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Abstract. Let D be an integral domain with quotient field K and X an indeterminate
over K. A polynomial overring of D is a subring of K[X] containing D[X]. The aim of
this paper is to study some properties of the polynomial overrings of D, such as (faithful)
flatness, locally freeness and Krull dimension.

1. Introduction

Let D be an integral domain with quotient field K and X an indeterminate over K.
We recall from [12] that a polynomial overring of D is a subring of K[X] containing
D[X]. Notice that the known rings Int(D), Int(E,D) and Bx(D), which are defined
in Section 3, are examples of polynomial overrings of D.

The polynomial overrings of D were studied for the first time by D.D. Anderson,
D.F. Anderson and M. Zafrullah [3] at 1991, where they gave the basic properties
and furthermore, they studied some very important special cases of theses rings such
as D +XDS [X] and K1 +XK2[X], where S is a multiplicatively closed subset of D
and K1 ⊆ K2 are two fields. Those authors established further properties relating
A +XB[X] and I(B,A) := {f ∈ B[X]; f(A) ⊆ A} where A ⊆ B is a pair of rings,
which is a class of rings generalizing the well known ring of integer valued polynomials
I(Q,Z). In 2003, Zafrullah [38] made an extensive study of these rings, especially the
composite of a pair of integral domains A ⊆ B, that is, R := A + XB[X]. He
gave many properties, equalities and inequalities related to the Krull dimension of R
and its spectrum. In 2009, Loper and Tartarone [27] made another extensive study
of the integrally closed domains D between Z[X] and Q[X]. More precisely, they
gave classifications of the integrally closed domains D that are Prüfer, Noetherian or
PvMDs; and in particular they pointed out in the introduction of their paper that
the established results concerning integrally closed property run also for rings between
V [X] and K[X], where V is a DVR with finite residue field and K its quotient field.
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2 On some polynomial overrings of integral domains

Thereafter, in 2016, Chabert and Peruginelli [10] investigated polynomial overrings
of Z containing Int(Z). Later, in 2021, the third named author [34] showed that the
Krull dimension of polynomial overrings of D containing Int(D) is equal to the Krull
dimension of D[X], under the assumption that D is either locally essential or t-locally
Noetherian. Moreover, in the same year, this last result was generalized by the first
and third named authors in [15] for polynomial overrings of D containing Int(E,D)
when D is an MZ-Jaffard domain and E ⊆ D residually cofinite with D. Recentely,
in 2022, Chang [12] studied the class group of polynomial overrings of a UFD defined
by the intersection of DVRs, which allows to construct almost Dedekind polynomial
overrings of Z with some very specific types of ideal class groups. Also, he completely
characterized almost Dedekind polynomial overrings of Z containing Int(Z).

In the present paper, among other things, we investigate various properties and
facts around the polynomial overrings of an integral domain D, such as (w-faithful)
flatness and Krull dimension, and some other properties. We note that our paper
extends some recent results established in [14,15].

For the reader’s convenience, we review some definitions and notation. Let D
be an integral domain with quotient field K and let F (D) (resp., f (D)) be the set
of all nonzero fractional ideals (resp., nonzero finitely generated fractional ideals)
of D. Obviously, f (D) ⊆ F (D). For I ∈ F (D), the v-operation is defined by
Iv := (I−1)−1, where I−1 = (D : I) = {x ∈ K; xI ⊆ D}; the t-operation is
defined by It := ∪{Jv; J ∈ f (D) and J ⊆ I}; and the w-operation is defined by
Iw := {x ∈ K; xJ ⊆ I for some J ∈ f (D) with J−1 = D}. When I = Iv (resp.,
It = I, Iw = I) we say that I is a v-ideal (resp., t-ideal, w-ideal). In general, for each
nonzero fractional ideal I of D, I ⊆ Iw ⊆ It ⊆ Iv, and the inclusions may be strict as
proved in [29, Proposition 1.2]. Hence v-ideals are t-ideals and t-ideals are w-ideals.
If ⋆ denotes either t or w, a ⋆-maximal ideal is a maximal ideal among all ⋆-ideals
of D and the set of all ⋆-maximal ideals of D is denoted by ⋆-Max(D). Moreover,
we have: t-Max(D) = w-Max(D). The w-dimension of D, denoted by w-dim(D), is
defined by w-dim(D) := sup{ht(p); p ∈ w-Max(D)}. We say that an integral domain
D has t-dimension one if it is not a field and each t-maximal ideal of D has height
one, i.e., t-Max(D) = X1(D), where X1(D) is the set of all height-one prime ideals
of D.

The plan of this paper is as follows: In Section 2, we investigate some module-
theoretic properties of extensions of integral domains, such as flatness and (w-)faithful
flatness over various classes of essential domains (Proposition 2.2, Proposition 2.4 and
Theorem 2.7). Moreover, we give some information on the Krull dimension of some
polynomial overrings (Proposition 2.8). Then, we close the section by providing a star
operation on an integral domainD issued from an overring ofD[X] (Proposition 2.10).
In Section 3, we shall make applications of the results proved in Section 2 to the class
of polynomial overrings of D contained in Int(E,D), namely, int polynomial overrings
of D over E.

Throughout this paper D will denote an integral domain with quotient field K.
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2. General results

Let us start this section by giving some module-theoretic properties of extensions of
integral domains. For example the next result shows that (w-)faithful flatness is a
(w-)local property, and also the only (w-)faithfully flat overring of an integral domain
D is D itself.

Proposition 2.1. Let D be an integral domain and let B be a D-module. Then the
following statements are equivalent.
(i) B is faithfully flat over D;

(ii) Bm is faithfully flat over Dm for each maximal ideal m of D;

(iii) B is flat over D and mB ̸= B for each maximal ideal m of D.
If, in addition, B is an overring of D, then the three statements are equivalent to
B = D.

Proof. (i) ⇔ (ii) [5, Chapitre II, §3, no4, Corollaire de la Proposition 15].
(i) ⇔ (iii) [28, Theorem 7.2, page 47].

Now, assume that B is a flat overring of D such that mB ̸= B for every maximal
ideal m of D. So, let m be a maximal ideal of D. Since mB ̸= B, mB ⊆ M for
some maximal ideal M of B and then m ⊆ M ∩ D. So, by the maximality of m,
necessarily m = M ∩D. Then by [33, Theorem 2], the flatness of B over D ensures
that BM = DM∩D = Dm and hence B ⊆ Dm. Thus B ⊆ ∩m∈Max(D)Dm = D and
therefore B = D, as required. □

Notice that the additional statement of the previous proposition is known as an
exercise in Matsumura’s book [28].

The following result gives an answer to the question of whether an extension of
integral domains D ⊆ B is (faithfully) flat when D is Prüfer.

Proposition 2.2. Let D ⊆ B be an extension of integral domains with D a Prüfer
domain. Then:
(i) B is flat as a D-module.

(ii) B is faithfully flat as a D-module if and only if D = B ∩K.

Proof. (i) It follows from the fact that every torsion–free module over a Prüfer domain
is always flat. (ii) See [22, Remark 3.4]. □

We next give the w-analog of the previous two propositions. Recall that a module
M over D is said to be w-flat [26] if, for every short exact sequence 0 → A → B →
C → 0 of D-modules, 0 → (M ⊗D A)w → (M ⊗D B)w → (M ⊗D C)w → 0 is also
exact. Notice that flatness implies w-flatness. A module M over D is said to be
w-faithfully flat if it is w-flat and (M/pM)w ̸= 0 for all p ∈ w-Max(D). An integral
domain D is said to be a Prüfer v-multiplication domain (for short, PvMD) if Dm is
a valuation domain for all t-maximal ideals m of D.

For the proof of the next proposition see [24, Proposition 2.5 and Corollary 2.6].
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Proposition 2.3. Let D be an integral domain and let B be a D-module. Then B
is w-faithfully flat over D if and only if Bm is faithfully flat over Dm for each w-
maximal ideal m of D. If, moreover, B is an overring of D, then the two statements
are equivalent to B = D.

Proposition 2.4. Let D ⊆ B be an extension of integral domains with D a PvMD.
Then:
(i) B is w-flat as a D-module.

(ii) If D = B∩K, then the D-module B is w-faithfully flat and hence w-dim(D) ⩽ w-
dim(B).

Proof. (i) See [26, Corollary 4.7]. (ii) By Proposition 2.3, we only need to prove that
Bm is faithfully flat as a Dm-module for each w-maximal ideal m of D. So, let m
be a w-maximal ideal of D. Then, Dm is a valuation domain and hence a Prüfer
domain. So it follows from Proposition 2.2(ii) that Bm is a faithfully flat Dm-module
because Dm = (B ∩K)m = Bm ∩K. Therefore B is w-faithfully flat D-module and
so w-dim(D) ⩽ w-dim(B) as asserted in [24, Theorem 2.13(2)]. □

As noticed in [7, Remark VI.3.3, page 136], if K is a field and B is a domain
contained in K[X], then the units of B are the units of D := B ∩K. On the other
hand, the authors of [21] stated that if B is an overring of an integral domain R, then
B is a localization of R if and only if B = RS , where S = {r ∈ R; r is a unit in B},
i.e., B = RU(B)∩R, where U(B) is the multiplicative group of units of B. Therefore,
from these observations, we derive the following.

Proposition 2.5. Let D be an integral domain with quotient field K and let B be a
polynomial overring of D such that B ∩K = D. Then B is a localization of D[X] if
and only if B = D[X].

For an overring R of an integral domain D, we recall that R is said to be t-linked
over D if I−1 = D implies that (IR)−1 = R for each I ∈ f (D). Notice that any flat
overring is t-linked. An integral domain D is called a GCD domain if the intersection
of two principal ideals of D is principal. Notice that valuation domains are GCD
domains and GCD domains form a subclass of PvMDs.

Corollary 2.6. Let D be a GCD domain with quotient field K and let B be a
polynomial overring of D such that B ∩K = D. Then B is t-linked over D[X] if and
only if B = D[X].

Proof. It is well known that if D is a GCD domain, then so is D[X] ( [19, Theorem
34.10]). So the result follows from Proposition 2.5 and the fact that GCD domains
have the property that every t-linked overring is a localization [16, Corollary 3.8]. □

For a subset P of Spec(D), we say that D is an essential domain with defining
family P if D = ∩p∈PDp and Dp is a valuation domain for each p ∈ P. We have:

Theorem 2.7. Let D be an essential domain with quotient field K and let B be a
polynomial overring of D such that B∩K = D. Then B is flat over D[X] if and only
if B = D[X].
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Proof. Denote by P the defining family of D. We note first that D[X] = ∩p∈PDp[X]
and Dp[X] is a GCD domain, for every p ∈ P (this second statement follows from [19,
Theorem 34.10] and the fact that valuation domains are GCD domains).

Assume that B is flat over D[X] and let p ∈ P. Then the overring Bp of Dp[X] is
flat and hence it is also t-linked. Since Dp[X] is a GCD domain and Bp ∩K = Dp,
we deduce from Corollary 2.6 that Bp = Dp[X] and so B ⊆ Dp[X]. Thus B ⊆
∩p∈PDp[X] = D[X] and therefore B = D[X], as desired. The converse is trivial. □

Recall that the valuative dimension of a domainD, denoted by dimv(D), is defined
to be the supremum of the Krull dimensions of the valuation overrings of D. Notice
that dim(D) ⩽ dimv(D), where dim(D) denotes the Krull dimension of D, and when
these two dimensions are equal and finite D is called a Jaffard domain. For instance,
in the finite Krull dimensional case, Noetherian domains and Prüfer domains are
examples of Jaffard domains. It is well known that dimv(R) ⩽ dimv(D) for any
overring R of D.

Proposition 2.8. Let D be an integral domain with quotient field K and let B be a
polynomial overring of D contained in D + (X − a)K[X] for some element a of K.
We have:

(i) dim(B) = sup {dim(Bm); m ∈ Max(D)} and dimv(B) = 1 + dimv(D);

(ii) D is Jaffard if and only if B is Jaffard and dim(B) = 1 + dim(D);

(iii) if D[X] is Jaffard then 1 + dim(D) ⩽ dim(B) ⩽ dim(D[X]).

Proof. (i) It follows from [34, Lemma 1.2] and [2, Theorem 2(2)].

(ii) Follows immediately from [2, Theorem 2(3)].

(iii) The first inequality follows from [2, Theorem 2(1)]. For the second inequality,
we have: dimv(B) = 1 + dimv(D) = dimv(D[X]), and then dimv(B) = dim(D[X])
because D[X] is Jaffard. Thus dim(B) ⩽ dim(D[X]), as we wanted. □

The following example shows that some polynomial overrings of an integral domain
do not behave in the same way for Jaffard property.

Example 2.9. Let k be a finite field, and Y and Z are indeterminates over k.
Set D = k + Zk(Y )[Z](Z) and let B be a polynomial overring of D contained in
D + (X − a)K[X] for some element a of K := qf(D). It is well known that D is a
one-dimensional pseudo-valuation domain that is not Jaffard but D[X] is a Jaffard
domain (of dimension 3). Then, it follows from Proposition 2.8 that 2⩽dim(B)⩽3
and dimv(B) = 1+dimv(D) = dimv(D[X]) = 3. Particularly, if B = Bx(D), we have
dim(B) = dim(D[X]) = 3 by [1, Example 5.1], and then B is a Jaffard domain. How-
ever, if B = Int(D), it follows from [36, Corollary 1.4] that dim(B) = 1+dim(D) = 2
and hence B is not a Jaffard domain.

We conclude this section with some properties of a particular star-operation on D
issued from an overring B of D[X] such that B ∩ K = D, where K is the quotient
field of D.
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Given an integral domain D with quotient field K, a star operation on D is
a mapping I 7−→ I∗ on F (D) that satisfies the following three properties for all
0 ̸= a ∈ K and I, J ∈ F (D):

(i) (a)∗ = (a) and (aI)∗ = aI∗,

(ii) I ⊆ I∗ and I∗ ⊆ J∗ whenever I ⊆ J ,

(iii) (I∗)∗ = I∗.

A star operation ∗ is of finite type if I∗ = ∪{J∗; J ⊆ I and J ∈ f (D)}, for each
I ∈ F (D). A star operation ∗ on D is said to be stable if (I ∩ J)∗ = I∗ ∩ J∗, for
all I, J ∈ F(D); arithmetisch brauchbar (for short a.b.) if, for all I ∈ f (D) and
F, G ∈ F (D), (IF )∗ ⊆ (IG)∗ implies F ∗ ⊆ G∗.

Proposition 2.10. Let D be an integral domain with quotient field K and let B be
an overring of D[X] such that B ∩K = D.

(i) The mapping ⋆ : F(D) → F(D), given by I 7→ I⋆ := IB ∩ K, defines a star
operation on D such that I⋆B = IB for each I ∈ F(D). Moreover, ⋆ is of finite type.

(ii) For each I ∈ F(D), IB = B implies that I⋆ = D .

(iii) If B is a Prüfer domain, then ⋆ is an a.b. star operation.

(iv) Assume that B is flat as a D-module. Then:

(a) For each I ∈ F(D) and each J ∈ f(D), (I : J)⋆ = (I⋆ : J⋆) = (I⋆ : J).

(b) ⋆ is stable.

(c) B is faithfully flat as a D-module if and only if m⋆ ̸= D for each m ∈ Max(D).

Proof. (i) It follows from [11, Lemma 1(1)] and its proof. (ii) Obvious.

(iii) Let I ∈ f (D) and F, G ∈ F (D) such that (IF )⋆ ⊆ (IG)⋆. Then, (IB)(FB) =
(IF )B = (IF )⋆B ⊆ (IG)⋆B = (IG)B = (IB)(GB). Since IB is finitely generated
and B is a Prüfer domain, IB is invertible and hence FB ⊆ GB. Thus F ⋆ ⊆ G⋆.

(iii) (a) Let I ∈ F (D) and J ∈ f (D). By flatness of B over D, (I : J)B = (IB : JB).
Then (I : J)⋆ = (IB : JB) ∩K = (I⋆B : J⋆B) ∩K = (I⋆ : J⋆)B ∩K = (I⋆ : J⋆)⋆.
Hence (I : J)⋆ = (I⋆ : J⋆) = (I⋆ : J).

(b) Let I, J ∈ F (D). Since B is flat as a D–module, IB ∩ JB = (I ∩ J)B [28,
Theorem 7.4(i), page 48] and then (I∩J)⋆ = ((I∩J)B)∩K = (IB∩K)∩(JB∩K) =
I⋆ ∩ J⋆. Therefore (I ∩ J)⋆ = I⋆ ∩ J⋆.

(c) It follows from Proposition 2.1 and statement (ii). □

We close this section by the following corollary of [19, Proposition 32.18] and
Propositions 2.2 and 2.10.

Corollary 2.11. Let D be a Prüfer domain. Then the star operation ⋆ is stable a.b.
which is equivalent to any star operation on D and m⋆ ̸= D for each m ∈ Max(D).
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3. Applications to polynomial overrings of D contained in Int(E,D)

In this section, we investigate some properties of int polynomial overrings of D con-
tained in Int(E,D), which we shall call later int polynomial overring of D over E, for
distinguished classes of integral domains D and some special subsets E of D in order
to recover some well known results.

Let D be an integral domain with quotient field K, E a subset of K and X an
indeterminate over K. The ring Int(E,D) := {f ∈ K[X]; f(E) ⊆ D}, of integer-
valued polynomials on E with respect to D, is known to be a D-algebra. Obviously,
Int(D,D) = Int(D), is the classical ring of integer-valued polynomials over D, D ⊆
Int(E,D) ⊆ K[X], and Int(E,D) is an overring of D[X] whenever E is a subset of
D.

Given a subset E of D, we call an int polynomial overring of D over E any domain
B between D[X] and Int(E,D). When E = D, we simply say int polynomial overring
of D. Notice that, if B is an int polynomial overring of D over E then B ∩K = D.

First, we list some remarkable interesting int polynomial overrings of D over E:

— The ring IntR(E,D) of D-valued R-polynomials over E [35], that is,

IntR(E,D) := {f ∈ R[X]; f(E) ⊆ D},
where R is an overring of D and E is a subset of D.

— The Bhargava ring over E at x [2], that is,

Bx(E,D) := {f ∈ K[X]; ∀a ∈ E, f(xX + a) ∈ D[X]},
where x is an element of D and E is a subset of D.

— The ring of integer-valued polynomials on A with coefficients in K [17], that is,

IntK(A) := {f ∈ K[X]; f(A) ⊆ A},
where A is a torsion-free D-algebra such that A ∩K = D.

Recall that an integral domainD is called Bézout domain if every finitely generated
ideal of D is principal. Notice that PIDs and valuation domains are Bézout domains,
and Bézout domains form a subclass of Prüfer domains.

It is well known that unless D is a field, the domains Bx(D) and Int(D) are never
Bézout (see [2, Proposition 17] and [9, Proposition 3.1]).

We start by proving the following characterization of when some int polynomial
overrings are Bézout.

Proposition 3.1. Let D be an integral domain and let B be an int polynomial over-
ring of D over {0, 1}. Then B is a Bézout domain if and only if D is a field.

Proof. If D is a field then B = D[X] is a PID and hence Bézout. For the converse, by
way of contradiction, we assume that B is a Bézout domain and that D is not a field
and we argue mimicking the proof of [2, Proposition 17]. As D is not a field, there
exists a nonzero element t of D which is not a unit. Then, (t,X) is a principal ideal of
B and hence (t,X) = (f) for some f ∈ B. Thus, f(X) = tg1(X) +Xg2(X) for some
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g1, g2 ∈ B. So, d := f(0) = tg1(0) ∈ D because t ∈ D and g1(0) ∈ D. Moreover, since
X and t are elements of the principal ideal (f), X = f(X)h1(X) and t = f(X)h2(X)
for some h1, h2 ∈ B. The equality t = f(X)h2(X) forces deg(f) = deg(h2) = 0
which implies f(X) = d ̸= 0. Now, the equality X = f(X)h1(X) implies that
deg(h1) = 1 and then h1(X) = aX + b. Hence, a = h1(1) − h1(0) ∈ D and 1 = ad,
and thus a = d−1 = (tg1(0))

−1. Therefore, since t is not a unit, a ̸∈ D which is a
contradiction. □

As an immediate consequence, we have:

Corollary 3.2. Let D ⊆ R be an extension of integral domains and let x be an
element of D. Unless D is a field, the rings IntR(D) and Bx(D) are never Bézout.

An almost Dedekind domain is defined as an integral domain D such that any
localization of D at a maximal ideal is a DVR (here by a DVR we mean a rank-one
discrete valuation domain). A module M over an integral domain D is said to be
locally free if Mm is a free Dm-module for each maximal ideal m of D. Note that any
locally free module is (faithfully) flat.

Proposition 3.3. Let D be an integral domain with quotient field K and let B be a
ring between D and Int(E,D) for some subset E of K.
(i) If D is a Prüfer domain, then B is a faithfully flat D-module.

(ii) Assume that D[X] is contained in B.

(a) If D is an almost Dedekind domain and E is an infinite subset of D, then B is
a locally free D-module.

(b) If D is an essential domain, then B is flat over D[X] if and only if B = D[X].

(c) If D is a GCD domain, then B is t-linked over D[X] if and only if B = D[X].

Proof. (i) Since D ⊆ B ⊆ Int(E,D) and Int(E,D) ∩K = D, then B ∩K = D and
hence the thesis follows from Proposition 2.2 because D is a Prüfer domain.
(ii) (a) Let m be a maximal ideal ofD. SinceD is an almost Dedekind domain, Dm is a
DVR and then it follows from the inclusionsDm[X] ⊆ Bm ⊆ Int(E,D)m ⊆ Int(E,Dm)
and [7, Corollary II.1.6] that Bm has a regular basis, and hence free as a Dm-module.
Thus, B is a locally free D-module.

(b) and (c) follow from Theorem 2.7 and Corollary 2.6 because B ∩K = D and
D[X] ⊆ B ⊆ K[X]. □

Example 3.4. Let T be an indeterminate over Q, and set A = ∪∞
n=0Q[T

1
2n ] and

D = AS , where S = Q[T ] \ (1 − T )Q[T ]. Let B be a ring between D and Int(E,D)
for some non-empty subset E of K := qf(D).

As it was established in [13, Section 3] the ring D = AS is an almost Dedekind
domain that is not Noetherian. Then it follows from Proposition 3.3(i) that B is a
faithfully flat D-module. If, in addition, E is an infinite subset of D then B is a
locally free D-module by statement (ii)(a) of Proposition 3.3.
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Example 3.5. The integral domain D in [8, Example 5.1] is an almost Dedekind
domain such that Int(D) is not a PvMD. Let B be an int polynomial overring of D
over a non-empty subset E of D.

(i) If E is infinite, then by Proposition 3.3 (ii)(a) , B is locally free, and hence
faithfully flat, as a D-module.

(ii) Int(E,D) is not flat over D[X]. Otherwise, it follows from Proposition 3.3 (ii)(b)
that Int(E,D) = D[X] and hence Int(D) = D[X]. Thus by [23, Theorem 3.7], Int(D)
is a PvMD which is a contradiction.

The following result sheds more light on the w-analog of Proposition 3.3. For
an integral domain D, a module M over D is called w-locally free if Mm is a free
Dm-module for each w-maximal ideal m of D. Notice that any w-locally free module
is w-faithfully flat. An integral domain D is said to be a t-almost Dedekind if Dm is
a DVR for all t-maximal ideals m of D. Notice that almost Dedekind domains are
t-almost Dedekind domains and these form a subclass of PvMDs.

Proposition 3.6. Let D be an integral domain with quotient field K and let B be a
ring between D and Int(E,D) for some subset E of K.

(i) If D is a PvMD, then B is a w-faithfully flat D-module and w-dim(D) ⩽ w-
dim(B).

(ii) If D is a t-almost Dedekind domain and E is an infinite subset of D, then B is
a w-locally free D-module.

Proof. (i) Follows immediately from Proposition 2.4 (ii).

(ii) The proof is similar to that of Proposition 3.3 with a slight modification. □

To avoid repetition, we fix some definitions and notation:

Following [6], a prime ideal p of D is called an associated prime of a principal ideal
aD of D if p is minimal over (aD : bD) for some b ∈ D \aD. For brevity, we call p an
associated prime of D and we denote by Ass(D) the set of all associated prime ideals
of D. Thus, for any integral domain D, we define the following partition of Max(D):

M0 := {m ∈ Ass(D) ∩Max(D); D/m is finite} and M1 := Max(D)\M0.

As the notion of essential domains does not carry up to localizations [20], D is said
to be a locally essential domain if Dq is an essential domain for each q ∈ Spec(D); or
equivalently, Dp is a valuation domain for each p ∈ Ass(D) [30]. Analogously, under
the naming system of [25], an integral domain D is called an MZ-DVR if Dp is a DVR
for each p ∈ Ass(D).

A subset E of D is said to be residually cofinite with D [31] if E is non-empty
and, for any prime ideal p of D, E and D are simultaneously either finite or infinite
modulo p. Notice that D is residually cofinite with itself.

Theorem 3.7. Let D be an integral domain, E ⊆ D a residually cofinite with D and
B an int polynomial overring of D over E.

(i) If D is a locally essential domain, then B is a faithfully flat D-module.
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(ii) If E is infinite and Dm is a DVR for each m ∈ M0, then B is a locally free
D-module.

Proof. (i) By Proposition 2.1, we only need to prove that Bm is a faithfully flat Dm-
module for each maximal ideal m of D. Let m be a maximal ideal of D. We then
examine the following two possible cases:
Case 1. m ∈ Ass(D). Since D is locally essential, Dm is a valuation domain and then
it follows from the equality Dm = Bm ∩ K (because Dm[X] ⊆ Bm ⊆ Int(E,D)m ⊆
Int(E,Dm) and Dm = Dm[X] ∩ K = Int(E,Dm) ∩ K) and Proposition 2.2 (ii) that
Bm is a faithfully flat Dm-module.

Case 2. m ̸∈ Ass(D). It follows from [35, Proposition 7] that Int(E,D)m = Int(E,Dm) =
Dm[X] and hence from the inclusions Dm[X] ⊆ Bm ⊆ Int(E,Dm) we deduce that
Bm = Dm[X]. Therefore Bm is a faithfully flat Dm-module.
Therefore B is a faithfully flat D-module, as desired.
(ii) Let m be a maximal ideal of D. So, we need to discuss the following cases.
Case 1. m ∈ M0. By assumption, Dm is a DVR and so it follows from [7, Corollary
II.1.6] that Bm is free as a Dm-module because Dm[X] ⊆ Bm ⊆ Int(E,Dm).

Case 2. m ∈ M1. We then examine the following possible subcases:

Case 2.1. m ∈ (Ass(D) ∩Max(D)) \M0. We haveD/m is infinite and then Int(E,Dm)
= Dm[X] by [31, Lemmas 3(i) and 4(ii)]. Thus from the inclusions Dm[X] ⊆ Bm ⊆
Int(E,Dm) we deduce that Bm = Dm[X] is a free Dm-module.

Case 2.2. m ̸∈ Ass(D). It follows from [35, Proposition 7] that Int(E,D)m =
Int(E,Dm) = Dm[X] and then, as in the previous subcase, Bm = Dm[X]. There-
fore Bm is a free Dm-module.

Consequently, B is a locally free D-module. □

Example 3.8. Let E be the ring of entire functions, and set D := E + TES [T ], where
T is an indeterminate over E and S is the set generated by the principal primes of E .
Let E ⊆ D a residually cofinite with D, and let B be an int polynomial overring of
D over E.

According to [37, Example 2.6], D is a locally essential domain which is neither
PvMD nor almost Krull. Then by Theorem 3.7 (i), B is a faithfully flat D-module.

From the above theorem, we derive the next corollaries.

Corollary 3.9. Let D be an integral domain, E ⊆ D an infinite residually cofinite
with D and B an int polynomial overring of D over E.
(i) If D is an MZ-DVR, then B is locally free as a D-module.

(ii) If D is a locally essential domain such that Ass(D) = X1(D) and E = D, then
B is locally free as a D-module.

Proof. (i) An immediate application of Theorem 3.7 (ii).
(ii) Let p ∈ Ass(D). We have either Bp = Dp[X] or Bp ̸= Dp[X]. In the second
case, Int(Dp) ̸= Dp[X] and then from [7, Proposition I.3.16] we deduce that Dp is a
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valuation domain with principal maximal ideal. Thus, since p is height-one, Dp is a
DVR and therefore the conclusion follows from Theorem 3.7 (ii). □

An integral domain D is called generalized Krull (in the sense of Gilmer [19,
Section 43]) if the intersection D = ∩p∈X1(D)Dp is locally finite and Dp is a valuation
domain for each p ∈ X1(D). An integral domain D is said to be K-domain [32] if
(i) D = ∩p∈X1(D)Dp; (ii) each Dp is a DVR; and (iii) each p is divisorial.
Also, an almost Krull domain is defined as an integral domain D such that any
localization of D at a maximal ideal is a Krull domain. Notice that Krull domains
form a proper subclass of generalized Krull domains, almost Krull domains and t-
almost Dedekind domains. Moreover, almost Krull domains, K-domains and t-almost
Dedekind domains are MZ-DVRs.

Corollary 3.10. Let D be an integral domain, E ⊆ D an infinite residually cofinite
with D and B an int polynomial overring of D over E. If D is either t-almost
Dedekind, almost Krull, K-domain or generalized Krull, then B is a locally free D-
module.

Notice that generalized Krull domains and t-almost Dedekind domains are PvMDs
of t-dimension one, and if D has t-dimension one then Ass(D) = X1(D).

Corollary 3.11. Let D be a PvMD of t-dimension one. Then, every int polynomial
overring of D is a locally free as a D-module.

Corollary 3.12. Let D be an integral domain and let B be an int polynomial over-
ring of D. If Int(D) is a PvMD, then B is a locally free D-module.

Proof. Let p ∈ Ass(D). Then either Bp = Dp[X], or Bp ̸= Dp[X] and then it follows
from [8, Corollary 1.8] that Dp is a DVR because Int(Dp) ̸= Dp[X]. Hence p is
height-one and therefore we are in the conditions of Theorem 3.7 (ii). □

Example 3.13. 1. Let D = Z [{T/pn, U/pn}∞n=1], where T and U are indetermi-
nates over Z and {pn}∞n=1 is the set of all positive prime integers, E ⊆ D an infinite
and residually cofinite with D and let B be an int polynomial overring of D over E.
As cited in [4, Example, page 52], D is an almost Krull domain which is not PvMD.
Then by Corollary 3.10, B is locally free as a D-module.

2. The integral domain D in [32, Section 3] is a K-domain that is not almost
Krull. Let E be an infinite and residually cofinite with D. So, by Corollary 3.10, any
int polynomial overring B of D over E is locally free as a D-module.

3. Let A be the domain of all algebraic integers and {pn}∞n=1 is the set of all
positive prime integers. For each n choose a maximal ideal Mn of A lying over pnZ,
and set S = A \ ∪∞

n=1Mn and D = AS .

In [18, Example 1, page 338], Gilmer proved that D is a one-dimensional Prüfer
domain which is not almost Dedekind (indeed not almost Krull). Then by Corol-
lary 3.11, any int polynomial overring B of D is locally free as a D-module.
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We end this article with some results and properties of the Krull dimension of D.

Theorem 3.14. Let D be an integral domain, E ⊆ D a residually cofinite with D
and B an int polynomial overring of D over E.

(i) If Dm is a Jaffard domain for each m ∈ M0, then dim(B) = dim(D[X]).

(ii) If Dm[X] is a Jaffard domain for each m ∈ M0, then dim(B) ⩽ dim(D[X]).

Proof. (i) Let m be a maximal ideal of D. We then examine the following possible
cases:

Case 1. m ∈ M0. By assumption Dm is a Jaffard domain and then it follows from
Proposition 2.8 (ii) that dim(Bm) = 1 + dim(Dm) = dim(Dm[X]).

Case 2. m ∈ M1. We have either m ̸∈ Ass(D) or m ∈ (Ass(D) ∩Max(D)) \M0,
and then it follows from the proof of Theorem 3.7 (ii) that Bm = Dm[X]. Thus
dim(Bm) = dim(Dm[X]).

Consequently, dim(Bm) = dim(Dm[X]) for each maximal ideal m of D, and hence the
conclusion is settled from Proposition 2.8 (i).

(ii) For this statement, we only need to treat the previous first case. So, if m ∈
M0, then Dm[X] is a Jaffard domain and hence by Proposition 2.8(iii), dim(Bm) ⩽
dim(Dm[X]). Thus, for each maximal ideal m of D, dim(Bm) ⩽ dim(Dm[X]) and
therefore by Proposition 2.8(i), dim(B) ⩽ dim(D[X]), as wanted. □

An integral domain D is called a Mott-Zafrullah Jaffard domain (in short, an MZ-
Jaffard domain) if Dp is Jaffard for each p ∈ Ass(D). In the finite Krull dimensional
setting, it is clear that any locally essential domain is MZ-Jaffard. From the first
statement of Theorem 3.14, we obtain [15, Theorem 2.11] as a corollary.

Corollary 3.15. Let D be an MZ-Jaffard domain, E ⊆ D a residually cofinite with
D and B an int polynomial overring of D over E. Then dim(B) = dim(D[X]).

Recall that an integral domain D is said to be strong Mori if it satisfies the
ascending chain condition (a.c.c.) on integral w-ideals. Thus, the class of strong Mori
domains includes that of Noetherian domains and Krull domains. We also recall that
an integral domain D is a t-locally Noetherian domain if any localization of D at a t-
maximal ideal is a Noetherian domain. It is well known that strong Mori domains are
t-locally Noetherian. Moreover, as mentioned in [25], t-locally Noetherian domains
are MZ-Jaffard.

Corollary 3.16. Let D be an integral domain, E ⊆ D a residually cofinite with D
and B an int polynomial overring of D over E. If D is a t-locally Noetherian domain
(in particular, a strong Mori domain), then dim(B) = dim(D[X]).

Example 3.17. Let T be a non-Noetherian Krull domain with a maximal ideal m
such that Tm is Noetherian. Assume that T/m contains properly a finite field k.
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Let D be defined by the following pullback diagram:

D //

��

k ∼= D/m

��

T // T/m,

E⊆D a residually cofinite with D and let B be an int polynomial overring of D of E.

It follows from [29, Example 3.15(3)] that D is a strong Mori domain which is
neither Noetherian nor Krull. Then by Corollary 3.16, dim(B) = dim(D[X]).
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[9] J.-L. Chabert, Un anneau de Prüfer, J. Algebra, 107(1) (1987), 1–16.

[10] J.-L. Chabert and G. Peruginelli, Polynomial overrings of Int(Z), J. Commut. Algebra, 8(1)
(2016), 1–28.

[11] G. W. Chang, Overrings of the Kronecker function ring Kr(D, ∗) of a Prüfer ∗-multiplication
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