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ON LOCAL FRACTAL FUNCTIONS OF HIGHER ORDER

Waldo Arriagada

Abstract. In this short note we prove the existence of local fractal functions of the
Orlicz-Sobolev class of order m ≥ 0. The graph of a local fractal function coincides with the
attractor of an appropriate iterated function system, whose construction is fairly standard.
Local fractal functions appear naturally as the fixed points of the Read-Bajraktarević op-
erator when restricted to a suitable Orlicz-Sobolev space. Our results extend some of the
outcomes obtained by Massopust on Lebesgue and Sobolev spaces to higher order, dimension
and function spaces (where the role of the norm is now played by a Young function).

1. Introduction

An iterated function system (IFS) consists of a finite set of contracting functions
defined on a complete metric space, with the images in the same space. Hutchin-
son and Mandelbrot introduced IFSs in the literature in the early 1980s, and their
applications were later widely popularized by Barnsley in the 1990s. For example,
the Collage Theorem asserts that there always exists a unique nonempty compact set
which is equal to the union of its images under the collection of contractions. Such
a set is called an attractor of the IFS. Conversely, Barnsley demonstrated that it is
possible to begin with a determined figure, and then build an IFS whose attractor
converges to that figure. The method is known as the Random Iteration Algorithm,
dubbed the Chaos Game by Barnsley himself [5]. During the last decades, this classic
framework has been extended to more general spaces [23] and contracting functions
(see [20] for a detailed exam of generalized IFSs).

Iterated function systems are, moreover, tightly connected with the Read-Bajrakta-
rević equation, introduced by M. Bajraktarević in the 1950s [4]. In its elementary form
the Read-Bajraktarević equation is given by u(x) = ν(x, u(b(x))), where b : I → I, ν :
I×R → R and the unknown u : I → R are functions on a closed real interval I. Later
in the 1980s, the associated Read-Bajraktarević operator

Tu(x) = ν(x, u(b(x))) (1)
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2 On local fractal functions of higher order

appeared in the works of C. J. Read in the context of the invariant subspace prob-
lem [22]. Initially defined on the space C∞(I) of infinitely differentiable functions on
I, the operator (1) is closely related to Bajraktarević’s functional equation, as follows.
Assume that b, ν are continuous and b is surjective. Suppose that there exists a con-
stant c ∈ (0, 1) such that for x, y ∈ I and y1, y2 ∈ R, |ν(x, y1)− ν(x, y2)| ≤ c|y1 − y2|.
Then the operator (1) is contractive on C∞(I) [18]. The unique fixed point u∗ is
obtained as a limit of the iterations uk(x) = ν(x, uk−1(b(x))), k ∈ N. The initial con-
dition u0 is any function in C∞(I), and the sequence of iterations converges to u∗ in
the sense that supx∈I |uk(x)−u∗(x)| → 0 as k → ∞ [19]. The fixed point u∗ is called
a smooth local fractal function [17], or a local fractal function of the smooth class.
The graph of a local fractal function is the local attractor of an associated local IFS,
whose construction is fairly standard in one dimension. Characterizations of local
fractal functions of the Hölder, Lebesgue and Sobolev classes are well known. For
example, Massopust et al. proved that the set of discontinuities of a bounded local
fractal function is at most countably infinite [6]. The existence of local fractal func-
tions of the Orlicz and of the Orlicz-Sobolev classes of order one was proved later in [2]
in N ≥ 1 dimensions. More specifically, we considered those IFSs whose attractors are
the graphs of local fractal functions either of the Orlicz class, or of the Orlicz-Sobolev
class on a nonempty connected and bounded subset of RN , which is partitioned into
nonempty connected and convex subsets. (The hypothesis of convexity was required
to tackle the converse problem: given a fixed point of the Read-Bajraktarević opera-
tor, how do we construct a contractive local IFS with the attractor being the graph
of the fixed point, in N dimensions?) We proved that a local fractal function is the
fixed point of the induced Read-Bajraktarević operator. A hint about the existence
problem in higher order appeared in [2] as well. This short note is a follow-up in
that direction. More specifically, in this article we prove that local fractal functions
of an Orlicz-Sobolev class of order m ≥ 2 appear naturally as the fixed points of
the restriction of the Read-Bajraktarević operator. Our results extend some of the
outcomes obtained by Massopust on Lebesgue and Sobolev spaces to higher order,
dimension and function spaces, where the role of the norm is now played by a Young
function.

2. Iterated function systems

Let (X, d) denote a complete metric space and {wi : X → X}ni=1 a set of n continuous
maps. Then F = (X,w1, . . . , wn) is called an n-map iterated function system, or IFS.
(The letter N is commonly used in the literature to denote the number of maps in the
definition of the IFS. We will use n instead, and we will rather employ N to denote
the dimension of the domain that appears later). We say that the functions wi belong
in the IFS F , and we write wi ∈ F . These structures were introduced in the works
of Hutchinson (1981), Mandelbrot (1982) and Barnsley (1993), as follows. Let H(X)
denote the set of nonempty, compact subsets of X. Associated with an IFS is the
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set-valued map w : H(X) → H(X),

w(S) =

n⋃
i=1

wi(S), S ⊂ X. (2)

The IFS F is called contractive if there is a metric d̃, which is equivalent to d, such
that each wi ∈ F is a contraction with respect to d̃. That is, for each 1 ≤ i ≤ n there
exists a ci ∈ [0, 1) such that d̃(wi(x), wi(y)) ≤ cid̃(x, y) for all x, y ∈ X. Hutchinson
demonstrated [12] that if this is the case, then w is itself a contraction on H(X),
dH(X)(w(A),w(B)) ≤ c dH(X)(A,B), where A,B ∈ H and c = max1≤i≤n{ci}. The
expression

dH(X)(A,B) = max
{
max
a∈A

min
b∈B

d(a, b),max
b∈B

min
a∈A

d(a, b)
}

is the Hausdorff distance between compact sets. In this case, the Banach theorem
implies the existence of a unique fixed point A ∈ H(X), called the attractor of the
IFS, which satisfies A = w(A). From (2), the attractor A is self-similar since it may
be expressed as a union of contracted copies of itself. It is also known that non-
contractive IFSs (i.e., such that the maps wi’s are not contractions with respect to
any topologically equivalent metric in X) can yield attractors. For more details and
examples we refer the reader to [5, 15].

The following notion is due to Barnsley and Hurd [7]. Let {Xi}ni=1 ⊆ X be a
family of nonempty subsets, equipped with a family of continuous maps {wi : Xi →
X}ni=1. Then Floc = {(Xi, wi)}ni=1 is called a local iterated function system (or local
IFS). A local IFS is called contractive if there exists a metric, equivalent to d, for
which every w ∈ Floc is contractive. Let 2X denote the power set of X. Associated
with any local IFS Floc = {(Xi, wi)}ni=1 is the operator wloc : 2X → 2X defined by
wloc(S) =

⋃n
i=1 wi(S ∩Xi).

Definition 2.1. An elementA ∈ 2X is a local attractor of the local IFS, ifA = wloc(A).

Suppose that F and Floc are both contractive. It is well known [17, Proposition 1]
that if X is compact, and for every i = 1, . . . , n the set Xi is closed, then the attractor
A of Floc is a subset of the attractor of F .

3. Orlicz and Orlicz-Sobolev spaces

This section is brief summary on Orlicz and Orlicz-Sobolev spaces. For further details
we refer the reader to [10, 21]. A function Φ : [0,∞) → [0,∞) which is increasing,
continuous, unbounded and such that Φ(0) = 0 is called a φ-function [16, p. 11]. If
any such a Φ is, moreover, convex then it has the integral representation

Φ(t) =

∫ t

0

ϕ(s) ds (3)

where ϕ : [0,∞) → [0,∞) is a nondecreasing, right-continuous function satisfying
ϕ(t) = 0 if and only if t = 0 and limt→∞ ϕ(t) = ∞. This function ϕ is called the right
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derivative of Φ. A convex φ-function Φ satisfying

Φ(t)

t
→ 0 as t→ 0 and

Φ(t)

t
→ ∞ as t→ ∞,

is denominated a Young function [16, pp. 47]. Young functions are sometimes called
N -functions; however, to avoid confusion we will not employ that denomination. (This
definition is ambiguous. Some authors call a convex function Φ : [0,∞) → [0,∞] a
Young function if Φ is not identically zero and limt→0+ Φ(t) = Φ(0) = 0). For example,
if ϕ(t) = ptp−1 for t ≥ 0, 1 ≤ p <∞, then Φ(t) = tp and

∥u∥p = Φ−1
(∫

X

Φ(|u(x)|)dx
)

for u ∈ Lp(X), and where Φ−1(t) = t1/p is the inverse function.
Given a Young function Φ with the integral representation (3), the right-inverse

function of ϕ is defined for s ≥ 0 by ψ(s) = sup {t : ϕ(t) ≤ s} . If ϕ is continuous
and increasing then ψ is the ordinary inverse function ϕ−1. The function ψ has the
same properties as ϕ: it is positive for s > 0, right-continuous for s ≥ 0 and satisfies
ψ(0) = 0 and ψ(s) → ∞ as s → ∞. Hence the integral Φ(t) =

∫ t

0
ψ(s) ds is a Young

function as well, called the conjugate (or complementary) of Φ.
In what follows, we will fix an integer N ≥ 1. Let X ⊂ RN be a bounded subset

and let Φ be a Young function. The Orlicz class LΦ(X) is the set of (equivalence
classes of) real-valued measurable functions u such that Φ(u) ∈ L1(X). In general,
LΦ(X) is not a vector space [14]. However, the linear hull LΦ(X) of LΦ(X) is a vector
space which is Banach with respect to the Luxemburg norm

∥u∥Φ = inf
{
τ > 0 :

∫
X

Φ
(u
τ

)
dx ≤ 1

}
.

We denote by EΦ(X) the closure (for the norm-topology) of L∞(X) in LΦ(X). The
space EΦ(X) is separable and Banach for the inherited norm. In general, EΦ(X) ⊆
LΦ(X) ⊆ LΦ(X), and EΦ(X) = LΦ(X) if and only if Φ satisfies a ∆2-condition (at
infinity). This means that, for r > 1, there exist a positive constant γ(r) such that

Φ(rt) ≤ γ(r) Φ(t), for t ≥ T (4)

where T is also positive. (The ∆2-condition is global if T = 0). It is known that if
Φ and Φ satisfy a ∆2-condition at infinity then the spaces LΦ(X) and LΦ(X) are
reflexive and separable. It follows that one can identify the dual space of EΦ(X) with
LΦ(X) and the dual space of EΦ(X) with LΦ(X), see [1, 10] for details.

3.1 Multivariate Stirling numbers

A multi-index of length N is an N -tuple β = (β1, . . . , βN ) such that every component
βj is a nonnegative integer. The order of the multi-index is the number |β| = β1 +
· · · + βN , and we set β! = β1! · · ·βN ! As well, if v⃗ = (v1, . . . , vn) ∈ RN then the

multivariate exponentiation is defined by v⃗ β = vβ1

1 · · · vβN

N .
The set of multi-indices of length N is denoted by NN . (This set includes the

zero multi-index 0, for which all components are null). For β = (β1, . . . , βN ) and
σ = (σ1, . . . , σN ) in NN , we write β ≤ σ if βj ≤ σj for all j = 1, . . . , N.
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Let k be a nonnegative integer. A standard result in combinatorics says that
the number of nonnegative integer solutions (σ1, . . . , σN ) of the linear equation σ1 +
· · · + σN = k is equal to

(
k+N−1
N−1

)
. Hence, if m is a positive integer, the number of

multi-indices σ satisfying 1 ≤ |σ| ≤ m is

Nm =

m∑
k=1

(
k +N − 1

N − 1

)
∈ N. (5)

Following [8], we introduce a linear order on NN , as follows. We write σ ≺ β
provided one of the following conditions holds true:
a) |σ| < |β|, b) |σ| = |β| and σ1 < β1,

c) |σ| = |β| with σ1 = β1, . . . , σj = βj and σj+1 < βj+1 for some 1 ≤ j < N.
For σ,β multi-indices and k a nonnegative integer, we define the set

Ek(β,σ)=
{
(µ1,. . .,µk;θ1,. . .,θk) : |µj |>0,0≺θ1≺ . . .≺θk,

k∑
j=1

µj=σ,
k∑

j=1

|µj |θj=β
}
,

where µj ,θj ∈ NN . If k = 0 then we let E0(β,σ) = ∅. Observe that if either |σ| > |β|,
or if σ = 0 but β ̸= 0, then by definition Ek(β,σ) = ∅ for any k ∈ N. In addition,
note that Ek(β,σ) = ∅ as well whenever |σ| < k or |β| < k. For 1 ≤ |σ| ≤ |β|, we
define nonnegative integers

Sσ
β =

|β|∑
k=1

∑
Ek(β,σ)

β!

k∏
j=1

1

µj !(θj !)|µj |
, (6)

which are called the multivariate Stirling numbers [8]. Following the univariate
case, let

Sσ
β =

{
1, σ = β = 0

0, σ = 0, |β| ≥ 1.
(7)

A close relationship between the univariate Stirling numbers of the second kind Sk
n

and the multivariate Stirling numbers is established in [8, Corollary 2.9] through the
formula

∑
|σ|=k S

σ
β = NkSk

|β|, where 1 ≤ k ≤ |β|. Our convention (7) extends it to
all k ≥ 0. Further, if m ≥ 0 is an integer, define Sm = max0≤|σ|≤|β|≤m Sσ

β . For
example, let β = ês and σ = êr for some s, r ∈ {1, . . . , N}, where {ê1, . . . , êN} is the
canonical basis of RN . Then E1(β,σ) = {(êr; ês)} and Ek(β,σ) = ∅ for the other
indices k. Thus, in this case Sσ

β = 1/êr!(ês!)
|êr| = 1 and (7) yields S0 = S1 = 1.

Nota

Even in lower dimensions the calculation of the multivariate Stirling numbers is
quite tedious. For example, for β = (3, 2) and σ = (2, 1) (and dropping the β,σ-
dependence) we have,

E2 =

{((
1

1

)
,

(
1

0

)
;

(
0

1

)
,

(
3

0

))
,

((
1

1

)
,

(
1

0

)
;

(
1

0

)
,

(
1

2

))
,

((
0

1

)
,

(
2

0

)
;

(
1

0

)
,

(
1

1

))
,((

1

0

)
,

(
1

1

)
;

(
1

0

)
,

(
1

1

))
,

((
2

0

)
,

(
0

1

)
;

(
0

1

)
,

(
3

0

))
,

((
2

0

)
,

(
0

1

)
;

(
1

0

)
,

(
1

2

))}
,
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where each multi-index is represented by a vector. Likewise, the set E3 is given by{((
1

0

)
,

(
1

0

)
,

(
0

1

)
;

(
1

0

)
,

(
0

2

)
,

(
2

0

))
,

((
1

0

)
,

(
1

0

)
,

(
0

1

)
;

(
0

1

)
,

(
1

1

)
,

(
2

0

))
,((

1

0

)
,

(
1

0

)
,

(
0

1

)
;

(
0

1

)
,

(
1

0

)
,

(
2

1

))
,

((
1

0

)
,

(
0

1

)
,

(
1

0

)
;

(
1

0

)
,

(
0

2

)
,

(
2

0

))
,((

1

0

)
,

(
0

1

)
,

(
1

0

)
;

(
0

1

)
,

(
1

1

)
,

(
2

0

))
,

((
1

0

)
,

(
0

1

)
,

(
1

0

)
;

(
0

1

)
,

(
1

0

)
,

(
2

1

))
,((

0

1

)
,

(
1

0

)
,

(
1

0

)
;

(
1

0

)
,

(
0

2

)
,

(
2

0

))
,

((
0

1

)
,

(
1

0

)
,

(
1

0

)
;

(
0

1

)
,

(
1

1

)
,

(
2

0

))
,((

0

1

)
,

(
1

0

)
,

(
1

0

)
;

(
0

1

)
,

(
1

0

)
,

(
2

1

))}
,

whereas E1 = E4 = E5 = ∅. Hence Sσ
β = 12

(
1
6 + 8( 12 ) + 4( 14 ) +

1
12 + 1

)
= 75.

3.2 Orlicz-Sobolev spaces of higher order

Let u : X ⊂ RN → R be a real-valued measurable function on an open set. The weak
(distributional) derivative of order β = (β1, . . . , βN ) ∈ NN of u is given by

Dβ
xu =

∂|β|u

∂xβ
=

∂|β|u

∂xβ1

1 · · · ∂xβN

N

,

with the usual convention that the derivative of order zero is the identity operator:
∂0u/∂x0j = u, for any index j = 1, . . . , N . If u1, . . . , uN are real-valued and measurable
in a common domain, then we write

Dβ
x (u1, . . . , uN )(x) = (Dβ

xu1(x), . . . , D
β
xuN (x)). (8)

Let m ≥ 0 be an integer. The collection

WmLΦ(X) = {u ∈ LΦ(X) : Dβ
xu ∈ LΦ(X), |β| ≤ m,β ∈ NN} (9)

is the Orlicz-Sobolev space of order m. This space is Banach when equipped with the
norm

∥u∥m,Φ =
∑

|β|≤m

∥Dβ
xu∥Φ. (10)

Evidently, W 0LΦ(X) = LΦ(X). Likewise, the set of functions

WmEΦ(X) = {u ∈ LΦ(X) : Dβ
xu ∈ EΦ(X), |β| ≤ m,β ∈ NN}

is a closed subspace of WmLΦ(X) and hence, is also a Banach space with the same
norm (10). The space WmEΦ(X) is separable, while WmLΦ(X) is not separable
in general. Obviously, in this case as well, W 0EΦ(X) = EΦ(X). If Φ satisfies a
∆2-condition then WmEΦ(X) = WmLΦ(X) is reflexive. The space (9) is always
identified with a subspace of the product Π|α|≤mLΦ(X). It is not our aim to examine
the structure of Orlicz-Sobolev spaces in this note. For further details we refer the
reader to [1, 10,16].
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4. Local fractal functions

Let X ⊂ RN (with N ≥ 1) be a nonempty connected and bounded subset and let
Φ : [0,∞) → [0,∞) be a Young function with the integral representation (3). We will
assume that there exist pΦ, qΦ > 0 such that

pΦ ≤ t ϕ(t)

Φ(t)
≤ qΦ <∞, for t ̸= 0. (11)

These numbers play a role in the characterization of Orlicz and Orliz-Sobolev spaces [3,
13]. For example, estimates (11) ensure that Φ satisfies a global ∆2-condition [1].
By [9, Lemma 2.5], the complementary Φ satisfies a global ∆2-condition if and only
if pΦ > 1, etc.

Lemma 4.1 ([9]). Let ρ, t be nonnegative real numbers. Then

min{ρpΦ, ρqΦ}Φ(t) ≤ Φ(ρt) ≤ max{ρpΦ, ρqΦ}Φ(t).

In the sequel, we fix an integer m ≥ 0. Let {Xi}ni=1 be a family of nonempty and
connected subsets of X and {αi : Xi → X}ni=1 be a collection of diffeomorphisms

fulfilling the condition αi(Xi) ∩ αi′(Xi′) = ∅ for i ̸= i′, and X =
⋃̇n

i=1αi(Xi). Such
a family is called a local parametrization of X and each element αi is called a local
coordinate. We will assume that the local coordinates are uniformly bounded up to
the order m :

bi(m) := max

{
1, max

1≤j≤N

|θ|≤m

sup
x∈Xi

|Dθ
x(α

−1
i )j(x)|

}
<∞,

where y parametrizes the source space of αi and (α−1
i )j = yj ◦ α−1

i is the jth compo-
nent. (This would happen, e.g. if α−1

i (x) = Ax, with A nonsingular:

bi(m) = max
{
1, max

1≤j≤N
sup
x∈Xi

|Aj•x|
}
<∞,

where Aj• is the j
th row). Finally, let {λi : Xi → R}ni=1 ⊂WmLΦ(X), and let {Ri}ni=1

be a collection of functions with Ri ∈ (L∞(Xi), ∥ · ∥i,∞). Define Read-Bajraktarević
operator T :WmLΦ(X) → RX ,

Tu(x)=

n∑
i=1

(λi◦ α−1
i )(x)1αi(Xi)(x)+

n∑
i=1

(Ri◦ α−1
i )(x)(u|Xi

◦ α−1
i )(x)1αi(Xi)(x), (12)

where 1αi(Xi) is the characteristic function of αi(Xi) (i.e., 1αi(Xi)(x) = 1 if x ∈ αi(Xi)
and it is zero otherwise), and u|Xi

is the restriction of u ∈ WmLΦ(X) to Xi. Note
that for any fixed point u∗ of T, u∗ ◦ αi = λi +Ri u

∗|Xi
, i = 1, . . . , n.

A local fractal function of the Orlicz-Sobolev class WmLΦ(X) is a fixed point
u∗ ∈ WmLΦ(X) of the operator (12), whose graph G(u∗) = {(x, u∗(x)) : x ∈ X} is
the attractor of a contractive local IFS in N dimensions. The realization problem
consists in the construction of the corresponding local IFS. This question was exam-
ined previously in [2] under a few additional mild hypotheses (convexity of Xi, etc.)
In this note we treat the (in some sense) converse problem on the existence of local
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fractal functions of the Orlicz-Sobolev class WmLΦ(X).

4.1 Local fractal functions of higher order

We introduce positive constants

ai = sup
x∈Xi

|det Jxαi|, i = 1, . . . , n, (13)

where Jxαi is the Jacobian matrix of the transformation αi at the point x ∈ Xi.

Lemma 4.2. The Read-Bajraktarević operator is well defined on the Orlicz space
LΦ(X) and sends this space into itself. Moreover, write ri = max{1, ∥Ri∥i,∞},
i = 1, . . . , n. If the sum

∑n
i=1 air

qΦ
i < 1, then (12) is a contraction on LΦ(X).

Proof. Since the αi’s are diffeomorphisms and λi ∈ LΦ(X) for i = 1, . . . , n, the
operator (12) is well defined and T(LΦ(X)) ⊆ LΦ(X). Let τ > 0. After changing the
coordinate y = α−1

i (x) and subsequent re-labeling x 7→ y, Lemma 4.1 implies∫
X

Φ
(1
τ
|Tu(x)−Tv(x)|

)
dx

≤
n∑

i=1

∫
αi(Xi)

Φ
(1
τ
|Ri ◦ α−1

i (x)|
∣∣u|Xi ◦α−1

i (x)−v|Xi ◦α−1
i (x)

∣∣)dx
≤

n∑
i=1

∫
Xi

Φ
(ri
τ

∣∣u|Xi(x)− v|Xi(x)
∣∣)|det Jxαi|dx

≤
( n∑

i=1

air
qΦ
i

)∫
X

Φ
(1
τ
|u(x)− v(x)|

)
dx.

The definition of the Luxemburg norm yields the desired conclusion. □

Theorem 4.3. Let Ri(x) = ci ∈ R for any x ∈ Xi and i = 1, . . . , n. Then the Read-
Bajraktarević operator is well defined on the Orlicz-Sobolev space WmLΦ(X), and
sends this space into itself. In addition, assume that qΦ > 1 and

M :=

n∑
i=1

air
qΦ
i (bi(m))mqΦ <

1

(NmSm)qΦ
, (14)

where ri = max{1, |ci|}, and Nm is the number defined in (5). Then the operator (12)
is a contraction on WmLΦ(X).

Proof. Let β = (β1, . . . , βN ) be a multi-index with |β| ≤ m. The case m = 0 is
covered in Lemma 4.2. We thus assume that 1 ≤ |β| ≤ m. Since λi ∈ WmLΦ(X)
for all i = 1, . . . , n, the operator (12) is well defined and sends this Orlicz-Sobolev
space into itself. Choose u, v ∈WmLΦ(X) and, for every index i, form the difference
gi = u|Xi − v|Xi . Then gi ◦ α−1

i is Dβ
x -differentiable and the (weak) derivative of the

composite is obtained via the generalized Faà di Bruno formula [8, 11],

Dβ
x (gi ◦ α−1

i )(x) =

|β|∑
|σ|=1

Dσ
y gi(y)

|β|∑
k=1

∑
Ek(β,σ)

β!

k∏
j=1

(
D

θj
x (α−1

i )(x)
)µj

µj !(θj !)|µj |
,
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where D
θj
x (α−1

i )(x) =
(
D

θj
x (α−1

i )1(x), . . . , D
θj
x (α−1

i )N (x)
)
is the vector derivative (8)

and y = α−1
i (x) parametrizes the source space of αi. Therefore,

|Dβ
x (gi ◦ α−1

i )(x)| ≤
|β|∑

|σ|=1

|Dσ
y gi(y)|

(
bi(m)

)|σ|
Sσ
β ≤

(
bi(m)

)m
Sm

m∑
|σ|=1

|Dσ
y gi(y)|,

where Sσ
β is the multivariate Stirling number (6). Hence, if τ > 0,∫

X

Φ
(1
τ

∣∣Dβ
xTu(x)−Dβ

xTv(x)
∣∣)dx ≤

n∑
i=1

∫
αi(Xi)

Φ
(ri
τ

∣∣Dβ
x (gi ◦ α−1

i (x))
∣∣)dx

≤
n∑

i=1

∫
αi(Xi)

Φ
(ri
τ

(
bi(m)

)m
Sm

m∑
|σ|=1

|Dσ
y gi(y)|

)
dx,

for every i = 1, . . . , n. Since Φ is convex the right-hand side above is indeed bounded by

1

Nm

m∑
|σ|=1

n∑
i=1

∫
αi(Xi)

Φ
(ri
τ
Nm

(
bi(m)

)m
Sm

∣∣(Dσ
y gi)

(
α−1
i (x)

)∣∣)dx.
Inasmuch as qΦ > 1, the change of the coordinate y = α−1

i (x) (and subsequent
relabeling x 7→ y) and an application of Lemma 4.1 yield∫
X

Φ
(1
τ
|Dβ

xTu(x)−Dβ
xTv(x)|

)
dx ≤MNqΦ−1

m SqΦ
m

m∑
|σ|=1

∫
X

Φ
(1
τ

∣∣Dσ
x u(x)−Dσ

x v(x)
∣∣)dx.

The definition of the Luxemburg norm thus entails

∥Dβ
xTu−Dβ

xTv∥Φ ≤MNqΦ−1
m SqΦ

m

m∑
|σ|=1

∥Dσ
x u−Dσ

x v∥Φ,

and hence ∥Tu − Tv∥m,Φ ≤ M
(
NmSm)qΦ∥u − v∥m,Φ. The operator (12) is thus a

contraction on WmLΦ(X). This concludes the proof. □

Nota

Observe that ifm = 1 (and then N1 = N and S1 = 1, as demonstrated in Section 3.1),
the condition on the constant M reduces to

∑n
i=1 ai(bi(1))

qΦ < 1/NqΦ , which corre-
sponds to the case examined in [2]. Theorem 4.3 is thus a generalization of the results
obtained by Massopust to higher orders, higher dimensions, and different function
spaces.

4.2 Example

The case of the Sobolev space Wm,p(0, 1) with 1 < p ≤ ∞ is well documented
in the literature. Let {Xi}ni=1 be a collection of nonempty open intervals of X =
(0, 1) and let {x1 < · · · < xn−1} be a partition of the same interval. The local
parametrization {αi}i of the domain X is so chosen that the local coordinate αi :
Xi → [0, 1] is a linear map with αi(Xi) = (xi−1, xi), where x0 = 0 and xn = 1. The
function Ri is a real constant ri and λi ∈ Wm,p(Xi), for every i = 1, . . . , n. The
induced Read-Bajraktarević operator T : Wm,p(0, 1) → R(0,1) is well defined and
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sends Wm,p(0, 1) into itself. If di > 0 denotes the ordinary derivative of αi and if the
following conditions are met,

max
k=0,1,...,m

n∑
i=1

|ri|p

dkp−1
i

< 1, 1 ≤ p <∞;

max
k=0,1,...,m

n∑
i=1

|ri|
dki

< 1, p = ∞,

(15)

then the Read-Bajraktarević operator is contractive on Wm,p(0, 1). The unique fixed
point u∗ ∈Wm,p(0, 1) is called a local fractal function of class Wm,p(0, 1). Note that
for values 1 < p < ∞ this example itself results from Theorem 4.3 applied in one
dimension with the Young function Φ(t) = tp, so that pΦ = qΦ = p in (11), while ai =
di in (13) and bi(m) = max{1, 1/di}. Note as well that our general requirement (14)
is an improved (finer) version of (15) in the sense that, as per (5), its right-hand side
reduces to 1/(mSm)p when N = 1.

4.3 Concluding remarks

In one dimension the conclusions in the example above hold as well under the assump-
tion that each function αi is either a smooth bounded diffeomorphism, or a bounded
invertible real-analytic map, from Xi onto the semi-open interval [xi−1, xi). It would
be natural to extend our results to sets X that belong in sub-domains of differentiable
and real analytic manifolds. The problem whether the Read-Bajraktarević operator
may be extended to these categories of spaces is, to our knowledge, untreated. It
seems reasonable that the operator (12) will exhibit particular symmetries in these
cases, stemming from Schwartz reflections around the image of the real line, etc.
These generalizations may be useful in other theoretical contexts. We look forward
to addressing this problem in a future publication.

Acknowledgement. The author is grateful to the anonymous referees for the
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nificantly contributed to the improvement and the quality of this publication.
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