MATEMATIČKI VESNIK МАТЕМАТИЧКИ ВЕСНИК Corrected proof Available online 26.08.2024

research paper оригинални научни рад DOI: 10.57016/MV-QXYR7351

ON SOME POLYNOMIAL OVERRINGS OF INTEGRAL DOMAINS

Mohamed Mahmoud Chems-Eddin, Omar Ouzzaouit and Ali Tamoussit

Abstract. Let D be an integral domain with quotient field K and X an indeterminate over K. A polynomial overring of D is a subring of $K[X]$ containing $D[X]$. The aim of this paper is to study some properties of the polynomial overrings of D , such as (faithful) flatness, locally freeness and Krull dimension.

1. Introduction

Let D be an integral domain with quotient field K and X an indeterminate over K . We recall from [\[12\]](#page-12-0) that a *polynomial overring of* D is a subring of $K[X]$ containing $D[X]$. Notice that the known rings $Int(D)$, $Int(E, D)$ and $\mathbb{B}_{x}(D)$, which are defined in Section [3,](#page-5-0) are examples of polynomial overrings of D.

The polynomial overrings of D were studied for the first time by D.D. Anderson, D.F. Anderson and M. Zafrullah [\[3\]](#page-12-1) at 1991, where they gave the basic properties and furthermore, they studied some very important special cases of theses rings such as $D + X D_S[X]$ and $K₁ + X K₂[X]$, where S is a multiplicatively closed subset of D and $K_1 \subseteq K_2$ are two fields. Those authors established further properties relating $A + XB[X]$ and $I(B, A) := \{f \in B[X]; f(A) \subseteq A\}$ where $A \subseteq B$ is a pair of rings, which is a class of rings generalizing the well known ring of integer valued polynomials $I(\mathbb{Q}, \mathbb{Z})$. In 2003, Zafrullah [\[38\]](#page-13-0) made an extensive study of these rings, especially the composite of a pair of integral domains $A \subseteq B$, that is, $R := A + XB[X]$. He gave many properties, equalities and inequalities related to the Krull dimension of R and its spectrum. In 2009, Loper and Tartarone [\[27\]](#page-13-1) made another extensive study of the integrally closed domains D between $\mathbb{Z}[X]$ and $\mathbb{Q}[X]$. More precisely, they gave classifications of the integrally closed domains D that are Prüfer, Noetherian or PvMDs; and in particular they pointed out in the introduction of their paper that the established results concerning integrally closed property run also for rings between $V[X]$ and $K[X]$, where V is a DVR with finite residue field and K its quotient field.

²⁰²⁰ Mathematics Subject Classification: 13F05, 13F20, 13B30, 16D40

Keywords and phrases: Integer-valued polynomials; (w-faithfully) flat module; Krull dimension.

Thereafter, in 2016, Chabert and Peruginelli [\[10\]](#page-12-2) investigated polynomial overrings of $\mathbb Z$ containing Int($\mathbb Z$). Later, in 2021, the third named author [\[34\]](#page-13-2) showed that the Krull dimension of polynomial overrings of D containing $Int(D)$ is equal to the Krull dimension of $D[X]$, under the assumption that D is either locally essential or t-locally Noetherian. Moreover, in the same year, this last result was generalized by the first and third named authors in [\[15\]](#page-12-3) for polynomial overrings of D containing $Int(E, D)$ when D is an MZ-Jaffard domain and $E \subseteq D$ residually cofinite with D. Recentely, in 2022, Chang [\[12\]](#page-12-0) studied the class group of polynomial overrings of a UFD defined by the intersection of DVRs, which allows to construct almost Dedekind polynomial overrings of $\mathbb Z$ with some very specific types of ideal class groups. Also, he completely characterized almost Dedekind polynomial overrings of $\mathbb Z$ containing Int($\mathbb Z$).

In the present paper, among other things, we investigate various properties and facts around the polynomial overrings of an integral domain D , such as (w-faithful) flatness and Krull dimension, and some other properties. We note that our paper extends some recent results established in [\[14,](#page-12-4) [15\]](#page-12-3).

For the reader's convenience, we review some definitions and notation. Let D be an integral domain with quotient field K and let $F(D)$ (resp., $f(D)$) be the set of all nonzero fractional ideals (resp., nonzero finitely generated fractional ideals) of D. Obviously, $f(D) \subseteq F(D)$. For $I \in F(D)$, the v-operation is defined by $I_v := (I^{-1})^{-1}$, where $I^{-1} = (D : I) = \{x \in K; xI \subseteq D\}$; the t-operation is defined by $I_t := \bigcup \{J_v; J \in \mathbf{f}(D) \text{ and } J \subseteq I\}$; and the w-operation is defined by $I_w := \{x \in K; xJ \subseteq I \text{ for some } J \in f(D) \text{ with } J^{-1} = D\}.$ When $I = I_v$ (resp., $I_t = I, I_w = I$) we say that I is a v-ideal (resp., t-ideal, w-ideal). In general, for each nonzero fractional ideal I of D, $I \subseteq I_w \subseteq I_t \subseteq I_v$, and the inclusions may be strict as proved in [\[29,](#page-13-3) Proposition 1.2]. Hence v-ideals are t-ideals and t-ideals are w-ideals. If \star denotes either t or w, a \star -maximal ideal is a maximal ideal among all \star -ideals of D and the set of all \star -maximal ideals of D is denoted by \star -Max(D). Moreover, we have: $t\text{-Max}(D) = w\text{-Max}(D)$. The w-dimension of D, denoted by $w\text{-dim}(D)$, is defined by w-dim(D) := $\sup\{ht(\mathfrak{p}); \mathfrak{p} \in w\text{-Max}(D)\}\$. We say that an integral domain D has t -dimension one if it is not a field and each t -maximal ideal of D has height one, i.e., t -Max $(D) = X^1(D)$, where $X^1(D)$ is the set of all height-one prime ideals of D.

The plan of this paper is as follows: In Section [2,](#page-1-0) we investigate some moduletheoretic properties of extensions of integral domains, such as flatness and (w) -)faithful flatness over various classes of essential domains [\(Proposition 2.2,](#page-2-0) [Proposition 2.4](#page-3-0) and [Theorem 2.7\)](#page-3-1). Moreover, we give some information on the Krull dimension of some polynomial overrings [\(Proposition 2.8\)](#page-4-0). Then, we close the section by providing a star operation on an integral domain D issued from an overring of $D[X]$ [\(Proposition 2.10\)](#page-5-1). In Section [3,](#page-5-0) we shall make applications of the results proved in Section [2](#page-1-0) to the class of polynomial overrings of D contained in $Int(E, D)$, namely, int polynomial overrings of D over E .

Throughout this paper D will denote an integral domain with quotient field K .

2. General results

Let us start this section by giving some module-theoretic properties of extensions of integral domains. For example the next result shows that (w) -faithful flatness is a $(w-)$ local property, and also the only $(w-)$ faithfully flat overring of an integral domain D is D itself.

PROPOSITION 2.1. Let D be an integral domain and let B be a D-module. Then the following statements are equivalent.

(i) B is faithfully flat over D ;

(ii) B_m is faithfully flat over D_m for each maximal ideal m of D ;

(iii) B is flat over D and $mB \neq B$ for each maximal ideal m of D.

If, in addition, B is an overring of D , then the three statements are equivalent to $B = D.$

Proof. [\(i\)](#page-2-1) \Leftrightarrow [\(ii\)](#page-2-2) [\[5,](#page-12-5) Chapitre II, §3, n^o4, Corollaire de la Proposition 15]. [\(i\)](#page-2-1) \Leftrightarrow [\(iii\)](#page-2-3) [\[28,](#page-13-4) Theorem 7.2, page 47].

Now, assume that B is a flat overring of D such that $mB \neq B$ for every maximal ideal m of D. So, let m be a maximal ideal of D. Since $mB \neq B$, $mB \subseteq \mathfrak{M}$ for some maximal ideal \mathfrak{M} of B and then $\mathfrak{m} \subseteq \mathfrak{M} \cap D$. So, by the maximality of \mathfrak{m} , necessarily $\mathfrak{m} = \mathfrak{M} \cap D$. Then by [\[33,](#page-13-5) Theorem 2], the flatness of B over D ensures that $B_{\mathfrak{M}} = D_{\mathfrak{M} \cap D} = D_{\mathfrak{m}}$ and hence $B \subseteq D_{\mathfrak{m}}$. Thus $B \subseteq \bigcap_{\mathfrak{m} \in \text{Max}(D)} D_{\mathfrak{m}} = D$ and therefore $B = D$, as required. \Box

Notice that the additional statement of the previous proposition is known as an exercise in Matsumura's book [\[28\]](#page-13-4).

The following result gives an answer to the question of whether an extension of integral domains $D \subseteq B$ is (faithfully) flat when D is Prüfer.

PROPOSITION 2.2. Let $D \subseteq B$ be an extension of integral domains with D a Prüfer domain. Then:

 (i) B is flat as a D-module.

(ii) B is faithfully flat as a D-module if and only if $D = B \cap K$.

Proof. [\(i\)](#page-2-4) It follows from the fact that every torsion–free module over a Prüfer domain is always flat. [\(ii\)](#page-2-5) See [\[22,](#page-13-6) Remark 3.4]. \Box

We next give the w-analog of the previous two propositions. Recall that a module M over D is said to be w-flat [\[26\]](#page-13-7) if, for every short exact sequence $0 \to A \to B \to$ $C \to 0$ of D-modules, $0 \to (M \otimes_D A)_w \to (M \otimes_D B)_w \to (M \otimes_D C)_w \to 0$ is also exact. Notice that flatness implies w -flatness. A module M over D is said to be w-faithfully flat if it is w-flat and $(M/\mathfrak{p}M)_w \neq 0$ for all $\mathfrak{p} \in w\text{-Max}(D)$. An integral domain D is said to be a Prüfer v-multiplication domain (for short, PvMD) if D_m is a valuation domain for all t-maximal ideals m of D.

For the proof of the next proposition see [\[24,](#page-13-8) Proposition 2.5 and Corollary 2.6].

Proposition 2.3. Let D be an integral domain and let B be a D-module. Then B is w-faithfully flat over D if and only if B_m is faithfully flat over D_m for each wmaximal ideal m of D . If, moreover, B is an overring of D , then the two statements are equivalent to $B = D$.

PROPOSITION 2.4. Let $D \subseteq B$ be an extension of integral domains with D a PvMD. Then:

(i) B is w-flat as a D -module.

(ii) If $D = B \cap K$, then the D-module B is w-faithfully flat and hence w-dim(D) \leq w $dim(B)$.

Proof. [\(i\)](#page-3-2) See [\[26,](#page-13-7) Corollary 4.7]. [\(ii\)](#page-3-3) By [Proposition 2.3,](#page-3-4) we only need to prove that B_m is faithfully flat as a D_m -module for each w-maximal ideal m of D. So, let m be a w-maximal ideal of D. Then, D_m is a valuation domain and hence a Prüfer domain. So it follows from [Proposition 2.2](#page-2-0)[\(ii\)](#page-2-5) that B_m is a faithfully flat D_m -module because $D_m = (B \cap K)_m = B_m \cap K$. Therefore B is w-faithfully flat D-module and so w-dim(D) \leq w-dim(B) as asserted in [\[24,](#page-13-8) Theorem 2.13(2)].

As noticed in [\[7,](#page-12-6) Remark VI.3.3, page 136], if K is a field and B is a domain contained in K[X], then the units of B are the units of $D := B \cap K$. On the other hand, the authors of [\[21\]](#page-13-9) stated that if B is an overring of an integral domain R, then B is a localization of R if and only if $B = R_S$, where $S = \{r \in R; r \text{ is a unit in } B\},\$ i.e., $B = R_{\mathcal{U}(B) \cap R}$, where $\mathcal{U}(B)$ is the multiplicative group of units of B. Therefore, from these observations, we derive the following.

PROPOSITION 2.5. Let D be an integral domain with quotient field K and let B be a polynomial overring of D such that $B \cap K = D$. Then B is a localization of $D[X]$ if and only if $B = D[X]$.

For an overring R of an integral domain D , we recall that R is said to be t-linked over D if $I^{-1} = D$ implies that $(IR)^{-1} = R$ for each $I \in \mathbf{f}(D)$. Notice that any flat overring is t-linked. An integral domain D is called a GCD domain if the intersection of two principal ideals of D is principal. Notice that valuation domains are GCD domains and GCD domains form a subclass of PvMDs.

Corollary 2.6. Let D be a GCD domain with quotient field K and let B be a polynomial overring of D such that $B \cap K = D$. Then B is t-linked over $D[X]$ if and only if $B = D[X]$.

Proof. It is well known that if D is a GCD domain, then so is $D[X]$ (19, Theorem 34.10]). So the result follows from [Proposition 2.5](#page-3-5) and the fact that GCD domains have the property that every t-linked overring is a localization [\[16,](#page-12-8) Corollary 3.8]. \Box

For a subset P of $Spec(D)$, we say that D is an *essential domain* with defining family P if $D = \bigcap_{\mathfrak{p} \in \mathcal{P}} D_{\mathfrak{p}}$ and $D_{\mathfrak{p}}$ is a valuation domain for each $\mathfrak{p} \in \mathcal{P}$. We have:

THEOREM 2.7. Let D be an essential domain with quotient field K and let B be a polynomial overring of D such that $B \cap K = D$. Then B is flat over $D[X]$ if and only if $B = D[X]$.

Proof. Denote by P the defining family of D. We note first that $D[X] = \bigcap_{\mathfrak{p} \in \mathcal{P}} D_{\mathfrak{p}}[X]$ and $D_{\mathfrak{p}}[X]$ is a GCD domain, for every $\mathfrak{p} \in \mathcal{P}$ (this second statement follows from [\[19,](#page-12-7) Theorem 34.10] and the fact that valuation domains are GCD domains).

Assume that B is flat over $D[X]$ and let $\mathfrak{p} \in \mathcal{P}$. Then the overring $B_{\mathfrak{p}}$ of $D_{\mathfrak{p}}[X]$ is flat and hence it is also t-linked. Since $D_{\mathfrak{p}}[X]$ is a GCD domain and $B_{\mathfrak{p}} \cap K = D_{\mathfrak{p}}$, we deduce from [Corollary 2.6](#page-3-6) that $B_{\mathfrak{p}} = D_{\mathfrak{p}}[X]$ and so $B \subseteq D_{\mathfrak{p}}[X]$. Thus $B \subseteq$ $\bigcap_{\mathbf{p}\in\mathcal{P}}D_{\mathbf{p}}[X]=D[X]$ and therefore $B=D[X]$, as desired. The converse is trivial. \Box

Recall that the *valuative dimension* of a domain D, denoted by $\dim_v(D)$, is defined to be the supremum of the Krull dimensions of the valuation overrings of D. Notice that $\dim(D) \leq \dim_{v}(D)$, where $\dim(D)$ denotes the Krull dimension of D, and when these two dimensions are equal and finite D is called a *Jaffard domain*. For instance, in the finite Krull dimensional case, Noetherian domains and Prüfer domains are examples of Jaffard domains. It is well known that $\dim_{\nu}(R) \leq \dim_{\nu}(D)$ for any overring R of D .

PROPOSITION 2.8. Let D be an integral domain with quotient field K and let B be a polynomial overring of D contained in $D + (X - a)K[X]$ for some element a of K. We have:

(i) dim(B) = sup {dim(B_m); $\mathfrak{m} \in \text{Max}(D)$ } and dim_v(B) = 1 + dim_v(D);

(ii) D is Jaffard if and only if B is Jaffard and $\dim(B) = 1 + \dim(D)$;

(iii) if $D[X]$ is Jaffard then $1 + \dim(D) \leq \dim(B) \leq \dim(D[X]).$

Proof. [\(i\)](#page-4-1) It follows from [\[34,](#page-13-2) Lemma 1.2] and [\[2,](#page-12-9) Theorem $2(2)$].

[\(ii\)](#page-4-2) Follows immediately from [\[2,](#page-12-9) Theorem 2(3)].

[\(iii\)](#page-4-3) The first inequality follows from [\[2,](#page-12-9) Theorem 2(1)]. For the second inequality, we have: $\dim_v(B) = 1 + \dim_v(D) = \dim_v(D[X])$, and then $\dim_v(B) = \dim(D[X])$ because $D[X]$ is Jaffard. Thus $\dim(B) \leq \dim(D[X])$, as we wanted.

The following example shows that some polynomial overrings of an integral domain do not behave in the same way for Jaffard property.

EXAMPLE 2.9. Let k be a finite field, and Y and Z are indeterminates over k . Set $D = k + Zk(Y)[Z]_{(Z)}$ and let B be a polynomial overring of D contained in $D + (X - a)K[X]$ for some element a of $K := qf(D)$. It is well known that D is a one-dimensional pseudo-valuation domain that is not Jaffard but $D[X]$ is a Jaffard domain (of dimension 3). Then, it follows from [Proposition 2.8](#page-4-0) that $2 \leq \dim(B) \leq 3$ and $\dim_v(B) = 1 + \dim_v(D) = \dim_v(D[X]) = 3$. Particularly, if $B = \mathbb{B}_x(D)$, we have $\dim(B) = \dim(D[X]) = 3$ by [\[1,](#page-12-10) Example 5.1], and then B is a Jaffard domain. However, if $B = \text{Int}(D)$, it follows from [\[36,](#page-13-10) Corollary 1.4] that $\dim(B) = 1 + \dim(D) = 2$ and hence B is not a Jaffard domain.

We conclude this section with some properties of a particular star-operation on D issued from an overring B of D[X] such that $B \cap K = D$, where K is the quotient field of D.

Given an integral domain D with quotient field K , a star operation on D is a mapping $I \mapsto I^*$ on $\mathbf{F}(D)$ that satisfies the following three properties for all $0 \neq a \in K$ and $I, J \in \mathbf{F}(D)$:

(i) $(a)^* = (a)$ and $(aI)^* = aI^*$,

- (ii) $I \subseteq I^*$ and $I^* \subseteq J^*$ whenever $I \subseteq J$,
- (iii) $(I^*)^* = I^*$.

A star operation $*$ is *of finite type* if $I^* = \bigcup \{J^*; J \subseteq I \text{ and } J \in f(D)\}\text{, for each }$ $I \in \mathbf{F}(D)$. A star operation $*$ on D is said to be stable if $(I \cap J)^* = I^* \cap J^*$, for all I, $J \in \mathbf{F}(D)$; arithmetisch brauchbar (for short a.b.) if, for all $I \in \mathbf{f}(D)$ and $F, G \in \mathbf{F}(D), (IF)^* \subseteq (IG)^* \text{ implies } F^* \subseteq G^*.$

PROPOSITION 2.10. Let D be an integral domain with quotient field K and let B be an overring of $D[X]$ such that $B \cap K = D$.

(i) The mapping $\star : \mathbf{F}(D) \to \mathbf{F}(D)$, given by $I \mapsto I^* := IB \cap K$, defines a star operation on D such that $I^*B = IB$ for each $I \in \mathbf{F}(D)$. Moreover, \star is of finite type.

- (ii) For each $I \in \mathbf{F}(D)$, $IB = B$ implies that $I^* = D$.
- (iii) If B is a Prüfer domain, then \star is an a.b. star operation.
- (iv) Assume that B is flat as a D-module. Then:
- (a) For each $I \in \mathbf{F}(D)$ and each $J \in \mathbf{f}(D)$, $(I : J)^* = (I^* : J^*) = (I^* : J)$.
- $(b) \star is stable.$
- (c) B is faithfully flat as a D-module if and only if $\mathfrak{m}^* \neq D$ for each $\mathfrak{m} \in \text{Max}(D)$.

Proof. [\(i\)](#page-5-2) It follows from [\[11,](#page-12-11) Lemma 1(1)] and its proof. [\(ii\)](#page-5-3) Obvious.

[\(iii\)](#page-5-4) Let $I \in \mathbf{f}(D)$ and $F, G \in \mathbf{F}(D)$ such that $(IF)^* \subseteq (IG)^*$. Then, $(IB)(FB) =$ $(IF)B = (IF)^*B \subseteq (IG)^*B = (IG)B = (IB)(GB)$. Since IB is finitely generated and B is a Prüfer domain, IB is invertible and hence $FB \subseteq GB$. Thus $F^* \subseteq G^*$. [\(iii\)](#page-5-4) [\(a\)](#page-5-5) Let $I \in \mathbf{F}(D)$ and $J \in \mathbf{f}(D)$. By flatness of B over D, $(I : J)B = (IB : JB)$. Then $(I : J)^* = (IB : JB) \cap K = (I^*B : J^*B) \cap K = (I^* : J^*)B \cap K = (I^* : J^*)^*$.

Hence $(I : J)^* = (I^* : J^*) = (I^* : J).$ [\(b\)](#page-5-6) Let $I, J \in \mathbf{F}(D)$. Since B is flat as a D-module, $IB \cap JB = (I \cap J)B$ [\[28,](#page-13-4) Theorem 7.4(i), page 48] and then $(I \cap J)^* = ((I \cap J)B) \cap K = (IB \cap K) \cap (JB \cap K) =$ $I^{\star} \cap J^{\star}$. Therefore $(I \cap J)^{\star} = I^{\star} \cap J^{\star}$.

[\(c\)](#page-5-7) It follows from [Proposition 2.1](#page-2-6) and statement [\(ii\).](#page-5-3) \Box

We close this section by the following corollary of [\[19,](#page-12-7) Proposition 32.18] and Propositions [2.2](#page-2-0) and [2.10.](#page-5-1)

COROLLARY 2.11. Let D be a Prüfer domain. Then the star operation \star is stable a.b. which is equivalent to any star operation on D and $\mathfrak{m}^* \neq D$ for each $\mathfrak{m} \in \text{Max}(D)$.

3. Applications to polynomial overrings of D contained in $Int(E, D)$

In this section, we investigate some properties of int polynomial overrings of D contained in $Int(E, D)$, which we shall call later int polynomial overring of D over E, for distinguished classes of integral domains D and some special subsets E of D in order to recover some well known results.

Let D be an integral domain with quotient field K, E a subset of K and X and indeterminate over K. The ring Int $(E, D) := \{f \in K[X]; f(E) \subseteq D\}$, of integer*valued polynomials* on E with respect to D , is known to be a D -algebra. Obviously, Int(D, D) = Int(D), is the classical ring of integer-valued polynomials over D, D Int $(E, D) \subseteq K[X]$, and Int (E, D) is an overring of $D[X]$ whenever E is a subset of D .

Given a subset E of D , we call an *int polynomial overring of* D *over* E any domain B between $D[X]$ and $Int(E, D)$. When $E = D$, we simply say int polynomial overring of D. Notice that, if B is an int polynomial overring of D over E then $B \cap K = D$.

First, we list some remarkable interesting int polynomial overrings of D over E:

— The ring $Int_R(E, D)$ of D-valued R-polynomials over E [\[35\]](#page-13-11), that is, $\text{Int}_B(E, D) := \{f \in R[X]; f(E) \subseteq D\},\$

where R is an overring of D and E is a subset of D .

— The Bhargava ring over E at x [\[2\]](#page-12-9), that is,

$$
\mathbb{B}_x(E, D) := \{ f \in K[X]; \ \forall a \in E, \ f(xX + a) \in D[X] \},
$$

where x is an element of D and E is a subset of D .

— The ring of integer-valued polynomials on A with coefficients in K [\[17\]](#page-12-12), that is,

$$
\mathrm{Int}_K(A) := \{ f \in K[X]; \ f(A) \subseteq A \},
$$

where A is a torsion-free D-algebra such that $A \cap K = D$.

Recall that an integral domain D is called $B\acute{e}zout domain$ if every finitely generated ideal of D is principal. Notice that PIDs and valuation domains are B $\acute{e}z$ out domains, and Bézout domains form a subclass of Prüfer domains.

It is well known that unless D is a field, the domains $\mathbb{B}_x(D)$ and $Int(D)$ are never Bézout (see $[2,$ Proposition 17] and $[9,$ Proposition 3.1]).

We start by proving the following characterization of when some int polynomial overrings are Bézout.

PROPOSITION 3.1. Let D be an integral domain and let B be an int polynomial overring of D over $\{0,1\}$. Then B is a Bézout domain if and only if D is a field.

Proof. If D is a field then $B = D[X]$ is a PID and hence Bézout. For the converse, by way of contradiction, we assume that B is a Bézout domain and that D is not a field and we argue mimicking the proof of $[2,$ Proposition 17. As D is not a field, there exists a nonzero element t of D which is not a unit. Then, (t, X) is a principal ideal of B and hence $(t, X) = (f)$ for some $f \in B$. Thus, $f(X) = tg_1(X) + Xg_2(X)$ for some $g_1, g_2 \in B$. So, $d := f(0) = tg_1(0) \in D$ because $t \in D$ and $g_1(0) \in D$. Moreover, since X and t are elements of the principal ideal (f) , $X = f(X)h_1(X)$ and $t = f(X)h_2(X)$ for some $h_1, h_2 \in B$. The equality $t = f(X)h_2(X)$ forces $\deg(f) = \deg(h_2) = 0$ which implies $f(X) = d \neq 0$. Now, the equality $X = f(X)h_1(X)$ implies that $deg(h_1) = 1$ and then $h_1(X) = aX + b$. Hence, $a = h_1(1) - h_1(0) \in D$ and $1 = ad$, and thus $a = d^{-1} = (tg_1(0))^{-1}$. Therefore, since t is not a unit, $a \notin D$ which is a contradiction. □

As an immediate consequence, we have:

COROLLARY 3.2. Let $D \subseteq R$ be an extension of integral domains and let x be an element of D. Unless D is a field, the rings $\text{Int}_R(D)$ and $\mathbb{B}_x(D)$ are never Bézout.

An *almost Dedekind domain* is defined as an integral domain D such that any localization of D at a maximal ideal is a DVR (here by a DVR we mean a rank-one discrete valuation domain). A module M over an integral domain D is said to be locally free if M_m is a free D_m -module for each maximal ideal m of D. Note that any locally free module is (faithfully) flat.

PROPOSITION 3.3. Let D be an integral domain with quotient field K and let B be a ring between D and $Int(E, D)$ for some subset E of K.

- (i) If D is a Prüfer domain, then B is a faithfully flat D -module.
- (ii) Assume that $D[X]$ is contained in B.
- (a) If D is an almost Dedekind domain and E is an infinite subset of D , then B is a locally free D-module.
- (b) If D is an essential domain, then B is flat over $D[X]$ if and only if $B = D[X]$.
- (c) If D is a GCD domain, then B is t-linked over $D[X]$ if and only if $B = D[X]$.

Proof. [\(i\)](#page-7-0) Since $D \subseteq B \subseteq \text{Int}(E, D)$ and $\text{Int}(E, D) \cap K = D$, then $B \cap K = D$ and hence the thesis follows from [Proposition 2.2](#page-2-0) because D is a Prüfer domain.

[\(ii\)](#page-7-1) [\(a\)](#page-7-2) Let $\mathfrak m$ be a maximal ideal of D. Since D is an almost Dedekind domain, $D_{\mathfrak m}$ is a DVR and then it follows from the inclusions $D_{\mathfrak{m}}[X] \subseteq B_{\mathfrak{m}} \subseteq \text{Int}(E, D)_{\mathfrak{m}} \subseteq \text{Int}(E, D_{\mathfrak{m}})$ and [\[7,](#page-12-6) Corollary II.1.6] that B_m has a regular basis, and hence free as a D_m -module. Thus, *B* is a locally free *D*-module.

[\(b\)](#page-7-3) and [\(c\)](#page-7-4) follow from [Theorem 2.7](#page-3-1) and [Corollary 2.6](#page-3-6) because $B \cap K = D$ and $D[X] \subseteq B \subseteq K[X]$.

EXAMPLE 3.4. Let T be an indeterminate over Q, and set $A = \bigcup_{n=0}^{\infty} \mathbb{Q}[T^{\frac{1}{2^n}}]$ and $D = A_S$, where $S = \mathbb{Q}[T] \setminus (1 - T)\mathbb{Q}[T]$. Let B be a ring between D and Int(E, D) for some non-empty subset E of $K := qf(D)$.

As it was established in [\[13,](#page-12-14) Section 3] the ring $D = A_S$ is an almost Dedekind domain that is not Noetherian. Then it follows from Proposition $3.3(i)$ $3.3(i)$ that B is a faithfully flat D-module. If, in addition, E is an infinite subset of D then B is a locally free D -module by statement [\(ii\)](#page-7-1)[\(a\)](#page-7-2) of [Proposition 3.3.](#page-7-5)

EXAMPLE 3.5. The integral domain D in [\[8,](#page-12-15) Example 5.1] is an almost Dedekind domain such that $Int(D)$ is not a PvMD. Let B be an int polynomial overring of D over a non-empty subset E of D .

(i) If E is infinite, then by [Proposition 3.3](#page-7-5) [\(ii\)](#page-7-1)[\(a\)](#page-7-2), B is locally free, and hence faithfully flat, as a D-module.

(ii) Int(E, D) is not flat over $D[X]$. Otherwise, it follows from [Proposition 3.3](#page-7-5) [\(ii\)](#page-7-1)[\(b\)](#page-7-3) that $Int(E, D) = D[X]$ and hence $Int(D) = D[X]$. Thus by [\[23,](#page-13-12) Theorem 3.7], $Int(D)$ is a PvMD which is a contradiction.

The following result sheds more light on the w-analog of Proposition [3.3.](#page-7-5) For an integral domain D, a module M over D is called w-locally free if M_m is a free D_m -module for each w-maximal ideal m of D. Notice that any w-locally free module is w-faithfully flat. An integral domain D is said to be a t-almost Dedekind if D_m is a DVR for all t-maximal ideals m of D. Notice that almost Dedekind domains are t-almost Dedekind domains and these form a subclass of PvMDs.

PROPOSITION 3.6. Let D be an integral domain with quotient field K and let B be a ring between D and $Int(E, D)$ for some subset E of K . (i) If D is a PvMD, then B is a w-faithfully flat D-module and w-dim(D) \leqslant w $dim(B)$.

(ii) If D is a t-almost Dedekind domain and E is an infinite subset of D, then B is a w-locally free D-module.

Proof. [\(i\)](#page-8-0) Follows immediately from [Proposition 2.4](#page-3-0) [\(ii\).](#page-3-3)

[\(ii\)](#page-8-1) The proof is similar to that of [Proposition 3.3](#page-7-5) with a slight modification. \Box

To avoid repetition, we fix some definitions and notation:

Following $[6]$, a prime ideal p of D is called an *associated prime* of a principal ideal aD of D if p is minimal over $(aD : bD)$ for some $b \in D \setminus aD$. For brevity, we call p an associated prime of D and we denote by $\text{Ass}(D)$ the set of all associated prime ideals of D. Thus, for any integral domain D, we define the following partition of $\text{Max}(D)$:

 $\mathcal{M}_0 := \{ \mathfrak{m} \in \text{Ass}(D) \cap \text{Max}(D); D/\mathfrak{m} \text{ is finite} \}$ and $\mathcal{M}_1 := \text{Max}(D) \backslash \mathcal{M}_0$.

As the notion of essential domains does not carry up to localizations [\[20\]](#page-12-17), D is said to be a *locally essential domain* if D_q is an essential domain for each $q \in \text{Spec}(D)$; or equivalently, $D_{\mathfrak{p}}$ is a valuation domain for each $\mathfrak{p} \in \text{Ass}(D)$ [\[30\]](#page-13-13). Analogously, under the naming system of [\[25\]](#page-13-14), an integral domain D is called an MZ-DVR if D_p is a DVR for each $\mathfrak{p} \in \text{Ass}(D)$.

A subset E of D is said to be *residually cofinite with* D [\[31\]](#page-13-15) if E is non-empty and, for any prime ideal $\mathfrak p$ of D, E and D are simultaneously either finite or infinite modulo $\mathfrak p$. Notice that D is residually cofinite with itself.

THEOREM 3.7. Let D be an integral domain, $E \subseteq D$ a residually cofinite with D and B an int polynomial overring of D over E.

(i) If D is a locally essential domain, then B is a faithfully flat D -module.

(ii) If E is infinite and D_m is a DVR for each $m \in \mathcal{M}_0$, then B is a locally free D-module.

Proof. [\(i\)](#page-8-2) By [Proposition 2.1,](#page-2-6) we only need to prove that B_m is a faithfully flat D_m module for each maximal ideal m of D . Let m be a maximal ideal of D . We then examine the following two possible cases:

Case 1. $\mathfrak{m} \in \text{Ass}(D)$. Since D is locally essential, $D_{\mathfrak{m}}$ is a valuation domain and then it follows from the equality $D_{\mathfrak{m}} = B_{\mathfrak{m}} \cap K$ (because $D_{\mathfrak{m}}[X] \subseteq B_{\mathfrak{m}} \subseteq \text{Int}(E, D)_{\mathfrak{m}} \subseteq$ Int (E, D_m) and $D_m = D_m[X] \cap K = \text{Int}(E, D_m) \cap K$ and [Proposition 2.2](#page-2-0) [\(ii\)](#page-2-5) that $B_{\mathfrak{m}}$ is a faithfully flat $D_{\mathfrak{m}}$ -module.

Case 2. m \notin Ass(D). It follows from [\[35,](#page-13-11) Proposition 7] that $Int(E, D)_{m} = Int(E, D_{m})$ $D_m[X]$ and hence from the inclusions $D_m[X] \subseteq B_m \subseteq \text{Int}(E, D_m)$ we deduce that $B_{\mathfrak{m}} = D_{\mathfrak{m}}[X]$. Therefore $B_{\mathfrak{m}}$ is a faithfully flat $D_{\mathfrak{m}}$ -module. Therefore B is a faithfully flat D -module, as desired.

[\(ii\)](#page-9-0) Let $\mathfrak m$ be a maximal ideal of D . So, we need to discuss the following cases. **Case 1.** $\mathfrak{m} \in \mathcal{M}_0$. By assumption, $D_{\mathfrak{m}}$ is a DVR and so it follows from [\[7,](#page-12-6) Corollary II.1.6] that B_m is free as a D_m -module because $D_m[X] \subseteq B_m \subseteq \text{Int}(E, D_m)$.

Case 2. $\mathfrak{m} \in \mathcal{M}_1$. We then examine the following possible subcases:

Case 2.1. m ∈ (Ass(D) ∩ Max(D)) \mathcal{M}_0 . We have D/m is infinite and then Int(E, D_m) $= D_{\mathfrak{m}}[X]$ by [\[31,](#page-13-15) Lemmas 3(i) and 4(ii)]. Thus from the inclusions $D_{\mathfrak{m}}[X] \subseteq B_{\mathfrak{m}} \subseteq$ Int(E, $D_{\mathfrak{m}}$) we deduce that $B_{\mathfrak{m}} = D_{\mathfrak{m}}[X]$ is a free $D_{\mathfrak{m}}$ -module.

Case 2.2. m \notin Ass(D). It follows from [\[35,](#page-13-11) Proposition 7] that Int(E, D)_m = Int $(E, D_m) = D_m[X]$ and then, as in the previous subcase, $B_m = D_m[X]$. Therefore $B_{\mathfrak{m}}$ is a free $D_{\mathfrak{m}}$ -module.

Consequently, B is a locally free D -module.

$$
\qquad \qquad \Box
$$

EXAMPLE 3.8. Let \mathcal{E} be the ring of entire functions, and set $D := \mathcal{E} + T\mathcal{E}_{\mathcal{S}}[T]$, where T is an indeterminate over $\mathcal E$ and S is the set generated by the principal primes of $\mathcal E$. Let $E \subseteq D$ a residually cofinite with D, and let B be an int polynomial overring of D over E.

According to [\[37,](#page-13-16) Example 2.6], D is a locally essential domain which is neither PvMD nor almost Krull. Then by [Theorem 3.7](#page-8-3) [\(i\),](#page-8-2) B is a faithfully flat D -module.

From the above theorem, we derive the next corollaries.

COROLLARY 3.9. Let D be an integral domain, $E \subseteq D$ an infinite residually cofinite with D and B an int polynomial overring of D over E .

(i) If D is an MZ-DVR, then B is locally free as a D -module.

(ii) If D is a locally essential domain such that $\text{Ass}(D) = X^1(D)$ and $E = D$, then B is locally free as a D-module.

Proof. [\(i\)](#page-9-1) An immediate application of [Theorem 3.7](#page-8-3) [\(ii\).](#page-9-0)

[\(ii\)](#page-9-2) Let $\mathfrak{p} \in \text{Ass}(D)$. We have either $B_{\mathfrak{p}} = D_{\mathfrak{p}}[X]$ or $B_{\mathfrak{p}} \neq D_{\mathfrak{p}}[X]$. In the second case, Int($D_{\mathfrak{p}} \neq D_{\mathfrak{p}}[X]$ and then from [\[7,](#page-12-6) Proposition I.3.16] we deduce that $D_{\mathfrak{p}}$ is a

valuation domain with principal maximal ideal. Thus, since \mathfrak{p} is height-one, $D_{\mathfrak{p}}$ is a DVR and therefore the conclusion follows from [Theorem 3.7](#page-8-3) [\(ii\).](#page-9-0)

An integral domain D is called *generalized Krull* (in the sense of Gilmer [\[19,](#page-12-7) Section 43]) if the intersection $D = \bigcap_{\mathfrak{p} \in X^1(D)} D_{\mathfrak{p}}$ is locally finite and $D_{\mathfrak{p}}$ is a valuation domain for each $\mathfrak{p} \in X^1(D)$. An integral domain D is said to be K-domain [\[32\]](#page-13-17) if (i) $D = \bigcap_{\mathfrak{p} \in X^1(D)} D_{\mathfrak{p}};$ (ii) each $D_{\mathfrak{p}}$ is a DVR; and (iii) each \mathfrak{p} is divisorial. Also, an almost Krull domain is defined as an integral domain D such that any localization of D at a maximal ideal is a Krull domain. Notice that Krull domains form a proper subclass of generalized Krull domains, almost Krull domains and talmost Dedekind domains. Moreover, almost Krull domains, K-domains and t-almost Dedekind domains are MZ-DVRs.

COROLLARY 3.10. Let D be an integral domain, $E \subseteq D$ an infinite residually cofinite with D and B an int polynomial overring of D over E . If D is either t-almost Dedekind, almost Krull, K-domain or generalized Krull, then B is a locally free Dmodule.

Notice that generalized Krull domains and t-almost Dedekind domains are $PvMDs$ of t-dimension one, and if D has t-dimension one then $\text{Ass}(D) = X^1(D)$.

COROLLARY 3.11. Let D be a PvMD of t-dimension one. Then, every int polynomial overring of D is a locally free as a D-module.

COROLLARY 3.12. Let D be an integral domain and let B be an int polynomial overring of D. If $Int(D)$ is a PvMD, then B is a locally free D-module.

Proof. Let $\mathfrak{p} \in \text{Ass}(D)$. Then either $B_{\mathfrak{p}} = D_{\mathfrak{p}}[X]$, or $B_{\mathfrak{p}} \neq D_{\mathfrak{p}}[X]$ and then it follows from [\[8,](#page-12-15) Corollary 1.8] that D_p is a DVR because $Int(D_p) \neq D_p[X]$. Hence p is height-one and therefore we are in the conditions of [Theorem 3.7](#page-8-3) [\(ii\).](#page-9-0) \Box

EXAMPLE 3.13. 1. Let $D = \mathbb{Z}[\{T/p_n, U/p_n\}_{n=1}^{\infty}]$, where T and U are indeterminates over Z and $\{p_n\}_{n=1}^{\infty}$ is the set of all positive prime integers, $E \subseteq D$ an infinite and residually cofinite with D and let B be an int polynomial overring of D over E . As cited in [\[4,](#page-12-18) Example, page 52], D is an almost Krull domain which is not PvMD. Then by [Corollary 3.10,](#page-10-0) B is locally free as a D-module.

2. The integral domain D in [\[32,](#page-13-17) Section 3] is a K-domain that is not almost Krull. Let E be an infinite and residually cofinite with D . So, by [Corollary 3.10,](#page-10-0) any int polynomial overring B of D over E is locally free as a D -module.

3. Let A be the domain of all algebraic integers and $\{p_n\}_{n=1}^{\infty}$ is the set of all positive prime integers. For each n choose a maximal ideal M_n of A lying over $p_n\mathbb{Z}$, and set $S = A \setminus \bigcup_{n=1}^{\infty} M_n$ and $D = A_S$.

In [\[18,](#page-12-19) Example 1, page 338], Gilmer proved that D is a one-dimensional Prüfer domain which is not almost Dedekind (indeed not almost Krull). Then by [Corol](#page-10-1)[lary 3.11,](#page-10-1) any int polynomial overring B of D is locally free as a D -module.

We end this article with some results and properties of the Krull dimension of D.

THEOREM 3.14. Let D be an integral domain, $E \subseteq D$ a residually cofinite with D and B an int polynomial overring of D over E.

(i) If D_m is a Jaffard domain for each $\mathfrak{m} \in \mathcal{M}_0$, then $\dim(B) = \dim(D[X])$.

(ii) If $D_m[X]$ is a Jaffard domain for each $m \in \mathcal{M}_0$, then $\dim(B) \leq \dim(D[X])$.

Proof. [\(i\)](#page-11-0) Let \mathfrak{m} be a maximal ideal of D. We then examine the following possible cases:

Case 1. $\mathfrak{m} \in \mathcal{M}_0$. By assumption $D_{\mathfrak{m}}$ is a Jaffard domain and then it follows from [Proposition 2.8](#page-4-0) [\(ii\)](#page-4-2) that $\dim(B_{\mathfrak{m}}) = 1 + \dim(D_{\mathfrak{m}}) = \dim(D_{\mathfrak{m}}[X]).$

Case 2. $m \in \mathcal{M}_1$. We have either $m \notin Ass(D)$ or $m \in (Ass(D) \cap Max(D)) \setminus \mathcal{M}_0$, and then it follows from the proof of [Theorem 3.7](#page-8-3) [\(ii\)](#page-9-0) that $B_m = D_m[X]$. Thus $\dim(B_{\mathfrak{m}}) = \dim(D_{\mathfrak{m}}[X]).$

Consequently, $\dim(B_{\mathfrak{m}}) = \dim(D_{\mathfrak{m}}[X])$ for each maximal ideal \mathfrak{m} of D, and hence the conclusion is settled from [Proposition 2.8](#page-4-0) [\(i\).](#page-4-1)

[\(ii\)](#page-11-1) For this statement, we only need to treat the previous first case. So, if $\mathfrak{m} \in$ \mathcal{M}_0 , then $D_m[X]$ is a Jaffard domain and hence by [Proposition 2.8](#page-4-0)[\(iii\),](#page-4-3) dim(B_m) $\dim(D_{\mathfrak{m}}[X])$. Thus, for each maximal ideal \mathfrak{m} of D, $\dim(B_{\mathfrak{m}}) \leq \dim(D_{\mathfrak{m}}[X])$ and therefore by Proposition 2.8(i) $\dim(B) \leq \dim(D[X])$ as wanted therefore by [Proposition 2.8](#page-4-0)[\(i\),](#page-4-1) $\dim(B) \leq \dim(D[X])$, as wanted.

An integral domain D is called a Mott-Zafrullah Jaffard domain (in short, an MZ-Jaffard domain) if D_p is Jaffard for each $p \in \text{Ass}(D)$. In the finite Krull dimensional setting, it is clear that any locally essential domain is MZ-Jaffard. From the first statement of [Theorem 3.14,](#page-11-2) we obtain [\[15,](#page-12-3) Theorem 2.11] as a corollary.

COROLLARY 3.15. Let D be an MZ-Jaffard domain, $E \subseteq D$ a residually cofinite with D and B an int polynomial overring of D over E. Then $\dim(B) = \dim(D[X]).$

Recall that an integral domain D is said to be *strong Mori* if it satisfies the ascending chain condition $(a.c.c.)$ on integral w-ideals. Thus, the class of strong Mori domains includes that of Noetherian domains and Krull domains. We also recall that an integral domain D is a t-locally Noetherian domain if any localization of D at a tmaximal ideal is a Noetherian domain. It is well known that strong Mori domains are t -locally Noetherian. Moreover, as mentioned in [\[25\]](#page-13-14), t -locally Noetherian domains are MZ-Jaffard.

COROLLARY 3.16. Let D be an integral domain, $E \subseteq D$ a residually cofinite with D and B an int polynomial overring of D over E . If D is a t-locally Noetherian domain (in particular, a strong Mori domain), then $\dim(B) = \dim(D[X]).$

EXAMPLE 3.17. Let T be a non-Noetherian Krull domain with a maximal ideal \mathfrak{m} such that T_m is Noetherian. Assume that T/m contains properly a finite field k.

Let D be defined by the following pullback diagram:

$$
D \longrightarrow k \cong D/\mathfrak{m}
$$

\n
$$
\downarrow
$$

\n
$$
T \longrightarrow T/\mathfrak{m},
$$

 $E\subseteq D$ a residually cofinite with D and let B be an int polynomial overring of D of E. It follows from [\[29,](#page-13-3) Example 3.15(3)] that D is a strong Mori domain which is neither Noetherian nor Krull. Then by [Corollary 3.16,](#page-11-3) $\dim(B) = \dim(D[X])$.

REFERENCES

- [1] I. Alrasasi, L. Izelgue, On the prime ideal structure of Bhargava rings, Comm. Algebra, 38 (2010), 1385–1400.
- [2] I. Al-Rasasi, L. Izelgue, Bhargava rings over subsets, in: A. Badawi, M. Vedadi, S. Yassemi, A. Yousefian Darani (Eds.), Homological and Combinatorial Methods in Algebra, SAA 2016, Springer Proceedings in Mathematics & Statistics, 228, Springer, Cham 2018, 9–26.
- [3] D.D. Anderson, D.F. Anderson, M. Zafrullah, Rings between $D[X]$ and $K[X]$, Houston J. Math., 17 (1991), 109–129.
- [4] J.T. Arnold, R. Matsuda, An almost Krull domain with divisorial height one primes, Canad. Math. Bull., 29(1) (1986), 50–53.
- [5] N. Bourbaki, Algèbre commutative, chapitres 1 à 4, Masson, 1985.
- [6] J. Brewer, W. Heinzer, Associated primes of principal ideals, Duke Math. J., 41 (1974), 1–7.
- [7] P.-J. Cahen, J.-L. Chabert, Integer-valued polynomials, Math. Surveys Monogr., 48, Amer. Math. Soc., (1997).
- [8] P.-J. Cahen, A.K. Loper, F. Tartarone, Integer-valued polynomials and Prüfer v-multiplication domains, J. Algebra, 226(2) (2000), 765–787.
- [9] J.-L. Chabert, Un anneau de Prüfer, J. Algebra, $107(1)$ (1987), 1–16.
- [10] J.-L. Chabert and G. Peruginelli, Polynomial overrings of $Int(\mathbb{Z})$, J. Commut. Algebra, $8(1)$ (2016), 1–28.
- [11] G. W. Chang, Overrings of the Kronecker function ring $Kr(D, *)$ of a Prüfer $*$ -multiplication domain D, Bull. Korean Math. Soc., 46(5) (2009), 1013–1018.
- [12] G. W. Chang, The ideal class group of polynomial overrings of the ring of integers, J. Korean Math. Soc., 59(3) (2022), 571–594.
- [13] G. W. Chang, B.G. Kang, P.T. Toan, The Krull dimension of power series rings over almost Dedekind domains, J. Algebra, 438 (2015), 170–187.
- [14] M. M. Chems-Eddin, O. Ouzzaouit, A. Tamoussit, On Bhargava rings, Math. Bohem., 148(2) (2023), 181–195.
- [15] M. M. Chems-Eddin, A. Tamoussit, Various properties of a general class of integer-valued polynomials, Beitr. Algebra Geom., 64 (2023), 81–93.
- [16] S. El Baghdadi, Semistar GCD domains, Comm. Algebra, 38 (2010), 3029–3044.
- [17] S. Frisch, Integer-valued polynomials on algebras, J. Algebra, 373 (2013), 414-425.
- [18] R. Gilmer, *Overrings of Prüfer domains*, J. Algebra, 4 (1966), $331-340$.
- [19] R. Gilmer, Multiplicative ideal theory, Queen's Papers in Pure and Appl. Math., 90, Queen's University, Kingston, Ontario, 1992.
- [20] W. Heinzer, An essential integral domain with a nonessential localization, Canad J. Math., 33 (1981), 400–403.

14 On some polynomial overrings of integral domains

- [21] W. Heinzer, M. Roitman, Well-centered overrings of an integral domain, J. Algebra, 272 (2004), 435–455.
- [22] O. A. Heubo-Kwegna, B. Olberding, A. Reinhart, Group-theoretic and topological invariants of completely integrally closed Prüfer domains, J. Pure Appl. Algebra, 220 (2016), 3927-3947.
- [23] B. G. Kang, *Prüfer v-multiplication domains and the ring* $R[X]_{N_v}$, J. Algebra, 123 (1989), 151–170.
- [24] H. Kim, T. I. Kwon, Module-theoretic characterizations of strongly t-linked extensions, Kyungpook Math. J., 53 (2013), 25–35.
- [25] H. Kim, A. Tamoussit, Integral domains issued from associated primes, Comm. Algebra, 50(2) (2022), 538–555.
- [26] H. Kim, F. G. Wang, On LCM-stable modules, J. Algebra Appl., 13(4) (2014), 1350133.
- [27] K. A. Loper, F. Tartarone, A classification of the integrally closed rings of polynomials containing $\mathbb{Z}[X]$, J. Comm. Algebra, 1 (2009), 91-157.
- [28] H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.
- [29] A. Mimouni, TW-domains and Strong Mori domains, J. Pure Appl. Algebra, 177 (2003), 79–93.
- [30] J. L. Mott, M. Zafrullah, On Prüfer v-multiplication domains, Manuscripta Math., 35 (1981), 1–26.
- [31] S. B. Mulay, On integer-valued polynomials, in: Zero-Dimensional Commutative Rings, Lect. Notes Pur. Appl. Math., Dekker, New York, 171 (1995), 331–345.
- [32] E. M. Pirtle, On a generalization of Krull domains, J. Algebra, 14 (1970), 485–492.
- [33] F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc., 16 (1965), 794–799.
- [34] A. Tamoussit, A note on the Krull dimension of rings between $D[X]$ and $\text{Int}(D)$, Boll. Unione Mat. Ital., 14 (2021), 513–519.
- [35] A. Tamoussit, On the ring of D-valued R-polynomials over E, J. Algebra Appl., 21 (5) (2022), 2250087.
- [36] F. Tartarone, On the Krull dimension of $Int(D)$ when D is a pullback, Lect. Notes Pure Appl. Math., 185(1997), 457–476.
- [37] M. Zafrullah, The $D + XD_S[X]$ construction from GCD-domains, J. Pure Appl. Algebra, 50 (1988), 93–107.
- [38] M. Zafrullah, Various facets of rings between $D[X]$ and $K[X]$, Comm. Algebra, 31 (2003), 2497–2540.

(received 07.05.2023; in revised form 09.01.2024; available online 26.08.2024)

Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez, Morocco

E-mail: 2m.chemseddin@gmail.com

ORCID iD:<https://orcid.org/0000-0003-0022-180X>

Laboratory of Research of Sciences and Technique (LRST), The Higher School of Education and Training, Ibn Zohr Univeristy, Agadir, Morocco

E-mail: o.ouzzaouit@uiz.ac.ma

ORCID iD:<https://orcid.org/0000-0001-6827-4022>

Department of Mathematics, The Regional Center for Education and Training Professions Souss Massa, Inezgane, Morocco

Laboratory of Mathematics and Applications (LMA), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco

E-mail: a.tamoussit@crmefsm.ac.ma; tamoussit2009@gmail.com ORCID iD:<https://orcid.org/0000-0003-1078-0250>