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Abstract. The aim of this paper is to introduce some separation notions of graded
ditopological texture spaces by means of spectrum idea and investigate some of their proper-
ties. Also, the relations between separation spectrums of graded ditopological texture spaces
and separation axioms in ditopological structure are studied. Further, the hierarchy of the
separation spectrums and a categorical aspect corresponding to the separation spectrums
are given.

1. Introduction

Separation axioms play a crucial role in the study of topological structures and have
been studied by several authors in numerous topological contexts. Hutton and Reilly
introduced them for fuzzy topological spaces in [13] and later they were introduced
for ditopological texture spaces in [6]. From [3,5] the cotegories complemented d.t.s.
cdfDitop, complemented simple d.t.s. cdfSDitop and Hutton algebras H are equiv-
alent. Also, a topology on a Hutton algebra is Tk in the sense of [13] if and only if
the corresponding complemented d.t.s. is Tk for k = 0, 1, 2, 3. The concept of interior-
closure texture spaces (more general than d.t.s.) has been introduced, and the rela-
tions between the category of interior-closure textures and bicontinuous difunctions
dfIC and both H and dfDitop are studied in [8,9]. In addition, separation axioms in
diframes (a generalization of ditopological texture spaces) have recently been studied
in [14,15].

The theory of graded ditopology was introduced by Brown and Šostak in [7], and
this structure is more comprehensive than the fuzzy topology introduced indepen-
dently by Šostak in [17], Kubiak in [16], and the ditopology in [2,3]. This theory does
not mention whether an element of a texture is open (closed) or not, but rather de-
fines openness and closedness as independent grading functions. The theory of graded
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2 Separation spectrums of graded ditopological texture spaces

ditopologies thus offers a different and wider perspective. However, the generaliza-
tions of some properties in the theory of ditopological spaces to this theory are not
self-evidently valid.

In this paper, as in [11, 18, 19], several separation spectra of graded ditopological
texture spaces are introduced by the spectral theory in accordance with the separation
terms in ditopological texture spaces from [6]. In addition, the properties of these
separation spectra and their relations to the separation axioms in the ditopological
case are investigated. Furthermore, the hierarchy of separation spectra and a categor-
ical aspect corresponding to the separation spectra are given. Our basic motivation
is to fulfill some missing parts in the theory of graded ditopologies in accordance with
the theory of ditopological spaces and to study their properties comparatively.

2. Preliminaries

Ditopological texture spaces ([2, 4, 5])

Let S be a set and S ⊆ P(S) with S, ∅ ∈ S. S is called a texturing of S and (S,S) is
called a texture space or simply a texture if the following conditions are met:
(i) (S,⊆) is a complete lattice which has the property that arbitrary meets coincides
with intersections and finite joins coincide with unions.

(ii) S is completely distributive, i.e. for all index sets I, for all i ∈ I, if Ji is an index
set and if Aj

i ∈ S then ⋂
i∈I

∨
j∈Ji

Aj
i =

∨
γ∈ΠiJi

⋂
i∈I

Ai
γ(i).

(iii) S separates the points of S, i.e. if s1, s2 ∈ S with s1 ̸= s2 then there exists A ∈ S
such that s1 ∈ A, s2 ̸∈ A or s2 ∈ A, s1 ̸∈ A.

In general, a texturing of S cannot be closed under set complementation. However,
if there is a mapping σ : S → S satisfying σ(σ(A)) = A and A ⊆ B ⇒ σ(B) ⊆ σ(A)
for all A,B ∈ S, then σ is called a complementation on (S,S) and (S,S, σ) is called
a complemented texture.

The p − sets given by Ps =
⋂
{A ∈ S | s ∈ A} and the q − sets, which are given

by Qs =
∨
{A ∈ S | s ̸∈ A} =

∨
{Pu |u ∈ S, s ̸∈ Pu} are essential for the definition of

different terms in a texture space (S,S).
Recall that M ∈ S is called a molecule if M ̸= ∅ and M ⊆ A∪B, A,B ∈ S implies

M ⊆ A or M ⊆ B. The sets Ps, s ∈ S are molecules, and the texture (S,S) is called
“simple” if these are the only molecules in S. For a set A ∈ S, the core of A (denoted
by A♭) is defined by

A♭ =
⋂{⋃

{Ai | i ∈ I} |{Ai | i ∈ I} ⊆ S, A =
∨

{Ai | i ∈ I}
}
.

Theorem 2.1 ([4]). In any texture space (S,S) the following statements hold:
1. s ̸∈ A ⇒ A ⊆ Qs ⇒ s ̸∈ A♭ for all s ∈ S, A ∈ S.
2. A♭ = {s | A ⊈ Qs} for all A ∈ S.
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3. For Aj ∈ S, j ∈ J we have (
∨

j∈J Aj)
♭ =

⋃
j∈J A♭

j.

4. A is the smallest element of S that contains A♭ for all A ∈ S.

5. For A,B ∈ S, if A ⊈ B, then there exists s ∈ S with A ⊈ Qs and Ps ⊈ B.

6. A =
⋂
{Qs |Ps ⊈ A} for all A ∈ S.

7. A =
∨
{Ps |A ⊈ Qs} for all A ∈ S.

Let L be a fuzzy lattice, i.e. a completely distributive lattice with order-reversing
involution ′ and L denote the set of molecules in L and L = {φ(a)|a ∈ L} where
φ(a) = {m ∈ L|m ≤ a} for a ∈ L. Then:

Theorem 2.2 ([3]). For the above notations, (L,L) is a simple texture with comple-
ment λ(φ(a)) = φ(a′), a ∈ L and φ : L → L is a lattice isomorphism that preserves
the complement.

Conversely, any complemented simple texture can be obtained in this way from a
suitable fuzzy lattice.

Example 2.3 ([4]). 1. If P(X) is the powerset of a set X, then (X,P(X)) is is the
discrete texture on X. For x ∈ X, Px = {x} and Qx = X \ {x}. The mapping
πX : P(X) → P(X), πX(Y ) = X \ Y for Y ⊆ X is a complementation on the texture
(X,P(X)).

2. Setting I = [0, 1], J = {[0, r), [0, r] |r ∈ I} results in the unit interval texture (I,J ).
For r ∈ I, Pr = [0, r] and Qr = [0, r). And the mapping ι : J → J , ι[0, r] = [0, 1− r),
ι[0, r) = [0, 1− r] is a complementation on this texture.

3. The texture (L,L, λ) is defined by L = (0, 1], L = {(0, r] | r ∈ [0, 1]}, λ((0, r]) =
(0, 1 − r]. For r ∈ L, Pr = (0, r] = Qr. This texture corresponds to a fuzzy lattice
(I = [0, 1],′ ) in the sense of Theorem 2.2.

4. Let X ̸= ∅, W be the set of “fuzzy points” of IX , i.e. the functions

xm(z) =

{
m, z = x

0, otherwise
.

for x ∈ X and m ∈ L = (0, 1], where as before L is the set of molecules of I.
Representing xm by the pair (x,m), you can write that W = X ×L. Then (W,W, ω)
is the texture corresponding to the fuzzy lattice IX in the sense of Theorem 2.2, where
W = {φ(f) | f ∈ IX}, φ(f) = {(x,m) ∈ W |xm ≤ f} = {(x,m) ∈ W | m ≤ f(x)}
and ω(φ(f)) = φ(f ′).

5. S = {∅, {a, b}, {b}, {b, c}, S} is a simple texturing of S = {a, b, c}. Pa = {a, b},
Pb = {b}, Pc = {b, c}. It is not possible to define a complementation on (S,S).

6. If (S,S), (V,V) are textures, then the product texturing S ⊗ V of S × V consists
of arbitrary intersections of sets of the form (A × V ) ∪ (S × B), A ∈ S, B ∈ V, and
(S × V,S ⊗ V) is the product of (S,S) and (V,V). For s ∈ S, v ∈ V , P(s,v) = Ps × Pv

and Q(s,v) = (Qs × V ) ∪ (S ×Qv).
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Definition 2.4 ([4]). Let (S,S) and (V,V) be textures. Then
(i) r ∈ P(S)⊗ V is called a relation on (S,S) to (V,V) if it satisfies

(R1) r ⊈ Q(s, v), Ps′ ⊈ Qs ⇒ r ⊈ Q(s′, v).

(R2) r ⊈ Q(s, v) ⇒ ∃s′ ∈ S such that Ps ⊈ Qs′ and r ⊈ Q(s′, v).

(ii) R ∈ P(S)⊗ V is called a co-relation on (S,S) to (V,V) if it satisfies

(CR1) P (s, v) ⊈ R, Ps ⊈ Qs′ ⇒ P (s′, v) ⊈ R.

(CR2) P (s, v) ⊈ R ⇒ ∃s′ ∈ S such that Ps′ ⊈ Qs and P (s′, v) ⊈ R.

(iii) A pair (r,R), where r is a relation and R a co-relation on (S,S) to (V,V) is
called a direlation on (S,S) to (V,V).

For a texture (S,S) the identity direlation (i(S,S), I(S,S)) is defined by i(S,S) =∨
{P (s, s) | s ∈ S} and I(S,S) =

⋂
{Q(s, s) | s ∈ S♭}.

For A ⊆ S, r→A =
⋂
{Qv | ∀s, r ⊈ Q(s,v) ⇒ A ⊆ Qs} is called the A-section of r

and R→A =
∨
{Pv | ∀s, P (s,v) ⊈ R ⇒ Ps ⊆ A} is called the A-section of R.

For B ⊆ V , r←B =
∨
{Ps | ∀v, r ⊈ Q(s,v) ⇒ Pv ⊆ B} is called the B-presection of

r and R←B =
⋂
{Qs | ∀v, P (s,v) ⊈ R ⇒ B ⊆ Qv} is called the B-presection of R.

Proposition 2.5 ([4]). If (r,R) is a direlation on (S,S) to (V,V) then r→(
∨

i∈I Ai) =∨
i∈I r

→Ai, R
→(

⋂
i∈I Ai) =

⋂
i∈I R

→Ai, r
←(

⋂
j∈J Bj) =

⋂
j∈J r←Bj and R←(

∨
j∈J Bj)

=
∨

j∈J R←Bj for any Ai ∈ S, Bj ∈ V, i ∈ I, j ∈ J .

Definition 2.6 ([4]). A direlation (f, F ) from (S,S) to (V,V), is called a difunction
from (S,S) to (V,V) if it satisfies the following two conditions:
(DF1) For s, s′ ∈ S, Ps ⊈ Qs′ ⇒ ∃v ∈ V with f ⊈ Q(s,v) and P (s′,v) ⊈ F .

(DF2) For v, v′ ∈ V and s ∈ S, f ⊈ Q(s,v) and P (s,v′) ⊈ F ⇒ Pv′ ⊈ Qv.

(f, F ) is called surjective if ∀v, v′ ∈ V Pv ⊈ Qv′ ⇒ ∃s ∈ S with f ⊈ Q(s,v′) and

P (s,v) ⊈ F. (f, F ) is called injective if ∀s, s′ ∈ S, v ∈ V (f ⊈ Q(s,v) and P (s′,v) ⊈
F ) ⇒ Ps ⊈ Qs′ .

In particular, the identity direlation (iS , IS) is a difunction on (S,S).

Proposition 2.7 ([4]). For a difunction (f, F ) from (S,S) to (V,V), the following
properties are satisfied:
(i) f←B = F←B for each B ∈ V.

(ii) f←∅ = F←∅ = ∅ and f←V = F←V = S.

(iii) A ⊆ F←(f→A) and f→(F←B) ⊆ B for all A ∈ S, B ∈ V.

(iv) If (f, F ) is surjective then F→(f←B) = B = f→(F←B) for all B ∈ V.

(v) If (f, F ) is injective then F←(f→A) = A = f←(F→A) for all A ∈ S.
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A ditopology on a texture (S,S) is a pair (τ, κ), where τ, κ ⊆ S and the set of
open sets τ satisfies
(T1) S, ∅ ∈ τ , (T2) G1, G2 ∈ τ ⇒ G1∩G2 ∈ τ , (T3) Gi ∈ τ, i ∈ I ⇒

∨
i Gi ∈ τ

and the set of closed sets κ satisfies
(CT1) S, ∅∈κ, (CT2) K1,K2∈κ ⇒ K1 ∪K2∈κ, (CT3) Ki∈κ, i∈I ⇒

⋂
i Ki∈κ.

In this case, (S,S, τ, κ) is called a ditopological texture spaces (or “d.t.s.” for short).
So a ditopology can be considered as a “topology” in which there is no need to exist
a relation between the open and closed sets [2].

Let (S,S, τ, κ) be a d.t.s. For a subset A ∈ S, the closure (interior) of A is defined
by [A] =

⋂
{B ∈ κ | A ⊆ B} (]A[=

∨
{B ∈ τ |B ⊆ A}) respectively [5].

Definition 2.8 ([6]). A d.t.s. (S,S, τ, κ) is said to be:
(a) R0 if (G ∈ τ, G ⊈ Qs) ⇒ [Ps] ⊆ G.

(b) Co-R0 if (F ∈ κ, Ps ⊈ F ) ⇒ F ⊆]Qs[.

(c) R1 if (G ∈ τ, G ⊈ Qs, Pt ⊈ G) ⇒ ∃H ∈ τ : H ⊈ Qs, Pt ⊈ [H].

(d) Co-R1 if (F ∈ κ, Ps ⊈ F, F ⊈ Qt) ⇒ ∃K ∈ κ : Ps ⊈ K, ]K[⊈ Qt.

(e) Regular if (G ∈ τ, G ⊈ Qs) ⇒ ∃H ∈ τ : H ⊈ Qs, [H] ⊆ G.

(f) Coregular if (F ∈ κ, Ps ⊈ F ) ⇒ ∃K ∈ κ : Ps ⊈ K, F ⊆]K[.
(S,S, τ, κ) is called T0 if Qs ⊈ Qt ⇒ ∃C ∈ τ ∪ κ : Ps ⊈ C ⊈ Qt. A d.t.s. is called:

(i) (co-)T1 if it is both T0 and (co-)R0,

(ii) (co-)T2 if it is both T0 and (co-)R1 and

(iii) (co-)T3 if it is both T0 and (co-)regular respectively. For each property P, if
(S,S, τ, κ) is P and co-P then we say that (S,S, τ, κ) is bi-P.

Graded ditopological texture spaces ([7])

Consider two textures (S,S) and (V,V). A graded ditopological texture space (or
“g.d.t.s.” for short) is a tuple (S,S, T ,K, V,V) where the mappings T ,K : S → V
satisfy following conditions:
(GT1) T (S) = T (∅) = V . (GT2) T (A1) ∩ T (A2) ⊆ T (A1 ∩A2) ∀A1, A2 ∈ S.

(GT3)
⋂

j∈J T (Aj) ⊆ T (
∨

j∈J Aj) ∀Aj ∈ S, j ∈ J .

(GCT1) K(S) = K(∅) = V . (GCT2) K(A1) ∩ K(A2) ⊆ K(A1 ∪A2) ∀A1, A2 ∈ S.

(GCT3)
⋂

j∈J K(Aj) ⊆ K(
⋂

j∈J Aj) ∀Aj ∈ S, j ∈ J.

In this case T is called a (V,V)-graded topology and K a (V,V)-graded cotopology
on (S,S). For v ∈ V it is defined that T v = {A ∈ S |Pv ⊆ T (A)}, Kv = {A ∈
S |Pv ⊆ K(A)}. So (T v,Kv) is a ditopology on (S,S) for each v ∈ V . Namely, if
(S,S, T ,K, V,V) is a g.d.t.s., then there exists a d.t.s. (S,S, T v,Kv) for each v ∈ V .

[A]v and ]A[v stand for the closure and the interior of a set A ∈ S in the d.t.s.
(S,S, T v,Kv) respectively, so we have [A]v =

⋂
{B ∈ S |A ⊆ B, B ∈ Kv}, ]A[v=∨

{B ∈ S |B ⊆ A, B ∈ T v}.
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Let (S,S, σ) be a complemented texture. If (S,S, T ,K, V,V) is a g.d.t.s. then
(S,S,K◦σ, T ◦σ, V,V) is again a g.d.t.s. Additionally, (T ,K) is called complemented
if (T ,K) = (K ◦ σ, T ◦ σ) and in this case, we say that (S,S, T ,K, σ, V,V) is a com-
plemented g.d.t.s.

If (S,S, T ,K, σ, V,V) is complemented then σ([A]v) =]σ(A)[v and σ(]A[v) = [σ(A)]v

for all A ∈ S and v ∈ V [12].
Let (Sk,Sk, Tk,Kk, Vk,Vk), k = 1, 2 be g.d.t.s., (f, F ) : (S1,S1) → (S2,S2),

(h,H) : (V1,V1) → (V2,V2) difunctions. For the pair ((f, F ), (h,H)), (f, F ) is called
continuous w.r.t. (h,H) if H←T2(A) ⊆ T1(F←A) ∀A ∈ S2, and cocontinuous w.r.t.
(h,H) if h←K2(A) ⊆ K1(f

←A) ∀A ∈ S2. If (f, F ) is continuous and cocontinuous
w.r.t. (h,H) then it is said to be a bicontinuous difunction w.r.t. (h,H).

(f, F ) is called open (coopen) w.r.t. (h,H) if h→T1(A) ⊆ T2(f→A) (h→T1(A) ⊆
T2(F→A)) for all A ∈ S1 respectively. (f, F ) is called closed (coclosed) w.r.t. (h,H)
if h→K1(A) ⊆ K2(f

→A) (h→K1(A) ⊆ K2(F
→A)) for all A ∈ S1 respectively [10].

Example 2.9. Consider the discrete texture (V,V) = (1,P(1)) (The notation 1 de-
notes the set {0}) and take a d.t.s. (S,S, τ, κ). Then the mappings τg, κg : S →
P(1) defined by τg(A) = 1 ⇔ A ∈ τ and κg(A) = 1 ⇔ A ∈ κ form a g.d.t.s.
(S,S, τg, κg, V,V). In this case (τg, κg) is called a graded ditopology on (S,S) corre-
sponding to ditopology (τ, κ). Thus g.d.t.s. are more general than d.t.s.

3. Regularity and separation spectrums

Definition 3.1. Let (S,S, T ,K, V,V) be a g.d.t.s. The families defined by
(i) R0 = {Pv ∈ V | [A ∈ S, Pv ⊆ T (A), A ⊈ Qs] ⇒ [Ps]

v ⊆ A}

(ii) cR0 = {Pv ∈ V | [A ∈ S, Pv ⊆ K(A), Ps ⊈ A] ⇒ A ⊆]Qs[
v}

(iii) R1 = {Pv ∈ V | [A ∈ S, Pv ⊆ T (A), A ⊈ Qs, Pt ⊈ A] ⇒ [∃B ∈ S : Pv ⊆
T (B), B ⊈ Qs, Pt ⊈ [B]v]}

(iv) cR1 = {Pv ∈ V | [A ∈ S, Pv ⊆ K(A), Ps ⊈ A, A ⊈ Qt] ⇒ [∃B ∈ S : Pv ⊆
K(B), Ps ⊈ B, ]B[v⊈ Qt]}

(v) R = {Pv ∈ V | [A ∈ S, Pv ⊆ T (A), A ⊈ Qs] ⇒ [∃B ∈ S : Pv ⊆ T (B), B ⊈
Qs, [B]v ⊆ A]}

(vi) cR = {Pv ∈ V | [A ∈ S, Pv ⊆ K(A), Ps ⊈ A] ⇒ [∃B ∈ S : Pv ⊆ K(B), Ps ⊈
B, A ⊆]B[v ]}
are calledR0 (Co-R0, R1, Co-R1, Regularity, Co-regularity) spectrums of (S,S, T ,K, V,V)
respectively. Also bi-R0 (bi-R1 and bi–regularity) spectrums are defined by bR0 =
R0 ∩ cR0 (bR1 = R1 ∩ cR1 and bR = R∩ cR) respectively.

In case more than one g.d.t.s. (e.g., Wk = (Sk,Sk, Tk,Kk, Vk,Vk), k = 1, 2, ..., n)
are mentioned, for simplicity we will use the notations R(Wk) (cR(Wk) etc.) for the
regularity (Co-regularity etc.) spectrum of Wk.
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Proposition 3.2. For a g.d.t.s. we have R ⊆ R1 ⊆ R0, cR ⊆ cR1 ⊆ cR0 and so
bR ⊆ bR1 ⊆ bR0.

Proof. Consider a g.d.t.s. (S,S, T ,K, V,V).
Let Pv ∈ R and take A ∈ S with Pv ⊆ T (A), A ⊈ Qs, Pt ⊈ A. Since Pv ∈ R, we

have Pv ⊆ T (B), B ⊈ Qs and [B]v ⊆ A for some B ∈ S. Also, using Pt ⊈ A we get
Pv ⊆ T (B), B ⊈ Qs, Pt ⊈ [B]v for some B ∈ S and so Pv ∈ R1.

Now let Pv ∈ R1 and take A ∈ S with Pv ⊆ T (A), A ⊈ Qs. We will show that
”Pt ⊈ A ⇒ Pt ⊈ [Ps]

v” to show that [Ps]
v ⊆ A. If Pt ⊈ A, since Pv ∈ R1 we have

Pv ⊆ T (B), B ⊈ Qs and Pt ⊈ [B]v for some B ∈ S. Since B ⊈ Qs we have Ps ⊆ B
and so [Ps]

v ⊆ [B]v. On the other hand, since Pt ⊈ [B]v and [Ps]
v ⊆ [B]v we get

Pt ⊈ [Ps]
v. That is Pv ∈ R0. Hence we get R ⊆ R1 ⊆ R0.

Let Pv ∈ cR and take A ∈ S with Pv ⊆ K(A), Ps ⊈ A, A ⊈ Qt. Since Pv ∈ cR, we
have Pv ⊆ K(B), Ps ⊈ B and A ⊆]B[v for some B ∈ S. Since A ⊈ Qt and A ⊆]B[v

we have Pv ⊆ K(B), Ps ⊈ B, ]B[v⊈ Qt and so Pv ∈ cR1.
Let Pv ∈ cR1 and take A ∈ S with Pv ⊆ K(A), Ps ⊈ A. We will show that

”A ⊈ Qt ⇒]Qs[
v⊈ Qt” to show that A ⊆]Qs[

v. If A ⊈ Qt, considering Pv ∈ cR1,
we have Pv ⊆ K(B), Ps ⊈ B and ]B[v⊈ Qt for some B ∈ S. Using Ps ⊈ B we
get B ⊆ Qs and so ]B[v⊆]Qs[

v. Thus, because of ]B[v⊈ Qt and ]B[v⊆]Qs[
v we have

]Qs[
v⊈ Qt. Therefore we get cR ⊆ cR1 ⊆ cR0. □

Corollary 3.3. Let W1 = (S,S, T1,K1, V,V), W2 = (S,S, T1,K2, V,V) and W3 =
(S,S, T2,K1, V,V) be three g.d.t.s. with K1 ⊆ K2 and T1 ⊆ T2. The following hold:
(a) R(W1) ⊆ R(W2), R1(W1) ⊆ R1(W2), R0(W1) ⊆ R0(W2).

(b) cR(W1) ⊆ cR(W3), cR1(W1) ⊆ cR1(W3), cR0(W1) ⊆ cR0(W3).

Proof. (a) Let B ∈ S and v ∈ V . Since K1 ⊆ K2 we have K1(F ) ⊆ K2(F ) for all
F ∈ S. So we have

[B]vW1
=

⋂
{F ∈ S |B ⊆ F, Pv ⊆ K1(F )} ⊇

⋂
{F ∈ S |B ⊆ F, Pv ⊆ K2(F )} = [B]vW2

where [B]vWk
is v−closure of B in g.d.t.s. Wk, k = 1, 2, 3. Thus we get R(W1) ⊆

R(W2), R1(W1) ⊆ R1(W2) and R0(W1) ⊆ R0(W2) from Definition 3.1 (v), (iii)
and (i) respectively.

(b) Let B ∈ S and v ∈ V . Since T1 ⊆ T2 we have T1(G) ⊆ T2(G) for all G ∈ S.
So we have

]B[vW1
=

∨
{G ∈ S |G ⊆ B, Pv ⊆ T1(G)} ⊆

∨
{G ∈ S |G ⊆ B, Pv ⊆ T2(G)} =]B[vW3

where ]B[vWk
is v−interior of B in g.d.t.s. Wk, k = 1, 2, 3. Therefore cR(W1) ⊆

cR(W3), cR1(W1) ⊆ cR1(W3) and cR0(W1) ⊆ cR0(W3) from Definition 3.1 (vi),
(iv) and (ii) respectively. □

Proposition 3.4. For a complemented g.d.t.s. (S,S, σ, T ,K, V,V) we have R0 =
cR0 = bR0.

Proof. Let Pv ∈ R0 and take A ∈ S with Pv ⊆ K(A), Ps ⊈ A. Since the g.d.t.s. is
complemented we have Pv⊆K(A)=(T ◦σ)(A)=T (σ(A)). On the other hand we have:

Ps ⊈ A ⇒ σ(A) ⊈ σ(Ps) ⇒ ∃s′ ∈ S : σ(A) ⊈ Qs′ , Ps′ ⊈ σ(Ps)
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⇒ ∃s′ ∈ S : σ(A) ⊈ Qs′ , Ps ⊈ σ(Ps′) ⇒ ∃s′ ∈ S : σ(A) ⊈ Qs′ , σ(Ps′) ⊆ Qs.

Since σ(A) ∈ S, Pv ⊆ T (σ(A)), σ(A) ⊈ Qs′ and Pv ∈ R0 we get [Ps′ ]
v ⊆ σ(A). This

implies A ⊆ σ([Ps′ ]
v) =]σ(Ps′)[

v⊆]Qs[
v by σ(Ps′) ⊆ Qs. Hence we get Pv ∈ cR0, i.e.

R0 ⊆ cR0.

Now let Pv ∈ cR0 and take A ∈ S with Pv ⊆ T (A), A ⊈ Qs. Since the g.d.t.s. is
complemented we have Pv ⊆ T (A) = (K ◦ σ)(A) = K(σ(A)). Moreover, we have:

A ⊈ Qs ⇒ σ(Qs) ⊈ σ(A) ⇒ ∃s′ ∈ S : σ(Qs) ⊈ Qs′ , Ps′ ⊈ σ(A)

⇒ ∃s′ ∈ S : σ(Qs′) ⊈ Qs, Ps′ ⊈ σ(A) ⇒ ∃s′ ∈ S : Ps ⊆ σ(Qs′), Ps′ ⊈ σ(A).

Since σ(A) ∈ S, Pv ⊆ K(σ(A)), Ps′ ⊈ σ(A) and Pv ∈ cR0 we get σ(A) ⊆]Qs′ [
v. This

implies A ⊇ σ(]Qs′ [
v) = [σ(Qs′)]

v ⊇]Ps[
v by Ps ⊆ σ(Qs′). Hence we get Pv ∈ R0, i.e.

cR0 ⊆ R0. Therefore we obtain that R0 = cR0 = bR0. □

Proposition 3.5. For a complemented g.d.t.s. (S,S, σ, T ,K, V,V) we have R1 =
cR1 = bR1.

Proof. Let Pv ∈ cR1 and take A ∈ S with Pv ⊆ T (A), A ⊈ Qs, Pt ⊈ A. Since the
g.d.t.s. is complemented we have Pv ⊆ T (A) = (K ◦ σ)(A) = K(σ(A)). Moreover:

A⊈ Qs ⇒ σ(Qs)⊈ σ(A) ⇒ ∃s′ ∈ S : σ(Qs)⊈ Qs′ , Ps′ ⊈ σ(A)

⇒ ∃s′ ∈ S : σ(Qs′)⊈ Qs, Ps′ ⊈ σ(A) ⇒ ∃s′ ∈ S : Ps⊆ σ(Qs′), Ps′ ⊈ σ(A)

and Pt⊈ A ⇒ σ(A)⊈ σ(Pt) ⇒ ∃t′ ∈ S : σ(A)⊈ Qt′ , Pt′ ⊈ σ(Pt)

⇒ ∃t′ ∈ S : σ(A)⊈ Qt′ , Pt⊈ σ(Pt′) ⇒ ∃t′ ∈ S : σ(A)⊈ Qt′ , σ(Pt′)⊆ Qt.

Since σ(A) ∈ S, Pv ⊆ K(σ(A)), Ps′ ⊈ σ(A), σ(A) ⊈ Qt′ and Pv ∈ cR1 we get

∃B ∈ S : Pv ⊆ K(B), Ps′ ⊈ B, ]B[v⊈ Qt′ .

Since the g.d.t.s. is complemented we have Pv ⊆ K(B) = (T ◦ σ)(B) = T (σ(B)).
Also, because of Ps′ ⊈ B ⇒ B ⊆ Qs′ ⇒ σ(Qs′) ⊆ σ(B) and σ(Qs′) ⊈ Qs we
have σ(B) ⊈ Qs. Since ]B[v⊈ Qt′ ⇒ Pt′ ⊆]B[v⇒ [σ(B)]v = σ(]B[v) ⊆ σ(Pt′) and
Pt ⊈ σ(Pt′) we get Pt ⊈ [σ(B)]v. Hence we get Pv ∈ R1, i.e. cR1 ⊆ R1.

Similarly it can be obtained that R1 ⊆ cR1 and so R1 = cR1 = bR1. □

Proposition 3.6. For a complemented g.d.t.s. (S,S, σ, T ,K, V,V) we have R =
cR = bR.

Proof. Let Pv ∈ R and take A ∈ S with Pv ⊆ K(A), Ps ⊈ A. Since the g.d.t.s. is
complemented we have Pv ⊆ K(A) = (T ◦ σ)(A) = T (σ(A)). On the other hand we
have:

Ps ⊈ A ⇒ σ(A) ⊈ σ(Ps) ⇒ ∃s′ ∈ S : σ(A) ⊈ Qs′ , Ps′ ⊈ σ(Ps)

⇒ ∃s′ ∈ S : σ(A) ⊈ Qs′ , σ(Ps) ⊆ Qs′ ⇒ ∃s′ ∈ S : σ(A) ⊈ Qs′ , σ(Qs′) ⊆ Ps.

Since σ(A) ∈ S, Pv ⊆ T (σ(A)), σ(A) ⊈ Qs′ and Pv ∈ R we have

∃B ∈ S : Pv ⊆ T (B), B ⊈ Qs′ , [B]v ⊆ σ(A).

Since the g.d.t.s. is complemented we have Pv ⊆ T (B) = (K ◦ σ)(B) = K(σ(B)).
Besides B ⊈ Qs′ implies σ(Qs′) ⊈ σ(B) so we get Ps ⊈ σ(B) by the fact that
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σ(Qs′) ⊆ Ps. Also, since [B]v ⊆ σ(A) we get A ⊆ σ([B]v) =]σ(B)[v. Thus we get
Pv ∈ cR, i.e. R ⊆ cR.

Similarly it can be shown that cR ⊆ R and so R = cR = bR. □

Theorem 3.7. Let Wj = (Sj ,Sj , Tj ,Kj , V,V), (j = 1, 2) be two g.d.t.s., (f, F ) :
(S1,S1) → (S2,S2) be a difunction. If (f, F ) is bijective, continuous and coclosed
w.r.t. (iV , IV ) then R0(W1) ⊆ R0(W2) and cR0(W2) ⊆ cR0(W1).

Proof. Let Pv ∈ R0(W1). If A ∈ S2 with Pv ⊆ T2(A), A ⊈ Qs2 then we have
f←(A) ∈ S1 and Pv = IV

←(Pv) ⊆ IV
←(T2(A)) ⊆ T1(f←(A)) by the continuity of

(f, F ) w.r.t. (iV , IV ). Also, since (f, F ) is surjective we have

A ⊈ Qs2 ⇒ f←(A) ⊈ f←(Qs2) ⇒ ∃s1 ∈ S1 : f←(A) ⊈ Qs1 , Ps1 ⊈ f←(Qs2).

Moreover, we have Ps1 ⊈ f←(Qs2) ⇒ F→(Ps1) ⊈ F→(f←(Qs2)) = Qs2 since (f, F )
is bijective.

So, considering f←(A) ∈ S1, Pv ⊆ T1(f←(A)) and f←(A) ⊈ Qs1 we get [Ps1 ]
v ⊆

f←(A) by Pv ∈ R0(W1).
Now, if we take B ∈ S1 with Ps1 ⊆ B and Pv ⊆ K1(B) then we have:

(i) Ps1 ⊆ B ⇒ F→(Ps1) ⊆ F→(B) ⇒ F→(B) ⊈ Qs2 ⇒ Ps2 ⊆ F→(B) since
F→(Ps1) ⊈ Qs2 .

(ii) Pv ⊆ K1(B) ⇒ Pv = iV
→(Pv) ⊆ iV

→(K1(B)) ⊆ K2(F
→(B)) ⇒ Pv ⊆ K2(F

→(B))
since (f, F ) is coclosed w.r.t. (iV , IV ).
So we get

{F→(B) ∈ S2 |B ∈ S1, Ps1 ⊆ B, Pv ⊆ K1(B)} ⊆ {D ∈ S2 |Ps2 ⊆ D, Pv ⊆ K2(D)}.
Thus, since (f, F ) is surjective we have

[Ps2 ]
v =

⋂
{D ∈ S2 |Ps2 ⊆ D, Pv ⊆ K2(D)}

⊆
⋂

{F→(B) ∈ S2 |B ∈ S1, Ps1 ⊆ B, Pv ⊆ K1(B)}

= F→(
⋂

{B ∈ S1 |Ps1 ⊆ B, Pv ⊆ K1(B)}) = F→([Ps1 ]
v) ⊆ F→(f←(A)) = A.

Hence we get Pv ∈ R0(W2).
Similarly it can be shown that cR0(W2) ⊆ cR0(W1). □

Theorem 3.8. Let Wj = (Sj ,Sj , Tj ,Kj , V,V), (j = 1, 2) be two g.d.t.s., (f, F ) :
(S1,S1) → (S2,S2) be a difunction. If (f, F ) is bijective, cocontinuous and open
w.r.t. (iV , IV ) then R0(W2) ⊆ R0(W1) and cR0(W1) ⊆ cR0(W2).

Proof. Let Pv ∈ R0(W2). If A ∈ S1 with Pv ⊆ T1(A), A ⊈ Qs1 then we have
f→(A) ∈ S2 and Pv = iV

→(Pv) ⊆ iV
→(T1(A)) ⊆ T2(f→(A)) by the openness of

(f, F ) w.r.t. (iV , IV ). Also, since (f, F ) is injective we have

A ⊈ Qs1 ⇒ f→(A) ⊈ f→(Qs1) ⇒ ∃s2 ∈ S2 : f→(A) ⊈ Qs2 , Ps2 ⊈ f→(Qs1).

Moreover, we have Ps2 ⊈ f→(Qs1) ⇒ F←(Ps2) ⊈ F←(f→(Qs1)) = Qs1 ⇒ f←(Ps2) ⊈
Qs1 since (f, F ) is bijective.

So, considering f→(A) ∈ S2, Pv ⊆ T2(f→(A)) and f→(A) ⊈ Qs2 we get [Ps2 ]
v ⊆

f→(A) by Pv ∈ R0(W2).
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Now, if we take D ∈ S2 with Ps2 ⊆ D and Pv ⊆ K2(D) then we have:
(i) Ps2 ⊆ D ⇒ f←(Ps2) ⊆ f←(D) ⇒ f←(D) ⊈ Qs1 ⇒ Ps1 ⊆ f←(D) since
f←(Ps2) ⊈ Qs1 .

(ii) Pv ⊆ K2(D) ⇒ Pv = iV
←(Pv) ⊆ iV

←(K2(D)) ⊆ K1(f
←(D)) ⇒ Pv ⊆ K1(f

←(D))
since (f, F ) is cocontinuous w.r.t. (iV , IV ).
So we get

{f←(D) ∈ S1 |D ∈ S2, Ps2 ⊆ D, Pv ⊆ K2(D)} ⊆ {B ∈ S1 |Ps1 ⊆ B, Pv ⊆ K1(B)}.
Thus, since (f, F ) is injective we have

[Ps1 ]
v =

⋂
{B ∈ S1 |Ps1 ⊆ B, Pv ⊆ K1(B)}

⊆
⋂

{f←(D) ∈ S1 |D ∈ S2, Ps2 ⊆ D, Pv ⊆ K2(D)}

= f←(
⋂

{D ∈ S2 |Ps2 ⊆ D, Pv ⊆ K2(D)}) = F←([Ps2 ]
v) ⊆ F←(f→(A)) = A.

Hence we get Pv ∈ R0(W1).
Similarly it can be shown that cR0(W1) ⊆ cR0(W2). □

The following corollary is a direct consequence of Theorem 3.7 and Theorem 3.8.

Corollary 3.9. Let Wj = (Sj ,Sj , Tj ,Kj , V,V), (j = 1, 2) be two g.d.t.s., (f, F ) :
(S1,S1) → (S2,S2) be a difunction. If (f, F ) is bijective, bicontinuous, open and
coclosed w.r.t. (iV , IV ) then R0(W1) = R0(W2) and cR0(W1) = cR0(W2).

Theorem 3.10. Let Wj = (Sj ,Sj , Tj ,Kj , V,V), (j = 1, 2) be two g.d.t.s., (f, F ) :
(S1,S1) → (S2,S2) be a bijective difunction.
(a) If (f, F ) is continuous, coopen and coclosed w.r.t. (iV , IV ) then R1(W1)⊆R1(W2).

(b) If (f, F ) is cocontinuous, open and closed w.r.t. (iV , IV ) then cR1(W1)⊆cR1(W2).

(c) If (f, F ) is bicontinuous and open w.r.t. (iV , IV ) then R1(W2)⊆R1(W1).

(d) If (f, F ) is bicontinuous and coclosed w.r.t. (iV , IV ) then cR1(W2)⊆cR1(W1).

Proof. We prove (b), (d) and leave the proof of (a), (c) to the reader.
(b) Let Pv ∈ cR1(W1). If A ∈ S2 with Pv ⊆ K2(A), Ps2 ⊈ A, A ⊈ Qt2 then

we have f←(A) ∈ S1 and Pv = IV
←(Pv) ⊆ IV

←(K2(A)) ⊆ K1(f
←(A)) by the

cocontinuity of (f, F ) w.r.t. (iV , IV ). Also, since (f, F ) is surjective we have

Ps2 ⊈ A ⇒ f←(Ps2) ⊈ f←(A) ⇒ ∃s1 ∈ S1 : f←(Ps2) ⊈ Qs1 , Ps1 ⊈ f←(A),

A ⊈ Qt2 ⇒ f←(A) ⊈ f←(Qt2) ⇒ ∃t1 ∈ S1 : f←(A) ⊈ Qt1 , Pt1 ⊈ f←(Qt2).

So, considering Pv ∈ cR1(W1), f
←(A) ∈ S1, Pv ⊆ K1(f

←(A)), Ps1 ⊈ f←(A)
and f←(A) ⊈ Qt1 we get ∃B ∈ S1 : Pv ⊆ K1(B), Ps1 ⊈ B, ]B[v⊈ Qt1 . Since
(f, F ) is closed w.r.t. (iV , IV ) we have Pv = i→V (Pv) ⊆ i→V (K1(B)) ⊆ K2(f

→B), i.e.
Pv ⊆ K2(f

→B). Also, since (f, F ) is bijective and f←(Ps2) ⊈ Qs1 we have Ps1 ⊈
B ⇒ B ⊆ Qs1 ⇒ f←(Ps2) ⊈ B ⇒ Ps2 = f→(f←(Ps2)) ⊈ f→B ⇒ Ps2 ⊈ f→B.

Now, if we take D ∈ S1 with D ⊆ B and Pv ⊆ T1(D) then we have f→D ⊆ f→B
and Pv = iV

→(Pv) ⊆ iV
→(T1(D)) ⊆ T2(f→(D)) by the openness of (f, F ) w.r.t.
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(iV , IV ). So we get

f→(]B[v) = f→(
∨

{D ∈ S1 |D ⊆ B, Pv ⊆ T1(D)})

=
∨

{f→D ∈ S2 |D ∈ S1, D ⊆ B, Pv ⊆ T1(D)}

⊆
∨

{E ∈ S2 |E ⊆ f→B, Pv ⊆ T2(E)} =]f→B[v.

Besides, since (f, F ) is bijective, Pt1⊈f←(Qt2) and ]B[v⊈Qt1 we have Pt1 ⊆]B[v⇒
]B[v⊈ f←(Qt2) ⇒ f→(]B[v) ⊈ Qt2 . Hence we get ]f→B[v⊈ Qt2 , i.e. Pv ∈ cR1(W2).

(d) Let Pv ∈ cR1(W2). If A ∈ S1 with Pv ⊆ K1(A), Ps1 ⊈ A, A ⊈ Qt1 then we
have F→(A) ∈ S2 and Pv = iV

→(Pv) ⊆ iV
→(K1(A)) ⊆ K2(F

→A) by the coclosedness
of (f, F ) w.r.t. (iV , IV ). Also, since (f, F ) is injective we have

Ps1 ⊈ A ⇒ F→(Ps1) ⊈ F→(A) ⇒ ∃s2 ∈ S2 : F→(Ps1) ⊈ Qs2 , Ps2 ⊈ F→(A),

A ⊈ Qt1 ⇒ F→(A) ⊈ F→(Qt1) ⇒ ∃t2 ∈ S2 : F→(A) ⊈ Qt2 , Pt2 ⊈ F→(Qt1).

So, considering Pv ∈ cR1(W2), F
→(A) ∈ S2, Pv ⊆ K2(F

→A), Ps2 ⊈ F→(A) and
F→(A) ⊈ Qt2 we get ∃B ∈ S2 : Pv ⊆ K2(B), Ps2 ⊈ B, ]B[v⊈ Qt2 . Since (f, F ) is
cocontinuous w.r.t. (iV , IV ) we have Pv = I←V (Pv) ⊆ I←V (K2(B)) ⊆ K1(f

←B), i.e.
Pv ⊆ K1(f

←B). Also, since (f, F ) is bijective and F→(Ps1) ⊈ Qs2 we have Ps2 ⊈
B ⇒ B ⊆ Qs2 ⇒ F→(Ps1) ⊈ B ⇒ Ps1 = f←(F→(Ps2)) ⊈ f←B ⇒ Ps1 ⊈ f←B.

Now, if we take D ∈ S2 with D ⊆ B and Pv ⊆ T2(D) then we have f←D ⊆ f←B
and Pv = iV

→(Pv) ⊆ iV
→(T2(D)) ⊆ T1(f←(D)) by the continuity of (f, F ) w.r.t.

(iV , IV ). So we get

f←(]B[v) = f←(
∨

{D ∈ S2 |D ⊆ B, Pv ⊆ T2(D)})

=
∨

{f←D ∈ S1 |D ∈ S2, D ⊆ B, Pv ⊆ T2(D)}

⊆
∨

{E ∈ S1 |E ⊆ f←B, Pv ⊆ T1(E)} =]f←B[v.

Besides, since (f, F ) is bijective, Pt2 ⊈ F→(Qt1) and ]B[v⊈ Qt2 we have Pt2 ⊆
]B[v⇒]B[v⊈ F→(Qt1) ⇒ f←(]B[v) ⊈ Qt1 . Hence we get ]f←B[v⊈ Qt1 , i.e. Pv ∈
cR1(W1). □

Theorem 3.11. Let Wj = (Sj ,Sj , Tj ,Kj , V,V), (j = 1, 2) be two g.d.t.s., (f, F ) :
(S1,S1) → (S2,S2) be a bijective difunction.
(a) If (f, F ) is continuous, coopen and coclosed w.r.t. (iV , IV ) then R(W1) ⊆ R(W2).

(b) If (f, F ) is cocontinuous, open and closed w.r.t. (iV , IV ) then cR(W1) ⊆ cR(W2).

(c) If (f, F ) is bicontinuous and open w.r.t. (iV , IV ) then R(W2) ⊆ R(W1).

(d) If (f, F ) is bicontinuous and coclosed w.r.t. (iV , IV ) then cR(W2) ⊆ cR(W1).

Proof. We prove (a), (c) and leave the proof of (b), (d) to the reader.
(a) Let Pv ∈ R(W1). If A ∈ S2 with Pv ⊆ T2(A), A ⊈ Qs2 then we have

f←(A) ∈ S1 and Pv = IV
←(Pv) ⊆ IV

←(T2(A)) ⊆ T1(f←(A)) by the continuity of
(f, F ) w.r.t. (iV , IV ). Also, since (f, F ) is surjective we have

A ⊈ Qs2 ⇒ f←(A) ⊈ f←(Qs2) ⇒ ∃s1 ∈ S1 : f←(A) ⊈ Qs1 , Ps1 ⊈ f←(Qs2).
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So, considering Pv ∈ R(W1), f
←(A) ∈ S1, Pv ⊆ T1(f←(A)) and f←(A) ⊈ Qs1

we get ∃B ∈ S1 : Pv ⊆ T1(B), B ⊈ Qs1 , [B]v ⊆ f←(A). Since (f, F ) is coopen w.r.t.
(iV , IV ) we have Pv = i→V (Pv) ⊆ i→V (T1(B)) ⊆ T2(F→B), i.e. Pv ⊆ T2(F→B). Also,
since (f, F ) is bijective and Ps1 ⊈ f←(Qs2) we have B ⊈ Qs1 ⇒ Ps1 ⊆ B ⇒ B ⊈
f←(Qs2) ⇒ F→B ⊈ F→(f←(Qs2)) = Qs2 ⇒ F→B ⊈ Qs2 .

Now, if we take D ∈ S1 with B ⊆ D and Pv ⊆ K1(D) then we have F→B ⊆ F→D
and Pv = iV

→(Pv) ⊆ iV
→(K1(D)) ⊆ K2(F

→(D)) by the coclosedness of (f, F ) w.r.t.
(iV , IV ). So we get

[F→B]v =
⋂

{E ∈ S2 |F→B ⊆ E, Pv ⊆ K2(E)}

⊆
⋂

{F→D ∈ S2 |D ∈ S1 B ⊆ D, Pv ⊆ K1(D)} = F→([B]v).

Besides, since (f, F ) is bijective and [B]v ⊆ f←A we have [F→B]v ⊆ F→([B]v) ⊆
F→(f←A) = A, i.e. [F→B]v ⊆ A. Hence we get Pv ∈ R(W2).

(c) Let Pv ∈ R(W2). If A ∈ S1 with Pv ⊆ T1(A), A ⊈ Qs1 then we have
f→(A) ∈ S2 and Pv = iV

→(Pv) ⊆ iV
→(T1(A)) ⊆ T2(f→A) by the openness of (f, F )

w.r.t. (iV , IV ). Also, since (f, F ) is injective we have

A ⊈ Qs1 ⇒ f→(A) ⊈ f→(Qs1) ⇒ ∃s2 ∈ S2 : f→(A) ⊈ Qs2 , Ps2 ⊈ f→(Qs1).

So, considering Pv ∈ R(W2), f
→(A) ∈ S2, Pv ⊆ T2(f→A) and f→(A) ⊈ Qs2 we

get ∃B ∈ S2 : Pv ⊆ T2(B), B ⊈ Qs2 , [B]v ⊆ f→(A). Since (f, F ) is continuous w.r.t.
(iV , IV ) we have Pv = I←V (Pv) ⊆ I←V (T2(B)) ⊆ T1(f←B), i.e. Pv ⊆ T1(f←B). Also,
since (f, F ) is bijective and Ps2 ⊈ f→(Qs1) we have B ⊈ Qs2 ⇒ Ps2 ⊆ B ⇒ B ⊈
f→(Qs1) ⇒ f←B = F←B ⊈ F←(f→(Qs1)) = Qs1 ⇒ f←B ⊈ Qs1 .

Now, if we take D ∈ S2 with B ⊆ D and Pv ⊆ K2(D) then we have f←B ⊆ f←D
and Pv = IV

←(Pv) ⊆ IV
←(K2(D)) ⊆ K1(f

←(D)) by the cocontinuity of (f, F ) w.r.t.
(iV , IV ). So we get

[f←B]v =
⋂

{E ∈ S1 | f←B ⊆ E, Pv ⊆ K1(E)}

⊆
⋂

{f←D ∈ S1 |D ∈ S2, B ⊆ D, Pv ⊆ K2(D)}

= f←(
⋂

{D ∈ S2 |B ⊆ D, Pv ⊆ K2(D)}) = f←([B]v)

Besides, since (f, F ) is bijective and [B]v ⊆ f→(A) we have [f←B]v ⊆ f←([B]v) ⊆
f←(f→(A)) = F←(f→(A)) = A, i.e. [f←B]v ⊆ A. Hence we get Pv ∈ R(W1). □

Definition 3.12. Let (S,S, T ,K, V,V) be a g.d.t.s. The families defined by
(i) T0 = {Pv ∈ V | [s, t ∈ S, Qs ⊈ Qt] ⇒ [∃D ∈ (T v ∪ Kv) : Ps ⊈ D ⊈ Qt]},
(ii) T1 = T0 ∩R0, (iii) cT1 = T0 ∩ cR0, (iv) bT1 = T0 ∩ bR0,
are called T0 (T1, co-T1, bi-T1) spectrums of (S,S, T ,K, V,V) respectively.

Proposition 3.13. For a g.d.t.s. W = (S,S, T ,K, V,V) the following are satisfied:
(a) T1(W ) = {Pv ∈ V | [s, t ∈ S, Qs ⊈ Qt] ⇒ [∃D ∈ Kv : Ps ⊈ D ⊈ Qt]},
(b) cT1(W ) = {Pv ∈ V | [s, t ∈ S, Qs ⊈ Qt] ⇒ [∃D ∈ T v : Ps ⊈ D ⊈ Qt]}.

Proof. (a) Let Pv ∈ T1(W ). So, we have Pv ∈ T0(W ) and Pv ∈ R0(W ). Let s, t ∈ S
with Qs ⊈ Qt. Since Pv ∈ T0(W ), Ps ⊈ D ⊈ Qt for some D ∈ (T v ∪ Kv). If
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D ∈ Kv then Pv ∈ {Pv ∈ V | [s, t ∈ S, Qs ⊈ Qt] ⇒ [∃D ∈ Kv : Ps ⊈ D ⊈ Qt]}. If
D ∈ T v, since Pv ⊆ T (D), D ⊈ Qt, Pv ∈ R0(W ) we have [Pt]

v ⊆ D. Considering
Ps ⊈ D ⇒ D ⊆ Qs, we get Pt ⊆ [Pt]

v ⊆ Qs. That is, Pt ⊆ B ⊆ Qs for some
B ∈ Kv. So, Ps ⊈ B ⊈ Qt for some B ∈ Kv (from [6] Theorem 4.4.). Hence we get
T1(W ) ⊆ {Pv ∈ V | [s, t ∈ S, Qs ⊈ Qt] ⇒ [∃D ∈ Kv : Ps ⊈ D ⊈ Qt]}.

Now, let Pv ∈ {Pv ∈ V | [s, t ∈ S, Qs ⊈ Qt] ⇒ [∃D ∈ Kv : Ps ⊈ D ⊈ Qt]}. So,
Pv ∈ T0(W ). Let A ∈ S, Pv ⊆ T (A) and A ⊈ Qs. If Pt ⊈ A then A ⊆ Qt and
Qt ⊈ Qs. So, ∃Bt ∈ Kv : Pt ⊈ Bt ⊈ Qs from the hypothesis. This implies ∃Bt ∈ Kv :
Ps ⊆ Bt ⊆ Qt for each Pt ⊈ A. Thus we get Ps ⊆

⋂
Pt⊈A Bt ⊆

⋂
Pt⊈A Qt = A. Since⋂

Pt⊈A Bt ∈ Kv we obtain that [Ps]
v ⊆ A, i.e. Pv ∈ R0(W ). So {Pv ∈ V | [s, t ∈

S, Qs ⊈ Qt] ⇒ [∃D ∈ Kv : Ps ⊈ D ⊈ Qt]} ⊆ T1(W ).
(b) This can be shown similarly. □

The next corollary follows from Proposition 3.4.

Corollary 3.14. For a complemented g.d.t.s. (S,S, σ, T ,K, V,V) we have T1 =
cT1 = bT1.

Definition 3.15. Let (S,S, T ,K, V,V) be a g.d.t.s. The families defined by
(i) T2 = T0 ∩R1, (ii) cT2 = T0 ∩ cR1, (iii) bT2 = T0 ∩ bR1,
are called T2 (co-T2, bi-T2) spectrums of (S,S, T ,K, V,V) respectively.

Proposition 3.16. For a g.d.t.s. W = (S,S, T ,K, V,V) we have

bT2(W )={Pv∈ V | [s, t ∈ S, Qs ⊈ Qt]⇒ [∃A∈T v ∃B∈Kv : A⊆ B,Ps⊈ B,A⊈ Qt]}.

Proof. Let Pv ∈ bT2(W ). So, we have Pv ∈ T0(W ), Pv ∈ R1(W ) and Pv ∈ cR1(W ).
Let s, t ∈ S with Qs ⊈ Qt. Since Pv ∈ T0(W ), Ps ⊈ D ⊈ Qt for some D ∈ (T v ∪Kv).
If D ∈ T v, since Pv ∈ R1(W ) there exists A ∈ S such that Pv ⊆ T (A), A ⊈ Qt

and Ps ⊈ [A]v. So, if we take B = [A]v then A ∈ T v, B ∈ Kv, A ⊆ B, Ps ⊈ B and
A ⊈ Qt. Hence Pv ∈ Y = {Pv ∈ V | [s, t ∈ S, Qs ⊈ Qt] ⇒ [∃A ∈ T v ∃B ∈ Kv : A ⊆
B, Ps ⊈ B, A ⊈ Qt]}. If D ∈ Kv, since Pv ∈ cR1(W ) there exists B ∈ S such that
Pv ⊆ K(B), Ps ⊈ B and ]B[v⊈ Qt. So, if we take A =]B[v then A ∈ T v, B ∈ Kv,
A ⊆ B, Ps ⊈ B and A ⊈ Qt. Hence we get Pv ∈ Y and so bT2(W ) ⊆ Y.

Now, let Pv ∈ Y. (1) If s, t ∈ S with Qs ⊈ Qt then A ⊆ B, Ps ⊈ B and A ⊈ Qt

for some A ∈ T v, B ∈ Kv. If we take D = B then we have D ∈ (T v ∪ Kv), and
Ps ⊈ D ⊈ Qt, i.e. Pv ∈ T0(W ). (2) If C ∈ S, Pv ⊆ T (C), C ⊈ Qs and Pt ⊈ C
then we have Qt ⊈ Qs. So, considering Pv ∈ Y, we have A ⊆ B, Pt ⊈ B and
A ⊈ Qs for some A ∈ T v, B ∈ Kv. This follows Pv ⊆ T (A), A ⊈ Qs and Pt ⊈ [A]v,
i.e. Pv ∈ R1(W ). (3) If C ∈ S, Pv ⊆ K(C), Ps ⊈ C and C ⊈ Qt then we have
Qs ⊈ Qt. So, considering Pv ∈ Y, we have A ⊆ B, Ps ⊈ B and A ⊈ Qt for some
A ∈ T v, B ∈ Kv. This follows Pv ⊆ K(B), Ps ⊈ B and ]B[v⊈ Qt, i.e. Pv ∈ cR1(W ).
Thus we get Y ⊆ bT2(W ). □

The next follows from Proposition 3.5.

Corollary 3.17. For a complemented g.d.t.s. (S,S, σ, T ,K, V,V) we have T2 =
cT2 = bT2.
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Definition 3.18. Let (S,S, T ,K, V,V) be a g.d.t.s. The families defined by
(i) T3 = T0 ∩R, (ii) cT3 = T0 ∩ cR, (iii) bT3 = T0 ∩ bR,
are called T3 (co-T3, bi-T3) spectrums of (S,S, T ,K, V,V) respectively.

The next corollaries follow from Proposition 3.6 and Proposition 3.2 respectively.

Corollary 3.19. For a complemented g.d.t.s. (S,S, σ, T ,K, V,V) we have T3 =
cT3 = bT3.

Corollary 3.20. For a g.d.t.s. we have T3 ⊆ T2 ⊆ T1 ⊆ T0, cT3 ⊆ cT2 ⊆ cT1 ⊆ T0

and bT3 ⊆ bT2 ⊆ bT1 ⊆ T0.

Example 3.21. (i) Let (S,S, τ, κ) be a d.t.s. and (V,V) = (1,P(1)) the discrete
texture on a singleton. If (S,S, τ, κ) is R0, (R1, regular, Ti, i = 0, 1, 2, 3) then for the
g.d.t.s. W = (S,S, τg, κg, V,V), Pv ∈ R0 (Pv ∈ R1, Pv ∈ R, Pv ∈ Ti, i = 0, 1, 2, 3)
respectively for all v ∈ V, i.e. v = 0.

(ii) For a g.d.t.s. W = (S,S, T ,K, V,V), the following hold:

(a) Pv ∈ Ri(W ) (Pv ∈ cRi(W )) ⇔ (S,S, T v,Kv) is Ri (co-Ri) for i = 0, 1.

(b) Pv ∈ R(W ) (Pv ∈ cR(W )) ⇔ (S,S, T v,Kv) is regular (co-regular).

(c) Pv ∈ T0 ⇔ (S,S, T v,Kv) is T0.

(d) Pv ∈ Ti (Pv ∈ cTi(W )) ⇔ (S,S, T v,Kv) is Ti (co-Ti) for i = 1, 2, 3.

(iii) Let (S,S = P(S)) and (V,V = P(V )) be discrete textures with V = {v, y, z}
where S has more than one element. If we define T1, T2,K1,K2 : S → V by

T1(A) =

{
V, A = ∅ or A = S

{v}, otherwise
K1(A) =

{
V, A = ∅ or A = S

{y}, otherwise

T2(A) =

{
V, A = ∅ or A = S

{v, z}, otherwise
K2(A) =

{
V, A = ∅ or A = S

{y, z}, otherwise

for all A ∈ S then we have four g.d.t.s. Wij = (S,S, Ti,Kj , V,V). Note that T v
1 = S =

P(S), T y
1 = T z

1 = {S, ∅}, Ky
1 = S = P(S), Kv

1 = Kz
1 = {S, ∅}, T v

2 = T z
2 = S = P(S),

T y
2 = {S, ∅}, Kv

2 = {S, ∅}, Ky
2 = Kz

2 = S = P(S). So we get:

(a) R0(W11)=R1(W11)=R(W11)={Py, Pz}, cR0(W11)=cR1(W11)=cR(W11)={Pv, Pz},
T0(W11)={Pv, Py}, T1(W11)=T2(W11)=T3(W11)={Py} and cT1(W11)=cT2(W11)
=cT3(W11)={Pv}.

(b) R0(W12)=R1(W12)=R(W12)={Py, Pz}, cR0(W12)=cR1(W12)=cR(W12)={Pv}.
(c) R0(W21)=R1(W21)=R(W21)={Py}, cR0(W21)=cR1(W21)=cR(W21)={Pv, Pz}.
(d) R0(W22)=R1(W22)=R(W22)={Py, Pz}, cR0(W22)=cR1(W22)=cR(W22)={Pv, Pz},

T0(W22)=V, bT1(W22)=bT2(W22)=bT3(W22)={Pz}.

(iv) (Example for Theorem 3.7,Theorem 3.10(a) and Theorem 3.11(a)) Consider
((iS , IS), (iV , IV )) : W11 → W12. (iS , IS) is continuous, open, coopen, closed, co-
closed (but not cocontinuous) w.r.t. (iV , IV ) and R0(W11) ⊆ R0(W12), cR0(W12) ⊆
cR0(W11), R1(W11) ⊆ R1(W12), R(W11) ⊆ R(W12).
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(v) (Example for Theorem 3.8) Consider ((iS , IS), (iV , IV )) : W12 → W21. (iS , IS) is
cocontinuous, open, coopen (but not continuous, closed, coclosed) w.r.t. (iV , IV ) and
R0(W21) ⊆ R0(W12), cR0(W12) ⊆ cR0(W21).

(vi) (Example for Theorem 3.10(b) and Theorem 3.11(b)) Consider ((iS , IS), (iV , IV )) :
W12 → W22. (iS , IS) is cocontinuous, open, coopen, closed, coclosed (but not contin-
uous) w.r.t. (iV , IV ) and cR1(W12) ⊆ cR1(W22), cR1(W12) ⊆ cR1(W22).

(vii) (Example for Theorem 3.10(c) and Theorem 3.11(c)) Consider ((iS , IS), (iV , IV )) :
W22 → W21. (iS , IS) is bicontinuous, open, coopen (but not closed, coclosed) w.r.t.
(iV , IV ) and R1(W21) ⊆ R1(W22), R(W21) ⊆ R(W22).

(viii) (Example for Theorem 3.10(d) and Theorem 3.11(d)) Consider ((iS , IS), (iV , IV )) :
W21 → W11. (iS , IS) is bicontinuous, closed, coclosed (but not open, coopen) w.r.t.
(iV , IV ) and cR1(W11) ⊆ cR1(W21), cR(W11) ⊆ cR(W21).

4. Categorical aspects

In this section, we examine the relations between separation spectra of g.d.t.s. and
separation properties of d.t.s. from a category-theoretic point of view. Our reference
for category theory is [1].

The class of d.t.s. and bicontinuous difunctions between them form a category
denoted by dfDitop [5]. Tk d.t.s. form a full concrete subcategory dfDitopk of
dfDitop for k = 0, 1, 2, 3 [6]. The class of g.d.t.s. and the relatively bicontinuous
difunction pairs between them form a category denoted by dfGDitop, moreover
dfDitop can be embedded in dfGDitop [7].

Since we define separation properties of g.d.t.s. by using spectrum idea (com-
patible with the grading setting) it is not possible to mention about “Tk g.d.t.s.”
but “Tk spectrum of g.d.t.s.” for k = 0, 1, 2, 3. So, as a subcategory of dfGDitop,
let dfGDitopk denote the category of g.d.t.s. with nonempty bTk spectrum for
k = 0, 1, 2, 3, i.e. ObdfGDitopk = {W ∈ ObdfGDitop | bTk(W ) ̸= ∅}.

Proposition 4.1. The functor Fk : dfDitopk → dfGDitopk defined by

Fk((f, F ) : (S1,S1, τ1, κ1) → (S2,S2, τ2, κ2))

((f, F ), (i, I)) : (S1,S1, τ
g
1 , κ

g
1, 1,P(1)) → (S2,S2, τ

g
2 , κ

g
2, 1,P(1)).

is a full embedding for k = 0, 1, 2, 3.

Proof. From Example 3.21(ii), Fk is injective on objects. For any morphisms (f, F ),
(g,G) : (S1,S1, τ1, κ1) → (S2,S2, τ2, κ2); we have Fk((f, F )) = Fk((g,G)) ⇒ ((f, F ),
(i, I)) = ((g,G), (i, I)) ⇒ (f, F ) = (g,G). So, Fk is an embedding. Moreover,
for d.t.s. (S1,S1, τ1, κ1), (S2,S2, τ2, κ2), if ((f, F ), (i, I)) : (S1,S1, τ

g
1 , κ

g
1, 1,P(1)) →

(S2,S2, τ
g
2 , κ

g
2, 1,P(1)) is a morphism in dfGDitopk then Fk((f, F )) = ((f, F ), (i, I))

and (f, F ) : (S1,S1, τ1, κ1) → (S2,S2, τ2, κ2) is a morphism in dfDitopk. Hence, Fk

is a full embedding for (k = 0, 1, 2, 3). □
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Now, we fix a texture (Z,Z) and think about (Z,Z)-g.d.t.s. as a subcategory
dfGDitopk(Z,Z) of dfGDitopk. For a (Z,Z)-g.d.t.s. W = (S,S, T ,K, Z,Z) ∈
ObdfGDitopk(Z,Z) we define a d.t.s. (S,S, τ∪, κ∪) by

τ∪ =≪
⋃

Pz∈bTk(W )

T z ≫ and κ∪ =≪
⋃

Pz∈bTk(W )

Kz ≫ .

That is, τ∪ is a topology on (S,S) with subbase
⋃

Pz∈bTk(W ) T z and κ∪ is a co-

topology on (S,S) with subbase
⋃

Pz∈bTk(W ) Kz. So, (S,S, τ∪, κ∪) ∈ dfDitopk for

(k = 0, 1, 2, 3) by Example 3.21(ii) and [6].

However, it is an open problem that whether bTk(W2) ⊆ bTk(W1) under the
relatively bicontinuity of ((f, F ), (iZ , IZ)) is valid or not. So, if we naturally consider
the mapping Hk : dfGDitopk(Z,Z) → dfDitopk defined by

Hk(((f, F ), (iZ , IZ)) : W1 = (S1,S1, T1,K1, Z,Z) → W2 = (S2,S2, T1,K1, Z,Z))

= (f, F ) : (S1,S1, τ
∪
1 , κ

∪
1 ) → (S2,S2, τ

∪
2 , κ

∪
2 )

then it is an open problem that whether Hk is a functor or not.

5. Conclusion

In this paper, different separation spectra of graded ditopological texture spaces, the
properties of these separation spectra and their relations to the separation axioms
in the ditopological case are investigated. As expected, the hierarchy of separation
spectra and their fundamental role in complemented structures are compatible with
the ditopological case (see Propositions 3.2, 3.4, 3.5, 3.6 and Corollary 3.20). Obvi-
ously, the separation spectra of g.d.t.s. are more general than the separation axioms
in d.t.s. (see Example 3.21(i)) and, of course, some generalizations of the properties
of the separation axioms in d.t.s. are not valid for the graded ditopological case.
For example, the separation properties are preserved under further conditions (see
Theorems 3.7, 3.8, 3.10, 3.11 and [6]). In Section 4, we state an open problem that
determines whether Hk is a functor or not. Although we expect that Hk is not a
functor, it is not so easy to find a counterexample for it.

The construction of separations in the theory of graded ditopological texture
spaces can be useful to study compactness in this theory and to discover new proper-
ties in this theory. Considering the interrelations between the structures g.d.t.s., d.t.s.,
Hutton algebras, fuzzy topological spaces, interior- closure textures and diframes,
this work has the potential to improve these areas of study. Other separation no-
tions such as normality, complete regularity, and relations between separation spectra
and compactness spectra in the theory of graded ditopological texture spaces can be
investigated in further studies.
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[11] R. Ekmekçi, A Tychonoff theorem for graded ditopological texture spaces, Commun. Fac. Sci.
Univ. Ank. Ser. A1. Math. Stat. 69(1) (2020), 193–212.
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