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Abstract. Nearness spaces were defined for the goal of unifying several types of topo-
logical structures by H. Herrlich. The basic motivation of the theory of textures is to find a
convenient point set based setting for fuzzy sets. This is the second of three papers which
develop various fundamental aspects of the concept of dinearness texture spaces in a cate-
gorical setting and present important links with the theory of nearness spaces. Further, it is
proved that the category Near of nearness spaces is to isomorphic to the full subcategory
of dinearness texture spaces.

1. Introduction

As is well known, the concept of nearness space was introduced by Herrlich [12] as
an axiomatization of the concept of nearness of an arbitrary collection of sets with
the aim of unifying different kinds of topological structures [7] such as uniformity,
proximity [15] and metric space; as the author says in [13]:

“The aim of this approach is to find a basic topological concept - if possible intu-
itively accessible- by means of which any topological concept or idea can be expressed”.

Nearness spaces are defined on the basis of covering. Further nearness spaces and
uniformly continuous maps form a category labelled Near. To achieve the above
goal, various relationships have been established between the category Near and
symmetric topological spaces and continuous maps, uniform spaces and uniformly
continuous maps, and proximal spaces and proximal maps.

Texture spaces were introduced by L. M. Brown as a point-based setting of fuzzy
sets. In addition, some properties of fuzzy lattices (i.e. the Hutton algebra) can be
discussed in terms of textures [4, 5]. The concept of ditopology on textures, which is
more general than general topology, and fuzzy topology in the sense of Chang were
introduced as a natural extension of the work on the representation of lattice-valued
topologies by bitopologies without the set complementation in [2].
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2 A convenient category of nearness structures in texture spaces

On the other hand, texture spaces provide an abstract model for rough set and
soft fuzzy rough set theory [8] and the Hutton closure space [9].

This paper continues the study of the nearness structure on texture spaces in [11].
In the first paper, the concept of nearness structure on texture was introduced under
the name of dinearness structure, and some properties were presented. The main aim
of the second paper is to consider dinearness texture spaces in a categorical setting. In
this context, the notion of uniformly bicontinuous divergences between dinearness tex-
ture spaces is introduced, and their basic properties are given in Section 3. Section 4
is devoted to the category of dinearness texture spaces and uniformly bicontinuous
difunctions, and some connections to the category Near of nearness spaces are given.

An overview of texture spaces and difunctions is given in the next section, and
the reader is referred to [2–6,14] for further background material.

2. Texture spaces

Let U be a set. A texturing U of U is a subset of P(U) which is a point-separating,
complete, completely distributive lattice containing U and ∅, and for which meet
coincides with intersection and finite joins with union. The pair (U,U) is then called
texture space, or texture for short.

For u ∈ U the p-sets and, as dually, the q-sets are defined by

Pu =
⋂

{A ∈ U | u ∈ A}, Qu =
∨

{A ∈ U | u /∈ A}.

A mapping σU : U → U is called a complementation on (U,U) if it satisfies the
conditions σU (σU (A)) = A for all A ∈ U and A ⊆ B =⇒ σU (B) ⊆ σU (A) for all
A,B ∈ U. In this case, (U,U, σ) is referred to as complemented texture.

Example 2.1. (i) For any set X, (X,P(X), π), π(Y ) = X \ Y for Y ⊆ X, is the
complemented discrete texture that represents the usual set structure of X. It is
clear that Px = {x}, Qx = X \ {x} for all x ∈ X.

(ii) Let L = (0, 1], L = {(0, r] | r ∈ [0, 1]} and λ((0, r]) = (0, 1 − r], r ∈ [0, 1].
Obviously, (L,L, λ) is the Hutton texture of (I, ′), where I = [0, 1] with its usual
order and r′ = 1− r for r ∈ I. Here, Pr = Qr = (0, r] for all r ∈ L.

(iii) For I = [0, 1] define I = {[0, t] | t ∈ [0, 1]} ∪ {[0, t) | t ∈ [0, 1]}, ι([0, t]) = [0, 1− t)
and ι([0, t)) = [0, 1 − t], t ∈ [0, 1]. (I, I, ι) is a complemented texture, which we will
refer to as unit interval texture. Here, Pt = [0, t] and Qt = [0, t) for all t ∈ I.

(iv) For textures (U,U) and (V,V), U ⊗ V is the product texturing of U × V . Note
that the product texturing U⊗ V of U × V consists of arbitrary intersections of sets
of the form (A× V ) ∪ (U ×B), A ∈ U and B ∈ V.

Ditopology: A pair (τ, κ) of subsets of U is called a ditopology on a texture (U,U)
where the open set family τ and the closed set family κ satisfy

U, ∅ ∈ τ, U, ∅ ∈ κ,
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G1, G2 ∈ τ =⇒ G1 ∩G2 ∈ τ, K1, K2 ∈ κ =⇒ K1 ∪K2 ∈ κ,

Gi ∈ τ, i ∈ I =⇒
∨
i∈I

Gi ∈ τ, Ki ∈ κ, i ∈ I =⇒
⋂
i∈I

Ki ∈ κ.

A ditopology is therefore essentially a “topology“ for which there is no a priori
relationship between the open and closed sets. Usually the family τ is called a topology,
and the family κ a cotopology.

If σ is a complementation on (U,U) and κ = σ(τ), then (τ, κ) is called a comple-
mented ditopology on (U,U, σ).

Direlation: Let (U,U), (V,V) be textures. Consider the product texture P(U)⊗V

of the textures (U,P(U)) and (V,V) (see Example 2.1 (iv)). We denote the p-sets and
the q-sets by P (u,v) andQ(u,v), respectively. From the product texturing, it is obtained

that P (u,v) = {u} × Pv and Q(u,v) = (U \ {u} × V ) ∪ (U ×Qv), where u ∈ U and
v ∈ V . Then:
1. r ∈ P(U)⊗ V is called a relation from (U,U) to (V,V) if it satisfies:

(R1) r ̸⊆ Q(u,v), Pu′ ̸⊆ Qu implies r ̸⊆ Q(u′,v).

(R2) r ̸⊆ Q(u,v) implies ∃u′ ∈ U such that Pu ̸⊆ Qu′ and r ̸⊆ Q(u′,v).

2. R ∈ P(U)⊗ V is called a corelation from (U,U) to (V,V) if it satisfies

(CR1) P (u,v) ̸⊆ R,Pu ̸⊆ Qu′ implies P (u′,v) ̸⊆ R.

(CR2) P (u,v) ̸⊆ R implies ∃u′ ∈ U such that Pu′ ̸⊆ Qu and P (u′,v) ̸⊆ R.

3. A pair (r,R), where r is a relation and R a corelation from (U,U) to (V,V) is called
a direlation from (U,U) to (V,V).

The identity direlation (i, I) on (U,U) is defined by i =
∨
{P (u,u) | u ∈ U} and

I =
⋂
{Q(u,u) | U ̸⊆ Qu}.

The composition of direlations: Let (U,U), (V,V), (W,W) be textures.

1. If p is a relation on (U,U) to (V,V) and q a relation on (V,V) to (W,W) then their
composition is the relation q ◦ p on (U,U) to (W,W) defined by

q ◦ p =
∨

{P (u,w) | ∃ v ∈ V with p ̸⊆ Q(u,v) and q ̸⊆ Q(v,w)}.

2. If P is a co-relation on (U,U) to (V,V) and Q a co-relation on (V,V) to (W,W)
then their composition is the co-relation Q ◦ P on (U,U) to (W,W) defined by

Q ◦ P =
⋂

{Q(u,w) | ∃ v ∈ V with P (u,v) ̸⊆ P and P (v,w) ̸⊆ Q}.

3. With p, q; P , Q as above, the composition of the direlations (p, P ), (q,Q) is the
direlation (q,Q) ◦ (p, P ) = (q ◦ p,Q ◦ P ).

The complement of a direlation: Let (r,R) be a direlation between the com-
plemented textures (U,U, σU ) and (V,V, σV ).
1. The complement r′ of the relation r is the co-relation

r′ =
⋂

{Q(u,v) | ∃w, z, r ̸⊆ Q(w,z), σU (Qu) ̸⊆ Qw and Pz ̸⊆ σV (Pv)}.
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2. The complement R′ of the co-relation R is the relation

R′ =
∨

{P (u,v) | ∃w, z, P (w,z) ̸⊆ R, Pw ̸⊆ σU (Pu) and σV (Qv) ̸⊆ Qz}.

3. The complement (r,R)′ of the direlation (r,R) is the direlation (r,R)′ = (R′, r′).
A direlation (r,R) on (U,U) is said to be complemented if (r,R)′ = (r,R).
One of the most useful notions of (ditopological) texture spaces is that of difunc-

tion. A difunction is a special type of direlation.
Difunctions: Let (f, F ) be a direlation from (U,U) to (V,V). Then (f, F ) is

called a difunction from (U,U) to (V,V) if it satisfies the following two conditions.
(DF1) For u, u′ ∈ U , Pu ̸⊆ Qu′ =⇒ ∃ v ∈ V with f ̸⊆ Q(u,v) and P (u′,v) ̸⊆ F .

(DF2) For v, v′ ∈ T and u ∈ U , f ̸⊆ Q(u,v) and P (u,v′) ̸⊆ F =⇒ Pv′ ̸⊆ Qv.
Clearly, identity direlation (i, I) on (U,U) is a difunction and it is called identity

difunction.
Image and inverse image: Let (f, F ) : (U,U) → (V,V) be a difunction.

1. For A ∈ U, the image f→A and the co-image F→A are defined by

f→A =
⋂

{Qv | ∀u, f ̸⊆ Q(u,v) =⇒ A ⊆ Qu},

F→A =
∨

{Pv | ∀u, P (u,v) ̸⊆ F =⇒ Pu ⊆ A}.

2. For B ∈ V, the inverse image f←B and the inverse co-image F←B are defined by

f←B =
∨

{Pu | ∀ v, f ̸⊆ Q(u,v) =⇒ Pv ⊆ B},

F←B =
⋂

{Qu | ∀ v, P (u,v) ̸⊆ F =⇒ B ⊆ Qv}.

For a difunction, the inverse image and the inverse co-image are equal, but the image
and co-image are usually not.

Injective-surjective difunction: Let (f, F ) : (U,U) → (V,V) be a difunction.
Then (f, F ) is called surjective if it satisfies the condition

(SUR) For v, v′ ∈ V , Pv ̸⊆ Qv′ =⇒ ∃u ∈ U with f ̸⊆ Q(u,v′) and P (u,v) ̸⊆ F .

(f, F ) is called injective if it satisfies the condition

(INJ) For u, u′ ∈ U and v ∈ V , f ̸⊆ Q(u,v) and P (u′,v) ̸⊆ F =⇒ Pu ̸⊆ Qu′ .

If (f, F ) is both injective and surjective, then it is called bijective.
Bicontinuity: Let (f, F ) : (U,U, τU , κU ) → (V,V, τV , κV ) be a difunction. Then

it is called continuous if B ∈ τV =⇒ F←B ∈ τU , cocontinuous if B ∈ κV =⇒
f←B ∈ κU , and bicontinuous if it is both continuous and cocontinuous.

One of the main categories of texture theory considered to date is the category
dfTex of textures and difunctions. The other main category dfDitop of ditopological
texture spaces and bicontinuous difunctions is topological over dfTex.

Dicover: Let (U,U) be a texture space. A difamily C = {(Aj , Bj) | j ∈ J} of
elements of U×U which satisfies

⋂
j∈J1

Bj ⊆
∨

j∈J2
Aj for all partitions (J1, J2) of J ,

including the trivial partitions, is called a dicover of (U,U) (see [3]).
An important example is the family P = {(Pu, Qu) | U ̸⊆ Qu} which is a dicover

for any texture (U,U).
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Now, we recall some useful results by [10, Proposition 11.1].

Note 2.2. Let U be a non-empty set. Then
(a) Let C = {Ai | i ∈ I} ⊆ P(U). Then C is a cover of U if and only if {(A,X \ A) |
A ∈ C} is a dicover of the discrete texture space (U,P(U)).

(b) If a family D =
{
(Ai, Bi) | i ∈ I

}
is a dicover of (U,P(U)) then the families

{Ai}i∈I and {X \Bi}i∈I are covers of U .

If C is a dicover, then we sometimes write LCM in place of (L,M) ∈ C. We recall
the following definitions for dicovers.
1. C is a refinement of D if given j ∈ J we have LDM so that Aj ⊆ L and M ⊆ Bj .
In this case we write C ≺ D.

2. If C, D are dicovers then C ∧D = {(A ∩C,B ∪D) | ACB, CDD} is the greatest
lower bound (meet) of C, D with respect to refinement.

Dinearness texture spaces: Let (U,U) be a texture space. Let µ be a non-
empty set of non-empty dicovers of (U,U). Then µ is called dinearness structure
(see [11]) if it is satisfied the following conditions:
(N1) If C ≺ D and C ∈ µ, then D ∈ µ.

(N2) If C ∈ µ andD ∈ µ, then C∧D ∈ µ, where C∧D = {(A∩C,B∪D) | ACB,CDD}.
(N3) If C ∈ µ, then {(int µ(A), cl µ(B)) | ACB} ∈ µ where A ∈ U,

int µA =
∨

{Pu | ∀Pu ̸⊆ Qv, {(A, ∅), (∅, Pv)} ∈ µ},

cl µA =
⋂

{Qu | ∀Pv ̸⊆ Qu, {(∅, A), (Qv, ∅)} ∈ µ}.

A triple (U,U, µ), where µ is a dinearness structure on (U,U), is called dinearness
texture space.

If σ is a complementation on (U,U) and µ = σ(µ), then (U,U, σ, µ) is called
complemented dinearness texture space.

3. Uniformly bicontinuous difunctions

In this section, the notion of uniformly bicontinuous difunctions between dinearness
texture spaces are defined, and their some properties are given.

Lemma 3.1. Let (Uj ,Uj), j = 1, 2 be texture spaces and (f, F ) : (U1,U1) → (U2,U2)
be a difunction. If the family C = {(Ai, Bi) | i ∈ I} is a dicover of (U2,U2) then the
family (f, F )−1(C) = {(F←(Ai), f

←(Bi)) | i ∈ I, (Ai, Bi) ∈ C} is also a dicover of
(U1,U1).

Proof. Let the pair (I1, I2) be a partition of I. Since the family C is a dicover of
(U2,U2) we can write

⋂
i∈I1 Bi ⊆

∨
i∈I2 Ai. From [6, Corollary 2.12], we have⋂

i∈I1

f←(Bi) = f←(
⋂
i∈I1

Bi) ⊆ F←(
∨
i∈I2

Ai) =
∨
i∈I2

F←(Ai).
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Hence, (f, F )−1(C) is a dicover of (U1,U1). □

Definition 3.2. Let (Uj ,Uj , µj), j = 1, 2 be dinearness texture spaces and (f, F ) :
(U1,U1) → (U2,U2) be a difunction. Then (f, F ) is called uniformly bicontinuous
difunction if C ∈ µ2 =⇒ (f, F )−1(C) ∈ µ1.

Proposition 3.3. Let (f, F ) : (U1,U1) → (U2,U2) be a difunction and the families
C and D be dicovers of (U2,U2). Then the following are satisfied:
(i) C ≺ D =⇒ (f, F )−1(C) ≺ (f, F )−1(D).

(ii) (f, F )−1(C ∧D) = (f, F )−1(C) ∧ (f, F )−1(D).

Proof. Suppose that (f, F ) : (U1,U1) → (U2,U2) is a difunction and the families C

and D are dicovers of (U2,U2).
(i) Let (F←(A), f←(B)) ∈ (f, F )−1(C) for (A,B) ∈ C. Since C ≺ D, there exists

(C,D) ∈ D such that A ⊆ C and D ⊆ B. Then (F←(C), f←(D)) ∈ (f, F )−1(D)
and F←(A) ⊆ F←(C) and f←(D) ⊆ f←(B). Hence, we obtain (f, F )−1(C) ≺
(f, F )−1(D).

(ii) From the definition of (f, F )−1, we have:

(f, F )−1(C ∧D) =(f, F )−1{(A ∩ C,B ∪D) | ACB,CDD}
=(F←(A ∩ C), f←(B ∪D) | ACB,CDD}
=(F←(A) ∩ F←(C), f←(B) ∩ f←(D)) | ACB,CDD}
={(F←(A), f←(B)) | (A,B) ∈ C} ∧ {(F←(C), f←(D)) | (C,D) ∈ D}
=(f, F )−1(C) ∧ (f, F )−1(D).

Theorem 3.4. (i) The identity difunction on a dinearness texture space (U,U, µ) is
uniformly bicontinuous.

(ii) The composition of uniformly bicontinuous difunction is uniformly bicontinuous.

(iii) Let (Uj ,Uj , σj , µj), j = 1, 2 be complemented dinearness texture spaces and
(f, F ) : (U1,U1, σ1) → (U2,U2, σ2) be a complemented difunction. Then (f, F ) is
uniformly bicontinuous w.r.t µ1 − µ2 if and only if (f, F )′ is uniformly bicontinuous
w.r.t σ(µ1)− σ(µ2).

Proof. (i) Let (A,B) ∈ C. Since I←(A) = A and i←(B) = B, the desired is obtained
immediately.

(ii) Suppose that (Uk,Uk, µk), k = 1, 2, 3 are dinearness texture spaces and (f, F ) :
(U1,U1) → (U2,U2) and (g,G) : (U2,U2) → (U3,U3) are uniformly bicontinuous
difunctions. Now, we show that the composition difunction (g,G) ◦ (f, F ) = (g ◦
f,G ◦ F ) is uniformly bicontinuous. For C ∈ µ3, since

(g,G)−1(C) = {(G←(A), g←(B)) | (A,B) ∈ C} ∈ µ2

and (f, F )−1
(
(g,G)−1(C)

)
= {F←(G←A), f←(g←B)) | (A,B) ∈ C} ∈ µ1,

we have (G ◦ F )←(B) = F←(G←(B)) and (g ◦ f)←(B) = f←(g←(B)).
(iii) (=⇒) Let σ2(C) ∈ σ2(µ2) such that C ∈ µ2. Since (f, F ) is uniformly

bicontinuous, (f, F )−1(C) = {(F←(A), f←(B)) | (A,B) ∈ C} ∈ µ1. Hence, we
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have σ1((f, F )−1(C)) = {(σ1(f
←(B)), σ1(F

←(A)) | (A,B) ∈ C} ∈ σ1(µ1). Since
(f, F )′ = (F ′, f ′), by [6, Lemma 2.20] we obtain:

(F ′, f ′)−1(σ2(C)) = {(f ′)←(σ2(B)), (F ′)←(σ2(A) | (A,B) ∈ C}
= {σ1(F

←(B)), σ1(f
←(B)) | (A,B) ∈ C} ∈ σ1(µ1).

(⇐=) It is obtained similarly. □

Now, we give bases and subbases for dinearness texture spaces.

Definition 3.5. Let (U,U, µ) be a dinearness texture space and µ′ ⊆ µ. Then µ′ is
called a base of µ if there exits a dicover A′ ∈ µ′ such that A′ ≺ A for all A ∈ µ.

As usual, a subbase of µ is a subset of µ, the set of finite intersections of which is
a base of µ.

Proposition 3.6. Let (Uj ,Uj , µj), j = 1, 2 be dinearness texture spaces and (f, F ) :
(U1,U1) → (U2,U2) be a difunction. Let µ′2 be a base for dinearness structure µ2.
Then (f, F ) uniformly bicontinuous ⇐⇒ (f, F )−1(B) ∈ µ1, ∀B ∈ µ′2.

Proof. (=⇒) Suppose that (f, F ) is uniformly bicontinuous difunction and B ∈ µ′2.
Since µ′2 ⊆ µ2 and B ∈ µ2, we obtain (f, F )−1(B) ∈ µ1 from assumption.

(⇐=) Let B ∈ µ2. Then there exists B′ ∈ µ′2 such that B′ ≺ B, since µ′2 is a base.
From Lemma 3.1, the families (f, F )−1(B′) and (f, F )−1(B) are dicovers of (U1,U1).
Further, by Proposition 3.3, (f, F )−1(B′) ≺ (f, F )−1(B), and (f, F )−1(B) ∈ µ1 from
the condition (N1) of dinearness texture space’s definition. That is (f, F ) uniformly
bicontinuous difunction. □

Recall that [11, Theorem 3.5] if (U,U, µ) is a dinearness texture space, then (τµ, κµ)
is a ditopology on (U,U), where τµ = {G ∈ U | intµ(G) = G} and κµ = {K ∈ U |
clµ(K) = K}.

Theorem 3.7. Let (Uj ,Uj , µj), j = 1, 2 be dinearness texture spaces and (τµ, κµ) be
the corresponding ditopological spaces and (f, F ) : (U1,U1) → (U2,U2) be a difunction.
If (f, F ) is uniformly bicontinuous difunction w.r.t µ1−µ2, then (f, F ) is bicontinuous
difunction in the sense the corresponding ditopologies (τµ1

, κµ1
)− (τµ2

, κµ2
).

Proof. Let G ∈ τµ2
. We show that F←(G) = int µ1

F←(G). By [11, Theorem 3.4], it
is clear that int µ1

F←(G) ⊆ F←(G). Therefore, it is sufficient to show that F←(G) ⊆
int µ1F

←(G). Suppose that F←(G) ̸⊆ int µ1F
←(G). Then we have u ∈ U1 such that

F←(G) ̸⊆ Qu, and Pu ̸⊆ int µ1F
←(G). Now we choose v ∈ U1 where Pu ̸⊆ Qv. Since

F←(G) ̸⊆ Qv, there exists t ∈ U2 such that P (v,t) ̸⊆ F and G ̸⊆ Qt.
If G = int µ2

G ̸⊆ Qt, then {(G, ∅), (∅, Pt)} ∈ µ2. Then {(F←(G), ∅), (∅, f←(Pt)} ∈
µ1, since (f, F ) is uniformly bicontinuous difunction. Because P (v,t) ̸⊆ F , we have
f←(Pt) = F←(Pt) ̸⊆ Qv, and so Pv ⊆ f←(Pt) and {(F←(G), ∅), (∅, f←(Qt)} ≺
{(F←(G), ∅), (∅, Pv)}. From the condition (N1) of dinearness texture space’s defini-
tion, we have {(F←(G), ∅), (∅, Pv} ∈ µ1. This contradicts Pu ⊆ int µ1F

←(G). Hence,
(f, F ) is uniformly continuous.

It is similarly shown that (f, F ) is uniformly cocontinuous. □
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4. The category DiNear

In this section, we give some links between Near and the category of dinearness
texture spaces and uniformly bicontinuous difunctions.

In general, we follow the terminology of [1] for general concepts related to category
theory. If A is a category, denotes Ob(A) the class of objects and MorA the class
of morphisms of A. We will sometimes use the notation hom(A1, A2) for the set of
morphisms in A from A1 to A2.

Theorem 4.1. Dinearness texture spaces and uniformly bicontinuous difunctions form
a category.

Proof. Since uniformly bicontinuity between dinearness texture spaces is preserved un-
der composition of difunction by Theorem 3.4 (ii), and identity difunction on (U,U, µ)
is uniformly bicontinuous by Theorem 3.4 (i) and the identity difunctions are identi-
ties for composition and composition is associative by [6, Proposition 2.17], dinearness
texture spaces and uniformly bicontinuous difunctions form a category. □

Definition 4.2. The category whose objects are dinearness texture spaces and whose
morphisms are uniformly bicontinuous difunctions will be denoted by DiNear.

Corollary 4.3. Complemented dinearness texture spaces and uniformly bicontinu-
ous complemented difunctions form a category.

Proof. Let (U,U, µ, σ) be a complemented dinearness space. Then the identity di-
function on (U,U) is complemented and uniformly bicontinuous by Theorem 3.4 (iii).
Further, the composition of complemented difunction is complemented, and the com-
position of uniformly bicontinuous complemented difunction is uniformly bicontinuous
by Theorem 3.4 (ii). Hence, the proof is completed. □

The category whose objects are complemented dinearness spaces and whose mor-
phisms are uniformly bicontinuous complemented difunctions will be denoted by
cDiNear.

Now suppose that (X, η) is a nearness space, and DC is a dicover family of
(X,P(X)), i.e. DC =

{
C = {(Ai, Bi) | i ∈ I} | C is a dicover of (X,P(X))

}
. From [11,

Theorem 3.7], the family µ =
{
C ∈ DC | {Ai}i∈I ∈ η and {X \ Bi}i∈I ∈ η

}
is

a dinearness structure on the discrete texture space (X,P(X)). On the other hand,
it is known that [6] if f is a point function from X to Y , then the pair (f, f ′) is a
difunction from (X,P(X)) to (Y,P(Y )) where f ′ = (X × Y ) \ f .

Proposition 4.4. Let (X, η) and (Y, η′) be nearness spaces and f : X → Y be a point
function. Then f is uniformly continuous ⇐⇒ (f, f ′) is uniformly bicontinuous.

Proof. Suppose that (Y, η′) is a nearness space and the family

µ′ =
{
{(Ai, Bi) | i ∈ I} ∈ DC | A = {Ai}i∈I ∈ η′ and B = {X \Bi}i∈I ∈ η′

}
is the corresponding dinearness structure on the discrete texture (Y,P(Y )). For C ∈
µ′, (f, f ′)−1(C) =

{(
(f ′)←(A), f←(B)

)
| (A,B) ∈ C

}
and we can write (f ′)←(A) =
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f−1(A) ve X\f←(B) = X\(f−1)(B) by [6, Proposition 2.21]. Since (f, f ′)−1(C) ∈
µ ⇐⇒ f−1(A) ∈ η and f−1(B) ∈ η for all for C ∈ µ′, the proof is completed. □

In the sense of Herrlich, the category of nearness spaces and uniformly continuous
function between nearness spaces is denoted by Near [12].

Theorem 4.5. The category Near is isomorphic to the full subcategory of DiNear.

Proof. Firstly, D-DiNear denotes the category of dinear texture spaces on discrete
textures and uniformly bicontinuous difunctions. Clearly, it is a full subcategory of
DiNear. Now consider the mapping T : Near → D-DiNear which is defined by
T(U, η) = (U,P(U), µ) and T(f) = (f, f ′) for every morphism f : (U, η) → (V, η′) in
Near.

Since (f, f ′) is uniformly bicontinuous by Proposition 4.4, the difunction (f, f ′)
is a morphism in the category D-DiNear. Clearly T maps the identity function on
U to the identity difunction on (U,P(U)), while composition of morphisms in Near
corresponds to composition of relations in texture spaces, so T(f ◦ g) = T(f) ◦ T(g)
since f ′ ◦ g′ = (f ◦ g)′. This establishes that T is a functor. Obviously, T is full and
faithful and bijective on objects and so it is an isomorphism functor. □

As a consequence of Theorem 4.5, we have the following.

Corollary 4.6. The category Near is full embedable into cDiNear.

Proposition 4.7. In the category DiNear:
(i) Every section [1] is an unifomly bicontinuous injective difunction.

(ii) Every unifomly bicontinuous injective difunction is a monomorphism [1].

(iii) Every retraction [1] is an unifomly bicontinuous surjective difunction.

(iv) Every unifomly bicontinuous surjective difunction is a epimorphism [1].

(v) A morphism is an isomorphism [1] if and only if it is bijective as a difunction
and its inverse is uniformly bicontinuous.

Proof. The results (i)–(iv) are obtained automatically in the category dfTex by [6,
Proposition 3.14]. Let us prove that the result (v).

Let (U,U, µ) and (V,V, η) be objects in DiNear and (f, F ) : (U,U) → (V,V) be
a difunction. Then (f, F ) is an isomorphism in dfTex if and only if it is bijective.
Further, its inverse (f, F )← is a morphism in dfTex and (f, F )← ◦ (f, F ) = (iU , IU ),
(f, F ) ◦ (f, F )← = (iV , IV ). Hence, (f, F ) is µ− η uniformly bicontinuous iff (f, F )←

is η − µ uniformly bicontinuous. □

Lemma 4.8. Let (Uj ,Uj , µj), j = 1, 2 be dinearness texture space and (f, F ) : (U1,U1) →
(U2,U2) be a difunction and µ′ a subbase of µ2. Then (f, F ) is a uniformly bicontin-
uous if ∀C ∈ µ′ =⇒ (f, F )−1(C) ∈ µ1.

Proof. Let C ∈ µ2. Since µ′ = {Ai | i ∈ I} is a subbase of µ2, the family

CB =
{ ∧

j∈J
Aj | Aj ∈ µ′, J ⊆ I, J finite

}
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is a base for µ2. From Proposition 3.6, we have to show (f, F )−1(B) ∈ µ1 to complete
the proof. Now let B ∈ CB and CB =

∧
j∈J Aj . Then Aj ∈ µ′ for all j ∈ J , and

(f, F )−1(C) ∈ µ1 and by Proposition 3.3 (ii):

(f, F )−1(B) = (f, F )−1(
∧
j∈J

Aj) =
∧
j∈J

(f, F )−1(Aj).

Now we consider the forgetful functor G: DiNear → dfTex where

G((U1,U1, µ1)
(f,F )−→ (U2,U2, µ2)) = (U1,U1)

(f,F )−→ (U2,U2).

Theorem 4.9. The source S = ((U,U, µ), ((U,U, µ)
(fj ,Fj)−→ (Uj ,Uj , µj))j∈J) in DiN-

ear is G–initial if and only if C =
{
(fj , Fj)

−1(A) | A ∈ µj , j ∈ J
}
is a subbase for

(U,U, µ). That is, µ is coarsest dinearness structure on (U,U) for which the difunc-
tions (fj , Fj), j ∈ J , are uniformly bicontinuous.

Proof. (=⇒) Let S = ((U,U, µ), ((U,U, µ)
(fj ,Fj)−→ (Uj ,Uj , µj))j∈J) be a G–initial.

Since each (fj , Fj) is a morphism in DiNear it is uniformly bicontinuous, hence
{(fj , Fj)

−1(A) | A ∈ µj , j ∈ J} ⊆ µ.

Now let µ∗ be the dinearness structure on (U,U) with subbase C. Then µ∗ ⊆ µ.
Since the given source is G–initial the morphism (i, I) in dfTex occurring in the
commutative diagram on the right lifts to a morphism in DiNear making the diagram
on the left commute.

(S, S, µ∗)
(fj ,Fj)

((R
R
R
R
R
R
R
R

(i,I)
��

(U,U)
(fj ,Fj)

''N
N
N
N
N
N
N

(i,I)
��

(U,U, µ)
(fj ,Fj)

// (Uj ,Uj , µj) (U,U)
(fj ,Fj)

// (Uj ,Uj)

Hence µ ⊆ µ∗, which proves µ = µ∗, as required.

(⇐=) Let µ = µ∗ and ((U ′,U′, µ′), ((U ′,U′, µ′)
(hj ,Hj)−→ (Uj ,Uj , µj))j∈J) be a source

in DiNear and consider the following diagrams in DiNear and dfTex, respectively.

(U ′,U′, µ′)
(hj ,Hj)

))RR
R
R
R
R
R
R
R

(k,K)
��

(U ′,U′)
(hj ,Hj)

''O
O
O
O
O
O
O

(k,K)
��

(U,U, µ)
(fj ,Fj)

// (Uj ,Uj , µj) (S, S)
(fj ,Fj)

// (Uj ,Uj)

Given that the morphism (k,K) ∈ dfTex((U ′,U′), (U,U)) makes the right hand dia-
gram commutative, it will clearly be sufficient, in view of the fact that G is faithful,
to show that (k,K) is a morphism in DiNear. Since C is a subbase of µ, the family

CB =
{ ∧

j∈J′

(fj , Fj)
−1(Aj) | Aj ∈ µj , J

′ ⊆ J, J ′ finite
}

is a base of µ. For a finite index set J ′ ⊆ J and j ∈ J ′, Aj ∈ µj , it will be
sufficient to show that (k,K)−1(B) ∈ µ′ where B =

∧
(fj , Fj)

−1(Aj) ∈ CB . Since
(fj , Fj) ◦ (k,K) = (hj , Hj), we have K←(F←j (M)) = (Fj ◦ K)←(M) = H←j (M)
and k←(f←j (N)) = (fj ◦ k)←(N) = h←j (N) for all (M,N) ∈ Aj . Since (hj , Hj) is
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uniformly bicontinuous for all j ∈ J and (hj , Hj)
−1(A) ∈ µ′ for all A ∈ µj , we have

(k,K)−1(B) = (k,K)−1(
∧
j∈J′

(fj , Fj)
−1(Aj)) =

∧
j∈J′

((k,K)−1((fj , Fj)
−1(Aj)))

=
∧
j∈J′

((fj , Fj) ◦ (k,K))−1(Aj) =
∧
j∈J′

(hj , Hj)
−1(Aj) ∈ µ′.

Hence (k,K) is uniformly bicontinuous, as required. □

Theorem 4.10. The functor G: DiNear → dfTex is topological. In other words,
DiNear is topological category over dfTex with respect to the functor G.

Proof. Take (Uj ,Uj , µj) ∈ Ob(DiNear), j ∈ J , and (U,U)
(fj ,Fj)−→ (Uj ,Uj) in G(DiNear) =

dfTex. Let µ be the dinearness structure on (U,U) with subbase C =
{
(fj , Fj)

−1(Aj) |

Aj ∈ µj , j ∈ J
}
. Then, by Theorem 4.9, ((U,U, µ)), ((U,U, µ)

(fj ,Fj)−→ (Uj ,Uj , µj))j∈J)

is the unique G–initial source, which maps to ((U,U), ((U,U)
(fj ,Fj)−→ (Uj ,Uj))j∈J) un-

der G. □

In order to characterize the products in DiNear we apply the notions of limit, ini-
tial source and topological functor in the category theory [1]. Then, as a concequence
Theorem 4.9, we obtain the following.

Theorem 4.11. The source S = ((U,U, µ), ((U,U, µ)
(fj ,Fj)−→ (Uj ,Uj , µj))j∈J) is a

product of the family (Uj ,Uj , µj)j∈J in DiNear iff µ has subbase C = {(fj , Fj)
−1(Aj) |

Aj ∈ µj , j ∈ J} and ((U,U), ((U,U)
(fj ,Fj)−→ (Uj ,Uj))j∈J) is a product of the family

(Uj ,Uj)j∈J in dfTex.
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