D. Repovs, Multiplicity of soulutions for a class of fractional p(x,.)-Kirchhoff-type problems without the Ambrosetti-Rabinowitz condition, Bound. Value Probl., (2020), 1–16.
- [8] I. H. Kim, Y. H. Kim, Mountation pass type solutions and positivity of the in_mum eigenvalue for quasi linear elliptic equations with variable exponents, Manuscripta Math., 147 (2015), 169–191.
- [9] M. Mihailescu, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplacian operator, Nonlinear Anal. T. M. A., 67 (2007), 1419–1425.
- [10] E. Montefusco, Lower semicontinuity of functional via concentration-compactness principle, J, Math. Anal. Appl., 263 (2001), 264–276.
- [11] M. A. Ragusa, A. Razani and F. Safari, Existence of radial solutions for a p(x)-Laplacian Dirichlet problem, Adv. Difference Equ., (2021), 1–14.
- [12] B. Ricceri, On three critical points theorem, Arch. Math. (Basel), 75 (2000), 220–226.
- [13] I. D. Stircu, An existence result for quasilinear elliptic equations with variable exponents, Math. Comput. Sci. Ser., 44(2) (2017), 299–315.
- [14] S. Taarabti, Z. E. Allali, K. B. Haddouch, Existence of three solutions for a p(x)-Biharmonic problem with indefinite weight under neumann boundary conditions, J. Adv. Math. Stud., 11(2) (2018), 399-411.
- [15] V. F. Uta, Ground state solutions and concentration phenomena in nonlinear eigenvalue problems with variable exponents, Math. Comput. Sci. Ser., 45(1) (2018), 122–136.

(received 08.07.2023; in revised form 10.01.2024; available online 09.09.2024)

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran *E-mail*: amohsen@umz.ac.ir

ORCID iD: https://orcid.org/0000-0001-8358-9962

Department of Mathematics, Technical and Vocational, University (TVU), Tehran, Iran *E-mail*: Asieh.Rezvani@gmail.com ORCID iD: https://orcid.org/0009-0000-7417-946X

Sinop University, Faculty of Arts and Sciences, Department of Mathematics, Sinop, Turkey *E-mail*: iaydin@sinop.edu.tr ORCID iD: https://orcid.org/0000-0001-8371-3185